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Preventing segregation in flowing granular mixtures
is an ongoing challenge for industrial processes
that involve the handling of bulk solids. A recent
continuum-based modeling approach accurately predicts
spatial concentration fields in a variety of flow
geometries for mixtures varying in particle size. This
approach captures the interplay between advection,
diffusion, and segregation using kinematic information
obtained from experiments and/or discrete element
method (DEM) simulations combined with an empirically
determined relation for the segregation velocity.
Here, we extend the model to include density-
driven segregation, thereby validating the approach
for the two important cases of practical interest.
DEM simulations of density bidisperse flows of
mono-sized particles in a quasi-2D bounded heap
were performed to determine the dependence of the
density-driven segregation velocity on local shear
rate and particle concentration. The model yields
theoretical predictions of segregation patterns that
quantitatively match the DEM simulations over a
range of density ratios and flow rates. Matching
experiments reproduce the segregation patterns and
quantitative segregation profiles obtained in both the
simulations and the model, thereby demonstrating
that the modeling approach captures the essential
physics of density-driven segregation in granular
heap flow.
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1. Introduction
Granular materials with different particle properties tend to segregate spontaneously when they
are flowing [1–4] or vibrating [5–7]. Such segregation is frequently encountered in industrial
processes that involve handling bulk solids [8,9] as well as in geophysical transport such as debris
flows [10], pyroclastic flows [11], and mineral transport [12]. Thus, modeling and predicting
segregation is important, yet accurate models that can be broadly applied are only just now being
developed.

Among different particle properties that can result in segregation, particle size [13] and density
[14] are critical factors. The focus of this work is the segregation due to differences in particle
density, which can occur in vibrated granular mixtures [15–19], free surface flows [20–24], and
vertical chute flows [25]. In gravity-driven free surface flows, particles with lower density are
more likely to rise to the free surface while particles with higher density are more likely to
segregate to the bottom of the flowing layer, resulting in segregation patterns such as a segregated
core or streaks of heavier particles in rotating tumblers [14,21–23]. While particle based simulation
methods can reproduce density driven segregation phenomena on a small scale, an accurate
continuum-based model would be of clear practical and theoretical value.

Over the years, continuum models for segregation in granular flows have been proposed
for various geometries including plug [26–28], chute [24,29–35], and annular shear [36] flows,
and some have achieved qualitative agreement with simulations and experiments. However,
most of these studies focused on size segregation and have not been compared directly to
simulations or experiments or have not convincingly been shown to provide accurate predictions.
The underlying reasons include oversimplifying the kinematics of the flow, neglecting diffusion,
or omitting the dependence of the segregation velocity on the local shear rate. Recently, Tripathi
& Khakhar [20], Tunuguntla et al. [24], and Gray & Ancey [35] incorporated bidisperse density
segregation into continuum models. These studies applied segregation velocities proportional to
the normalized density difference and other parameters. Though the models showed a degree of
agreement with simulations, validation of the segregation velocity or segregation patterns was
lacking. We propose a different approach here and validate it by comparing predictions of this
approach to both discrete element method (DEM) simulations and experiments.

In our recent work, we developed a continuum model based approach form predicting
segregation of granular materials that achieves quantitative agreement with simulations and
experiments of size bidisperse, multidisperse, and polydisperse granular materials in different
geometries [37–40]. The model is based on the transport equation

∂ci
∂t

+∇ · (uci) +
∂

∂z
(ws,ici)−∇ · (D∇ci) = 0, (1.1)

which includes the affects of advection, segregation, and diffusion. Equation 1.1 is applied to
the thin flowing layer (having length L and depth δ), where segregation occurs in most gravity
driven flows. x is the streamwise direction (0<x<L) and z is the normal direction (−δ < z < 0),
with z = 0 at the surface of the flowing layer. Terms with subscripts i represent the properties for
species i in a bidispere mixture (h for heavy and l for light in the case of density segregation), while
terms without subscripts represent the average flow properties of both species. The concentration
of species i is defined as ci = fi/f , where fi is the volume fraction for species i, and f is the
total volume fraction of both species. u = ux̂ + wẑ is the mean 2D velocity field, and D is the
diffusion coefficient. The segregation velocity, ws,i, is defined as the relative normal velocity
component of species i with respect to the total normal velocity component of both species:
ws,i =wi − w. In the segregation term ∂

∂z (ws,ici), only flows normal to the free surface are
considered, since segregation occurs primarily in this direction and the gradient of concentration
in the streamwise direction is small. The model is informed by physical control parameters
and kinematic parameters acquired from DEM simulations [39] or experiments. Thus, no fitting
parameters are needed. While we consider the quasi-2D case here, the model can be extended to
fully three-dimensional systems.
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Figure 1. Schematic (not to scale) of a quasi-2D bounded heap for DEM simulations and
experiments (with flowing layer length L and gap thickness T ). In simulations, the bottom wall
is inclined at an angle α0 = 16◦ to reduce simulation time. The surface rise velocity, vr , depends
on the flow rate which is controlled by the vertical rise velocity of the gate located a distance WF

from the upstream wall.

In this research, this continuum model is used to predict the segregation of density bidisperse
granular materials in a quasi-2D bounded heap, which typically exhibits complicated kinematics
[41–44] with different segregation patterns including stratified layers of the two types of particles
[45], fully segregated particles [46,47], and mixed particles with no segregation [48]. Here we
study the continuous flow regime for which stratification does not occur [48]. DEM simulations
are performed to determine the kinematics of density bidisperse flows and experiments are
performed to verify the results of simulations and theoretical predictions. §2 describes the quasi-
2D bounded heap geometry, the DEM simulation methods, and the experiments. In §3, we
show that the simulations quantitatively reproduce the experimental results and discuss the
flow kinematics. In §4, the continuum model (equation 1.1) is non-dimensionalized and solved
numerically. The results are compared with simulation and experimental results for different
cases, and the influence of physical control parameters on segregation is discussed. §5 presents
the conclusions.

2. Simulation and experimental methods

(a) DEM simulations
In DEM simulations, the translational and rotational momenta of each particle are tracked using
integration of Newton’s Second Law. As in our previous work [37–39,44], the normal force
model used in this research is the linear-spring dashpot model [49,50,52], in which the normal
contact force between two particles is Fn

ij =
[
knε− 2γnmeff (Vij · r̂ij)

]
r̂/ij . In this relation, ε

and Vij represent the overlap and relative velocity between two contacting particles i and j,
respectively. r̂ij is the unit normal vector between two particles, and meff =mimj/(mi +mj)

denotes the effective mass. The normal stiffness kn and damping γn are determined from the
restitution coefficient e and binary collision time tc: kn = [(π/tc)

2 + γ2n]meff and γn =−lne/tc,
where ln is the natural logarithm. The tangential force model is the linear spring model with
Coulomb friction [50], which can be expressed as F t

ij =−min(|ksβ|, |µFn
ij |)sgn(β)ŝ. Here, the

tangential stiffness ks = 2
7kn, and the tangential displacement is β(t) =

∫t
ts
V s
ijdt [51], where ts is

the initial contact time and V s
ij is the relative tangential velocity. µ denotes the friction coefficient.
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Figure 2. Image processing of frames captured by a high speed camera using steel (dark) and
ceramic particles (white). (a) A portion (solid white box) of the original image is extracted that
captures the final segregation pattern of particles deposited on the heap. (b) Particles are identified
for the PTV algorithm in a close-up of the image. (c) Boxed region in (a) after rotating and
shearing.

In real granular systems, materials with different densities ρ often have different surface and
elastic properties. Here, to ensure that density is the only driving mechanism for segregation in
simulations, identical material properties are applied except for the density. The binary collision
time is tc = 10−3 s, which is small enough to accurately describe the flow of hard spheres [44]. The
restitution coefficient is e= 0.9 and the friction coefficient is µ= 0.2. These values are selected so
that the dynamic repose angle α in simulations matches the dynamic repose angle in experiments.
Negligible differences in segregation occur over a range of values for tc, e, and µ, indicating
that the simulations are relatively insensitive to the specific values used. The time step for the
simulations is set to tc/40 = 2.5× 10−5 s, which ensures numerical stability [39].

A schematic of the simulation geometry is shown in figure 1. The quasi-2D bounded heap has
width W = 0.5 m and gap thickness T = 0.016 m. To save computation time, the bottom wall is
inclined at an angle α0 = 16◦, which is smaller than the dynamic repose angle α (which ranges
from 18◦ to 21◦ in different cases). Initially the bottom wall is covered with a layer of immobilized
particles. After the particles flowing into the system form a 10-15 particle diameters thick layer,
the velocity profiles and concentration profiles in the flowing layer become steady, indicating that
the effect of the bottom wall can be neglected. In simulations, density bidisperse particles enter
the system at a volume feed rate ofQ and volume ratio of 1:1. The particle diameter d is uniformly
distributed with a variance of±0.1d to reduce crystallization. Particles of 2, 3, and 4 mm diameters
are simulated. The flow of mixed particles onto the heap is controlled by a rising gate, which is
similar to a letdown tube in industrial systems. The rising gate eliminates bouncing particles
caused by free fall of the particles [48], which can influence density segregation dramatically in
small systems like this one. The gate, located at WF = 0.06 m, controls the vertical rise velocity
vr =Q/WT of the heap surface. For data analysis, we neglect flow in the feed zone and the area
affected by the feed zone which extends to W ′F ≈ 0.15 m (with small adjustments in different
cases), resulting in an effective flowing layer length L= (W −W ′F )/ cosα. An effective 2D feed
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rate can be defined as q= v′rL= vrL cosα, where v′r = vr cosα is the rise velocity normal to the
free surface. In the moving reference frame of the rising flowing layer, the origin is located on the
free surface at W ′F . It is oriented such that x is in the streamwise direction, y is in the thickness
direction, and z is normal to the surface of the flowing layer. u, v, and w are the velocities in the
x, y, and z directions, respectively.

As in our recent work [39], simulations were performed on an Nvidia GTX 780 graphics card
(Graphics Processing Unit) with a parallelized DEM algorithm. Simulations with different feed
rates, density ratios, and particle sizes were performed. Details of the kinematics are discussed in
§3.

(b) Experiments
To validate the DEM simulations and theoretical predictions, experiments were performed with
equal diameters particles with different densities, as indicated in table 1. For each particle type,
100 sample particles were randomly selected and the diameter and the total weight of each was
measured. Table 1 lists the average and standard deviation of the diameter and the density
calculated by dividing the sum of the volume of each individual particle by the total weight
measured for each particle type.

Table 1. Particle properties in experiments.

Material Color Diameter (mm) Density (g/cm3)

Steel Dark 2.98± 0.04 7.84

Glass Clear 3.00± 0.03 2.58

Ceramic (Zirconium silicate) White 3.05± 0.09 4.17

High density ceramic (Zirconium oxide) White 3.12± 0.10 6.32

The geometry of the experimental system is the same as the simulation geometry (W = 0.5 m and
T = 0.016 m). Particle mixtures were held in a hopper and fed into the system by an auger feeder
(Acrison, Inc., NJ, USA) at the desired volume feed rate. The rising gate was implemented as a
vertical metal bar lifted by a linear actuator (Firgelli Automations Inc., WA, USA) with a control
board (Firgelli Technologies Inc, Canada). The experiments were recorded using a high speed
camera (Point Grey Research Inc., Canada) with frame rates up to 400 frames/s. Video images
were obtained during steady filling of the heap at the downstream end of the flowing layer in
contact with the vertical bounding wall and were analyzed to provide concentration profiles of
the segregation pattern in the fixed bed and velocity profiles in the flowing layer.

The average image intensity was used to calculate the concentration profile in the streamwise
direction for particles in the fixed bed below the flowing layer. The region in figure 2a outlined by
the white box was analyzed to characterize the final segregation pattern achieved during steady
filling. The boxed image was rotated by the repose angle and sheared into a rectangular domain
so that each column of the image has the same streamwise coordinate [48], as shown in figure 2c.
The average image intensity at each streamwise location was calculated from the image. Reference
image intensities of pure heavy particles and pure light particles were used to calibrate the grey
scale.

Particle tracking velocimetry (PTV) was used to determine the velocity profiles in the flowing
layer. In this case, the portion of the system to be analyzed extended to the surface of the flow
(shifting the box in figure 2a upward so its top edge coincided with the surface of the flowing
layer). In close-up images of steady heap flow and with proper lighting conditions, the steel
particles can be identified as dark regions with small specular highlights (bright spots) on them,
and the ceramic particles can be identified as white or gray spheres. This allows us to apply a
MATLAB based PTV code [53] to filter noise and identify the center positions of all the particles
(figure 2b). Using a series of images, we computed the velocity of every particle and obtained the
streamwise and normal velocity profiles at various locations along the length of the flowing layer
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Figure 3. Images comparing segregation in (a) experiment and (b) simulation of lighter ceramic
(white) and heavier steel (dark) particles with q= 0.0032 m2/s. (c) Ceramic particle concentration
in the fixed bed beneath the flowing layer.

for steady filling of a steel and ceramic particle mixture. The resulting velocity field was used to
validate the simulation results.

(c) Validation of the simulations
Results from a typical DEM simulation and experiment with 3 mm steel and ceramic particles
are compared in figure 3. In both cases, the particles are mixed in the inlet region on the left
and become more segregated downstream. More ceramic particles flow to the end of the heap
forming a region with high ceramic particle concentration. The angle of repose for the simulation
(21.4◦) is also similar to that for the experiment (22.1◦). A quantitative comparison of light particle
concentration (cl) profiles at the bottom of the flowing layer (deposited on the heap) vs. position
(figure 3c) shows good agreement between simulation and experiment, demonstrating that the
DEM simulation is able to capture the physics of bidisperse density segregation. Validation of the
kinematics of the flow in DEM is described in the next section.

3. Kinematics of density bidisperse flow

(a) Streamwise velocity
The streamwise velocity for the steel and ceramic particle example described in §2c in both
simulations and experiments calculated using the volume average binning method [44] is
shown in figure 4. Figure 4a shows the free surface streamwise velocity, us, along the length



7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0
( )mx

(
)

s
m

/s
u

( )mx

/
z

δ
/

z
δ/

z
δ

s/u u s/u u

(a) (b)

(c) (d)

Figure 4. Streamwise velocity profiles in simulation (dots, purple or light gray) and experiment
(circles, blue or dark gray), using ceramic and steel particles at feed rate q= 0.0032 m2/s.
(a) Surface streamwise velocity along streamwise direction. The solid line is u(x, 0) =

kq
δ(1−e−k)

(
1− x

L

)
. (b) Flowing layer thickness along streamwise direction. (c) Normalized

streamwise profile at various positions along the length of the flowing layer. The solid curve
is u/us = ekz/δ . (d) Streamwise velocity profile at x/L= 0.5 for 9 different simulation cases in
table 2 collapse on to the solid curve u/us = ekz/δ .

of the flowing layer. Results from the experiment and the simulation agree well, exhibiting a
nearly linear decrease along the streamwise direction, which is again consistent with a uniform
deposition of particles on the heap with an approximately constant flowing layer thickness [44].
Figure 4b shows the flowing layer thickness δ(x) along the streamwise direction based on the
streamwise velocity profile, calculated using the criteria u(x,−δ) = 0.1u(x, 0) [44]. The flowing
layer thickness remains almost constant at 7-8.5 particle diameters for most of the length of the
flowing layer, except near the downstream end, again consistent with previous results [44]. For
simplicity in the theoretical model, a constant flowing layer depth δ= δ̄ is assumed, where δ̄ is
the average of the flowing layer depth along the entire length of the flowing layer. Based on the
local surface velocity and flowing layer depth, the normalized streamwise velocity profiles in the
normal direction are plotted in figure 4c for various positions along the length of the flowing
layer. The velocity profiles at different streamwise positions in the simulation agree with PTV
results and collapse to a single curve, indicating a self-similar exponential velocity profile. The
streamwise velocity profiles measured here are consistent with previous results for monodisperse
and size bidisperse experiments and simulations [44], so the same exponential expression for the
streamwise velocity is used here:
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Figure 5. Normal velocity profiles. (a) Normalized normal velocity profiles at various positions
along the length of the flowing layer in simulation (dots, purple or light gray), experiment
(circles, blue or dark gray), and the predicted normal velocity profile (solid curve) based on
the assumption of incompressibility, using ceramic and steel particles at q= 0.0032 m2/s. (b)
Normalized streamwise velocity for the nine cases in table 2 at x/L= 0.5 collapse onto the
predicted velocity profile (solid curve).

Table 2. Nine simulations with different density ratios, feed rates, and particle diameters.

Symbol RD q (m2/s) d (mm)
� 1.88 0.0022 3
∗ 1.88 0.0041 3
O 1.88 0.0061 3
× 1.43 0.0022 2
◦ 1.88 0.0022 2
B 2.00 0.0022 2
M 1.43 0.0022 4
♦ 1.88 0.0022 4
C 2.00 0.0022 4

u(x, z) =
kq

δ(1− e−k)

(
1− x

L

)
ekz/δ. (3.1)

Equation 3.1 includes a linear decrease in the velocity in the streamwise direction, corresponding
to the surface velocity in figure 4a, and an exponential dependence on the normal direction,
consistent with the self-similar velocity profiles in figure 4c. Here, k is a scaling constant set to
2.3 [37,44]. To verify the general applicability of equation 3.1, the velocity profiles at x/L= 0.5 are
plotted in figure 4d for nine simulation cases with different feed rates, density ratios RD = ρh/ρl,
and particle diameters (table 2), along with the exponential fit u/us = ekz/δ . The collapse of the
data to the exponential fit demonstrates that equation 3.1 describes the self-similar streamwise
velocity profiles in the density bidisperse quasi-2D bounded heap flows studied here.

(b) Normal velocity
Using the same method, normal velocity profiles were extracted from the simulations and
the experiment. Figure 5a shows a comparison of normal velocities between simulation and
experiment for the same case shown in figure 4c. Because normal velocity is typically an order of
magnitude smaller than streamwise velocity, the data are more scattered. Yet there is reasonable
agreement between the simulation and the experiment. In the coordinate system moving upward
with the rise velocity v′r , the normal velocity is zero on the free surface (z/δ= 0) and decreases
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Figure 6. Experimental observation of density segregation of 3 mm particles. (a) A series of images
demonstrating a steel particle (solid circle) falling into a void generated by surrounding particles
(dashed circles). The time between each image is about 0.015 s. (b) A ceramic particle (solid circle)
is squeezed up into a void in the surrounding particles (dashed circles).

to −v′r at the bottom of the flowing layer (z/δ=−1). Based on equation 3.1 and the continuity
equation, the normal velocity is [44]:

w(z) =
q

L(1− e−k)
(ekz/δ − 1). (3.2)

This equation automatically satisfies the bottom boundary condition w(−δ) =−q/L=−vr cosα.
To verify this expression, normalized normal velocity profiles at x/L= 0.5 for the nine different
simulation cases in table 2 are plotted along with w/v′r = (ekz/δ − 1)/(1− e−k) in figure 5b. The
results from the simulations collapse and are quite similar to the theoretical profile, confirming
that equation 3.2 is a reasonable approximation of the normal velocity profiles of density
bidisperse flows in quasi-2D bounded heaps.

(c) Segregation velocity
Previous studies of size segregation indicate that kinetic sieving and squeeze expulsion are the
dominant segregation mechanisms in gravity driven free surface flows [13,31,32]. Here, analogous
phenomena are observed in density bidisperse flows. When voids are generated due to shear,
particles with higher density are more likely to fall into voids below them, while particles with
lower density are more likely to be squeezed up to voids above them. Two typical examples of
these processes from experiment are shown in figure 6. Figure 6a shows a sequence of images
in which a steel particle falls into a void generated below it. Figure 6b shows a sequence of
images in which a ceramic particle is pushed into a void above it while its original place is taken
by a steel particle. An explanation of these phenomena invokes a force imbalance between the
gravitational force and contact forces from neighbouring particles, such that a heavier particle on
average experiences a net force in the gravitational direction and a lighter particle a net force in
the direction opposite gravity. This has been referred to as "buoyancy" in previous studies [20,54].

Though the segregation mechanism at work here results from density differences instead
of size differences, the essence of kinetic sieving and squeeze expulsion appears to be similar,
and the resulting segregation patterns for density segregation are similar to those for size
segregation in quasi-2D bounded heaps [37,39,44,48]. This suggests that the factors that drive
density segregation are the same as for size segregation. These factors include the local shear rate,
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Figure 7. Simulation data for the segregation velocity. (a) Dependence of the segregation velocity
on the local shear rate and the local concentration for RD = 1.88, d= 3 mm and q= 0.0032 m2/s.
Data points and the fitted lines are for light particles (red or light gray) and heavy particles (black).
(b) Scaling of density segregation length scale vs. RD on a semi-log plot for 20 cases of 50:50
mixtures with density ratio RD ranging from 0.1 to 10, particle diameters of 2 mm (triangles),
3 mm (circles), and 4 mm (squares), and q= 0.0022 m2/s.

γ̇ = ∂u/∂z, which determines how frequently voids are generated, and the local concentration
of the other species, 1− ci, which determines the nature of the contact forces a particle might
encounter. To examine the relation between segregation velocity and these factors, the segregation
velocity ws,i is plotted as a function of γ̇(1− ci) for heavy and light particles for an example case
in figure 7a. For both light particles and heavy particles, the data suggests an approximately linear
relation between ws,i and γ̇(1− ci), just as for size segregation [37–39]. Consequently, the density
segregation velocity can be expressed as:

ws,i = SDγ̇(1− ci), (3.3)

where SD is the slope of the fitted line for the dependence of ws,i on γ̇(1− ci), as shown for the
example in figure 7a. SD is analogous to the segregation length in size bidisperse systems [39],
and is positive for light particles and negative for heavy particles. For the data in figure 7a, the
characteristic length scales for light (SD,l = 0.150 mm) and heavy (SD,h =−0.151 mm) particles
are nearly identical in magnitude but have opposite signs due to mass conservation [39]. The
values for SD were found for 20 simulation cases using 50:50 mixtures with density ratio RD
ranging from 0.1 to 10 and particle diameters of 2, 3, and 4 mm at q= 0.0022 m2/s. Simulations
with different feed rates were also performed, but no significant difference in SD was found, as
expected. As shown in figure 7b, SD varies with the density ratio RD and the particle diameter d,
in a manner analogous to size segregation [39]. A scaling law for SD is:

SD
d

=C lnRD, (3.4)

where C is a constant with the value 0.081. 40 data points are shown in figure 7b, since
each simulation produces two data points: one for SD,h (corresponding to RD > 1) and one
corresponding to SD,l (corresponding to RD < 1). This scaling law differs from the assumed
linear dependence of the segregation flux on the density difference ρh − ρl used in previous
studies [20,24].

For DEM simulations with a density ratio RD ≥ 5, there is a gradual change in the overall
kinematics of the flow in the downstream portion of the heap as RD increases. At RD = 10

(figure 8), the segregation in the upstream portion of the flow still results from local buoyancy,
generating a segregation pattern with strongly segregated regions of light and heavy particles
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Figure 8. Density segregation at RD = 10, d= 3 mm, and q= 0.0040 m2/s. Heavy particles
undercut the light particles toward the end of the heap, pushing light particles upward. The free
surface is no longer flat in this case.

having a clear interface in between. However, in the downstream portion a global flow occurs.
The resistance of the light particles to the motion of the heavy particles is not significant at
this high density ratio, so the heavy particles undercut the light particles toward the end of the
heap, pushing the bulk of light particles upward, such that the free surface is no longer flat.
Such penetration is analogous to group intruder penetration [55], where the depth of penetration
is related to the intruder’s speed and density. Since density ratios this large are uncommon in
industrial granular flows and this phenomenon introduces more complexity into the kinematics
of the flow, we focus on cases with density ratio RD ≤ 5 in this study. Note, however, that we are
still able to extract local data for density segregation in the flow for RD > 5, thus accounting for
these data points in figure 7b.

(d) Diffusion
The diffusion coefficient of the mixture,D, was determined in the normal direction by tracking the
non-affine part of particle trajectories using the mean square displacement as a function of time,〈
∆Z(∆t)2

〉
[37]. The diffusion coefficient was then calculated based on

〈
∆Z(∆t)2

〉
= 2D∆t [37,

56]. An example simulation result, shown in figure 9, demonstrates that in density bidisperse
flows, the diffusion coefficient is shear rate-dependent, which is consistent with previous studies
in dense granular flows [20,56]. In this study, we use the spatial average of the diffusion coefficient
over the entire flowing layer domain for the continuum model. We previously showed that for
size-disperse granular materials, using the average value of D provides sufficient accuracy to
successfully apply the theory, though it is possible to use a locally varying value for D in the
theory [37].

4. Predictions of the theoretical model
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Figure 9. Simulation results for the diffusion coefficient vs. γ̇d2 for RD = 1.88, d= 3 mm, and
q= 0.0032 m2/s.

(a) Nondimensionalization and boundary conditions
When applying the transport equation 1.1 to modeling density bidisperse segregation in
a quasi-2D bounded heap, it is convenient to nondimensionalize the equation using the
nondimensionalized parameters [37,39]

x̃=
x

L
, z̃ =

z

δ
, t̃=

t

δL/2q
, ũ=

u

2q/δ
, and w̃=

w

2q/L
. (4.1)

Substituting the nondimensionalized parameters into equation 1.1 gives the nondimensional
transport equation for species i:

∂ci
∂t̃

+ ũ
∂ci
∂x̃

+ w̃
∂ci
∂z̃
± Λ ∂

∂z̃
[h(x̃, z̃)ci(1− ci)] =

1

Pe

∂2ci
∂z̃2

. (4.2)

In equation 4.2, segregation and diffusion in the streamwise direction x are neglected as assumed
previously [20,24,37,38], since these terms are small in comparison with other terms in the
equation so long as δ/L� 1. The sign of the segregation term is positive for light particles
and negative for heavy particles. h(x̃, z̃) = γ̇δ2/2q is the nondimensional shear rate. The Péclet
number is Pe= 2qδ/DL, which represents the ratio of a diffusion time scale (td = δ2/D) to
an advection time scale (ta =Lδ/2q). The other nondimensional parameter Λ= SDL/δ

2, where
SD = |SD,l|/2 + |SD,h|/2, represents the ratio of the advection time scale (ta) to a segregation
time scale (ts = δ3/2qSD). These two nondimensional parameters depend on control parameters
(feed rate q and flowing layer length L) and kinematic parameters (flowing layer thickness δ,
diffusion coefficient D, and segregation length scale SD), and they represent the interplay of
advection, diffusion, and segregation.

Boundary conditions are also identical to previous studies for size bidisperse flow [37,39].
At the inlet, the particles are well mixed, so cl(0, z̃) = ch(0, z̃) = 0.5. At the top and bottom
boundaries of the flowing layer, the segregation flux and diffusion flux are set equal according to
the no flux boundary condition suggested by Gray and Chugunov [27], which allows equation 4.2
to be written as

Λh(x̃, z̃)ci(1− ci) =
1

Pe

∂ci
∂z̃

, z̃ = 0,−1. (4.3)

The bottom boundary condition ensures that particles leave the flowing layer only due to
advection at velocity w=−vrcosα, and no particles leave the flowing layer at the top surface.
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Figure 10. Comparison of theory, simulation, and experiment for density bidisperse segregation
with different density ratios. Left and middle columns show concentration contours of light
particles in the flowing layer from theory and simulation, respectively. The right column
compares theoretical predictions (black), experimental results (blue or dark gray), and simulation
results (purple or light gray) at steady state for the concentration profile at the bottom of the
flowing layer, which reflects the concentration of the particles deposited on the heap. Top row:
glass and steel particles with RD = 3.04, q= 0.0035 m2/s, SD = 0.29 mm, D= 2.24 mm2s−1,
L= 0.40 m, δ= 0.024 m, Pe= 189, and Λ= 0.21. Middle row: ceramic and steel particles with
RD = 1.88, q= 0.0036 m2/s, SD = 0.15 mm, D= 2.17 mm2s−1, L= 0.40 m, δ= 0.023 m, Pe=

189, and Λ= 0.12. Bottom row: high density ceramic and steel particles, with RD = 1.24 and q=

0.0035 ms/s, SD = 0.05 mm, D= 2.27 mm2s−1, L= 0.39 m, δ= 0.024 m, Pe= 192, and Λ= 0.04.

At the downstream boundary, advection, diffusion, and segregation included in equation 4.2
are in the normal direction. Thus, no boundary condition is needed. With the velocity profiles
(equations 3.1, 3.3), equation 4.2 can be solved numerically for steady-state flow using an operator
splitting method [37,57,58].

(b) Validation of the theoretical model
To demonstrate that the theoretical model quantitatively predicts bidisperse density segregation
in the quasi-2D bounded heap, theoretical, experimental, and simulation results for three example
cases with different particle density ratios RD are shown in figure 10. Each contour subplot
(left and center columns) represents the concentration of light particles cl in the flowing layer
extending horizontally from W

′

F at x̃= 0 to the end of the flowing layer at x̃= 1 and vertically
from the top of the flowing layer at z̃ = 0 to the bottom at z̃ =−1. Comparing the concentration
contours for theory and DEM simulations, it is clear that the theoretical model reproduces the
segregation patterns in simulations with good accuracy. In all cases, the particles are well mixed
at x̃= 0 and then begin to segregate: heavy particles move toward the bottom of the flowing
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Figure 11. Theoretical predictions (black curves) and simulation results (purple or light gray
curves) for the light particle concentration profile at the bottom of the flowing layer, which
represent material deposited on the heap. Vertical dashed lines mark the streamwise locations
where lowest theoretical concentrations occur in (a) and (e). (a)-(d) Density ratio RD = 3.04 and
different feed rates q (labeled on each plot). (e)-(h) q= 0.0022 m2/s and different density ratios
RD (labeled on each plot).

layer to settle out further upstream (smaller x̃), while light particles rise toward the top of the
flowing layer and flow further down the heap (larger x̃). The position and shape of the interface
between segregated heavy and light particles for the theoretical results agree well with simulation
results, indicating that the theoretical model captures the essential physics of density bidisperse
segregation. It is also possible to compare the theory and simulation directly with experimental
results using the concentration of the light particles, cl, deposited onto the heap at the bottom of
the flowing layer [37], see right column in figure 10. In all three cases, experimental results match
the theoretical predictions and simulation results.

The theoretical predictions are determined completely by the two dimensionless parameters
Pe and Λ. Pe describes the interplay between advection and diffusion: as Pe becomes larger,
advection dominates diffusion, causing the interface between segregated heavy and light particles
to become sharper and more easily distinguishable.Λ describes the interplay between segregation
and advection. For larger Λ, segregation is stronger so the particles tend to segregate before
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Figure 12. Segregation with different inlet particle concentrations. Left column: inlet light particle
concentration cl(0, z̃) = 0.2, RD = 3.04, q= 0.0027 m2/s, SD = 0.27 mm, D= 1.96 mm2s−1. Pe=

146 and Λ= 0.23. Right column: inlet light particle concentration cl(0, z̃) = 0.8, RD = 3.04,
q= 0.0027 m2/s, SD = 0.27 mm, D= 1.96 mm2s−1. Pe= 143 and Λ= 0.23. Row 1: segregation
patterns from simulations. Row 2: contours of cl in the flowing layer from theory. Row 3: contours
of cl in the flowing layer from simulations. Row 4: concentration profiles of light particles at
the bottom of the flowing layer from theory (black solid curves for prediction using SD from
equation 3.4, black dashed curves for prediction using SD measured in each specific simulations)
and simulations (pink or light gray curves).

they flow very far down the heap. The influence of these two parameters on segregation has
been investigated in detail in the context of size bidisperse systems [37]. Since the form of the
theoretical model here is identical to that in previous work for size segregation [37,39] (except
that the percolation length scale S is replaced by the density segregation length scale SD), the
discussion is not repeated here.

(c) Predictions of segregation under different physical control parameters
Since Pe and Λ depend on physical control parameters, it is interesting to explore how theoretical
predictions of segregation change when the physical control parameters are varied. Among the
parameters, density ratio RD and feed rate q have the greatest influence on the segregation [39].
Figure 11 shows a series of theoretical predictions and simulation results for the concentration
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of the light particles at the bottom of the flowing layer (which are deposited on the heap) for
different RD and q. In all cases, D is the average diffusion coefficient based on the simulation for
each set of conditions and SD is from the relation shown in figure 7b. In figures 11a-d, it is clear
that increasing q, which results in Pe increasing and Λ decreasing, results in less segregation (the
transition from mixed particles to pure light particles occurs further downstream), and a sharper
transition between segregated heavy and light particles, which is made more readily apparent
in the figures with the aid of a vertical dashed benchmark line. In figures 11e-h, increasing RD ,
which results in Λ increasing while Pe varies only a small amount, leads to an obvious increase in
segregation, with almost no segregation at RD = 1.11 and strong segregation with RD = 3.33. In
all cases, the theoretical predictions match the simulation results well, again demonstrating that
the theory is capable of accurately predicting segregation when the physical control parameters
are varied.

To further demonstrate the generality of the theory and the form of the segregation velocity,
cases with different inlet particle concentrations were simulated and predicted using the theory,
as shown in figure 12. In both cases, D is from simulations with cl(0, z̃) = ch(0, z̃) = 0.5 at the
same flow rate and the value for SD is from figure 7b, rather than using these values from the
simulations for the cl(0, z̃) = 0.2 or cl(0, z̃) = 0.8 cases. The left column shows the case with inlet
light particle concentration cl(0, z̃) = 0.2 and the right column shows the case with cl(0, z̃) = 0.8.
Figures 12a, b show the general segregation patterns in both cases from the DEM simulations.
The segregation patterns are consistent with the patterns for 50:50 mixtures shown in figures 3
and 10, in which the heavy particles settle out of the flowing layer in the upstream portion of
the heap while the light particles flow further toward the downstream end of the heap. Using
the segregation length scale predicted by equation 3.4 (SD = 0.27 mm), the theoretical predictions
of the concentration distribution of the light particles in the flowing layer (figures 12c, d) agree
reasonably well with the simulation results (figures 12e, f). The comparison of the light particle
concentration profiles at the bottom of the flowing layer from simulations and theory (figures 12g,
h) demonstrates that the theory is also accurate for particle mixtures with different volume ratios,
even when using parameters obtained from a 50:50 mixture.

While examining the effect of different volume ratios on the segregation, we found a difference
in the segregation length scale SD calculated in the simulations with cl(0, z̃) = 0.2 and cl(0, z̃) =

0.8 (instead of using equation 3.4). Based on SD calculated in each simulation, we recalculated
Λ (Pe is independent of SD): SD = 0.34 mm, Λ= 0.28 for cl(0, z̃) = 0.8 and SD = 0.25 mm,
Λ= 0.21 for cl(0, z̃) = 0.2, compared to SD = 0.27 mm, Λ= 0.23 for cl(0, z̃) = 0.5. The theoretical
predictions using Pe and Λ recalculated in the two cases are also shown in figures 12g, h as
dashed curves. For cl(0, z̃) = 0.2, the new prediction is almost identical to the prediction using
SD from equation 3.4. For cl(0, z̃) = 0.8, the new prediction shows only a slightly better match
to the simulation result. These results indicate that it is reasonable to use equation 3.4 for SD
determined for cl(0, z̃) = 0.5 even for cases with different inlet concentrations.

The difference in SD for different inlet concentrations is intriguing, because it indicates that
the segregation for a few heavy particles in many light particles is stronger than the segregation
for a few light particles in many heavy particles. This is analogous to recent work which shows
that small particles segregate faster when surrounded by large particles than vice versa [59,60].
This asymmetry can possibly be explained in terms of the way that a heavy (or small) particle
is able to continually push its way downward in the gravitational direction while waiting for a
void below it to open when it is surrounded by light (or large) particles. In contrast, a light (or
large) particle can only wait for the combination of a void opening above it at the same time as
surrounding particles are pushing it upward against gravity when it is surrounded by heavy (or
small) particles.

This asymmetry suggests that SD depends on local particle concentrations. To further explore
this, nine simulations with RD = 3.04, and q= 0.0027 m2/s, and d= 2 mm were performed with
the inlet light particle concentration varying from 0.1 to 0.9. The segregation velocity shown in
figure 13 includes data from all nine simulations. To reduce the noise, we average the data into
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Figure 13. Averaged dependence of segregation velocity on the local shear rate and the local
concentration from nine simulations with inlet light particle concentrations ranging from 0.1
to 0.9. In all the cases, RD = 3.04, and q= 0.0027 m2/s, and d= 2 mm. The data was initially
extracted as in figure 7, and then averaged in 100 equal-sized bins along the horizontal axis.
The original data extracted from the nine simulation cases (red dots for light and black dots for
heavy) and the bin-averaged values for both species (yellow lines) are shown. Data for ci 6 0.05

are neglected because there are too few particles (species i) to get well-averaged data. Case A
refers to large 1− ci in the light particle curve and small 1− ci in the heavy particle curve. Case
B refers to small 1− ci in the light particle curve and large 1− ci in the heavy particle curve.

100 equal-sized bins along the horizontal axis, and the averaged results are also shown in figure 13
as two yellow curves. The data for different inlet light particle concentrations are consistent with
each other, forming two continuous curves (one for light particles and one for heavy particles).
Upon close examination, the curve for the heavy particles, when compared to the curve for
light particles, has a slightly smaller slope when 1− ci is small, corresponding to a high local
concentration of heavy particles (case A in the figure), and a slightly larger slope when 1− ci
is large, corresponding to a lower local concentration of heavy particles (case B in the figure).
This asymmetry in density segregation reveals the reason for the difference in SD measured
in cases with different inlet light particle concentrations: SD for cl(0, z̃) = 0.2 was measured
mainly using data from case A, and thus it is smaller than SD measured for cl(0, z̃) = 0.8,
which mainly used data from case B. Although this asymmetry suggests a slightly non-linear
relation between the segregation velocity and the concentration, the theoretical predictions using
the linear approximation still show quantitative agreement with simulation results, as figure 12
demonstrates. Clearly, this asymmetry could be taken into account in the theory by using SD that
is a function of ci, and more work is needed to fully explore this phenomenon.

5. Conclusions
In this study we have demonstrated that our recent continuum model for size bidisperse systems
[37–39] accurately predicts granular segregation for density bidisperse systems, specifically
for bounded heap flow, though it is likely applicable to other flow geometries and multi- or
polydisperse particle distributions, as we have already shown for size segregation [38,40]. Using
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experimental techniques and DEM simulations to investigate the kinematics, we developed an
approximation for the segregation velocity that depends on local shear rate γ̇, local concentration
of the other species 1− ci, and a dimensional parameter defined as the density segregation
length SD , which depends primarily on the density ratio RD and, to a lesser extent, on the
local particle concentration. The model is based on the transport equation and includes the
interplay of advection, diffusion, and segregation. In the model, no arbitrary fitting parameters
are needed as the system configurations are determined by two dimensionless parameters Pe=

2qδ/DL and Λ= SDL/δ
2, which depend only on physical control parameters and kinematic

parameters measured from simulations (or experiments, if available). The theoretical predictions
quantitatively agree with results from both simulations and experiments under different physical
control parameters.

Compared to our model for size segregation [37,39], the primary difference in this study is
the segregation length scale in the equation for the segregation velocity, which is related to the
density ratio here, as opposed to the size ratio for size segregation. However, apart from this
constant, the two models are identical and the resulting segregation patterns for size and density
segregation are very similar. This suggests that although the driving force for granular segregation
is different in the two cases, the shear-generated segregation mechanism for gravity driven free
surface flows is similar. This also suggests that the model has potential to predict combined size
and density segregation [24,35]. The asymmetry observed in density segregation for different
inlet concentrations indicates that more accurate predictions will require that variations of SD
with concentration be included in the theoretical model. Moreover, the model is not limited to
quasi-2D bounded heaps. With proper kinematic information, which is not difficult to acquire,
the model should accurately predict density segregation in chutes, tumblers, unbounded heaps,
and even 3D geometries.
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