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Quasi-two-dimensional (2D) bounded heap flow is a useful model for granular flows in many industrial processes and
natural phenomena. It belongs to the family of free surface flows - inclined chute flow, rotating tumbler flow, and
unbounded heap flow - but is different from all of them in that the uniform deposition of particles onto the static bed
results in the uniform rise of the heap and presumably simpler kinematics. The kinematics, however, is only imperfectly
understood. We performed discrete element method (DEM) simulations to study mono- and bidisperse granular flows
in quasi-2D bounded heaps. The experimentally validated computational results show a universal functional form for
the streamwise velocity profile for both mono- and bidisperse systems when velocities and coordinates are scaled by
the local surface velocity and the local flowing layer thickness. This holds true regardless of streamwise location, feed
rate, particle size distribution and, most surprisingly, for bidisperse flows, the local particle concentration. We find
that the local surface velocity decreases linearly in the streamwise direction, while the flowing layer thickness remains
nearly constant with both quantities depending only on local flow rate and local mean particle diameter. We show also
that the velocity profile normal to the overall flow, which is important in understanding segregation, can be predicted
analytically from the streamwise velocity and matches the simulation results well.

1. Introduction

Understanding the flow of non-cohesive particles, common in many industrial and geophysical situations, is
challenging because no universal governing equations like the Navier-Stokes equations for Newtonian fluid flow
exist for granular flow. As a result, several canonical model flows including heap flow, rotating tumbler flow, and
chute flow are frequently studied to better grasp the physics of granular flows. Here we study bounded heap flow
in which, unlike unbounded heap flow, an endwall limits the downstream extent of the heap and forces the free
surface height to increase with time. This flow geometry is shown in figure 1(a). Typically, to study the flow a
quasi-two-dimensional (2D) experimental apparatus is used in which the spanwise extent is small (O(10) particle
diameters). In addition, most experiments consider a half heap where grains are fed from the side as shown in
figure 1(a).

Bounded heap flow differs in several key aspects from other canonical quasi-2D free surface granular flows
including rotating tumblers, unbounded heaps, and inclined chutes (GDR MiDi, 2004) (figure 1(b-d)). For
sufficiently large volumetric feed rate Q, the surface flow is continuous (non-avalanching) and, because flowing
grains are stopped by the endwall at the downstream end of the heap, the free surface rises steadily and uniformly
along the length of the heap at a rise velocity, vr. The local flow rate decreases linearly along the streamwise
direction to zero at the downstream endwall due to deposition of particles into the static bed. This decrease of
local flow rate induces a streamwise velocity gradient along the streamwise direction.

In contrast, in unbounded heap flow or inclined chute flow, there is no endwall to stop the flow, so the local
flow rate remains constant along the streamwise direction and is fully developed (i.e. du/dx= 0, where u is
the streamwise velocity and x is the streamwise direction). Furthermore, the free surface location is fixed in
these systems, as shown in figure 1. There have been extensive studies of kinematics in unbounded heap flow
and inclined chute flow, for both monodisperse systems (e.g. Savage & Hutter (1989); Lemieux & Durian
(2000); Komatsu et al. (2001); Pouliquen & Forterre (2002); GDR MiDi (2004); Crassous et al. (2008);
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Figure 1. Four configurations of free surface flow in a quasi-two-dimensional geometry: (a) bounded heap, (b) rotating tumbler (c)
unbounded heap, and (d) inclined chute. g is acceleration due to gravity and u is the streamwise velocity.

de Ryck et al. (2010) and references therein) and bidisperse systems (e.g. Goujon et al. (2007); Rognon et al.
(2007); Wiederseiner et al. (2011); Tripathi & Khakhar (2011)). These studies indicate that the streamwise
velocity decreases approximately linearly with depth from the surface through most of the flowing layer (shown
schematically in figure 1(c-d)) and exponentially in the deepest regions of the flowing layer. The depth-averaged
streamwise velocity u in the flowing layer and the thickness of the flowing layer δ are constant in the streamwise
direction at a fixed feed rate Q, and increase as Q increases.

While flow in rotating tumblers is similar to bounded heap flow in that u varies in the streamwise direction
(Khakhar et al., 1997; Orpe & Khakhar, 2001; Bonamy et al., 2002; Jain et al., 2002), the location of the free
surface in the rotating tumbler remains fixed, as in unbounded heap flow and inclined chute flow. Unlike heap and
chute flows where a feed source Q is needed to sustain the flow, in a rotating tumbler particles periodically enter
and leave the flowing layer as the tumbler rotates.

Compared to the extensive studies on the kinematics of other free surface flows (summarized in GDR MiDi
(2004)), only a few studies (Boutreux et al., 1998; Khakhar et al., 2001) have investigated the kinematics of
bounded heap flow. By assuming a constant depth-averaged streamwise velocity along the flowing layer at each
feed rate, Boutreux et al. (1998) and Khakhar et al. (2001) concluded that the local thickness of the flowing layer
decreases along the streamwise direction. However, details of the kinematics such as the profiles of both velocity
components (in the streamwise and normal direction) and solids volume fraction at different locations along the
streamwise direction were not measured. Here we use DEM simulation to better understand these important details
of bounded heap flow.

In addition to considering monodisperse granular systems, we also examine the kinematics of bidisperse systems
during heap flow due to its fundamental importance in driving segregation. Polydisperse granular materials tend to
segregate during heap formation, often resulting in inhomogeneous final particle distributions. Heap segregation
occurs in many contexts, particularly in industrial applications, and in most cases, the segregation is unwanted.
Therefore, understanding the mechanisms of and developing a predictive model for segregation in heap flows is
desirable. Previous studies on segregation of bidisperse mixtures of different-sized particles in quasi-2D bounded
heap flow found three different final particle configurations: stratified in which there are layers of large and small
particles (Baxter et al., 1998; Makse et al., 1997a,b; Gray & Hutter, 1997; Gray & Ancey, 2009; Benito et al.,
2013), segregated in which small particles form the central portion of the heap and large particles form the outer
portion (Williams, 1963, 1968; Shinohara et al., 1972; Drahun & Bridgwater, 1983; Thomas, 2000; Goyal &
Tomassone, 2006; Rahman et al., 2011), and mixed in which the particles do not segregate (Baxter et al., 1998;
Koeppe et al., 1998). Our recent experiments (Fan et al., 2012) showed that the transition between stratified
and segregated states was controlled by the 2D feed rate (q0 =Q/T , where T is the gap thickness between the
two bounding side walls of the quasi-2D heap) while the transition between segregated and mixed states was
determined by the heap rise velocity (vr = q/W , where W is the horizontal width of the heap from the feed
location to the outer bounding wall).

These different final particle configurations and the transitions between them are closely associated with the
unique characteristics of the kinematics in bounded heap flow. For example, in a bounded heap, small particles
percolate to the bottom of the flowing layer and deposit into the static bed, while large particles accumulate
in the downstream region. The degree of segregation is influenced by the heap rise velocity (Fan et al., 2012),
presumably due to the velocity of small particle percolation through the depth of the flowing layer compared to
the rise velocity. In contrast, in unbounded heaps or inclined chutes, small particles segregate to the bottom of the
flowing layer but continue to flow until they reach the end of the flowing layer. In rotating tumblers, particles exit
the flowing layer and remain in the same streamlines before re-entering the flowing layer. As a result, in these
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flows only the segregation rate but not the degree of segregation of the final state is influenced by the flow rates
(Ottino & Khakhar, 2000; Meier et al., 2007), as is the case for bounded heap flow.

Local particle distributions for segregating bidisperse mixtures in bounded heap flow have been modeled by
Shinohara et al. (1972) and Boutreux & de Gennes (1996) by incorporating the percolation/segregation model
proposed by Williams (1963, 1968) and Bridgwater and colleagues (Cooke et al., 1978; Bridgwater et al., 1978;
Drahun & Bridgwater, 1983) into a continuum framework. Although these two models are able to predict some
general features of heap segregation/stratification (Makse et al., 1997a; Goyal & Tomassone, 2006; Rahman
et al., 2011), the lack of details of concerning the kinematics in the bounded heap flow necessitates unverified
assumptions (e.g. the collision model in Boutreux & de Gennes (1996) or the velocity ratio of different sub-
layers Shinohara et al. (1972); Shinohara & Enstad (1990)) with fitting parameters determined from experiments
or simulations. Characterizing the kinematics of segregating bidisperse particles is necessary to enable better
segregation models for bounded heap flow.

In this research, we perform a computational study of quasi-2D bounded heap flow using the discrete element
method to investigate the kinematics of both monodisperse and bidisperse systems. We examine the continuous
flow regime in which the segregated state occurs (Fan et al., 2012). The kinematics of intermittent avalanches,
which can result in stratified states, is not examined here, though it has been explored in other studies (Lemieux
& Durian, 2000; Abate et al., 2007; Linares-Guerrero et al., 2007). In §2, the simulation technique and geometry
are introduced and comparisons with experiments are made to validate our simulations in terms of local particle
distributions at steady state and velocity profiles in the flowing layers. In §3, kinematics for both monodisperse
and bidisperse systems are presented, including velocity profiles in both the flow and normal directions, and the
local thickness of the flowing layer at particle size ratios, R, from 1 to 3 (where R is the ratio of large particle
diameter dl to small particle diameter ds) and a range of feed rates, Q. We find that at fixed R and Q the local
surface streamwise velocity us and local mean shear rate γ̇ decrease approximately linearly along the streamwise
direction, while the thickness of the flowing layer δ remains roughly constant. We also find a scaling law that
collapses all streamwise velocity profiles at different feed rates and particle size distributions onto a single curve.
§4 presents our conclusions.

2. Simulation approach and experimental validation

2.1. Simulation method and geometry

The discrete element method (DEM) is used here to simulate quasi-2D bounded granular heap flow. In DEM
simulations the translational and rotational motion of each particle are calculated by integrating Newton’s second
law. The forces between particles are repulsive and are non-zero only when particles are in contact. We used a
linear-spring dashpot force model (Cundall & Strack, 1979; Schafer et al., 1996; Ristow, 2000; Chen et al., 2008)
to calculate the normal force between two contacting particles. It consists of two parts: a normal elastic force
and a normal viscous damping force such that F n

ij = [knε− 2γnmeff (V ij r̂ij)]r̂ij . Here ε and V ij =V i − V j

denote the overlap and relative velocity of two contacting particles i and j, respectively. r̂ij represents the unit
vector in the normal direction between particles i and j, and meff =

mimj
mi+mj

is the reduced mass. kn and γn
characterize the stiffness and damping of the granular materials, respectively, and are related to the collision time
∆t and restitution coefficient e by γn =− lne

∆t and kn = [
(
π

∆t

)2
+ γ2

n]meff (Schafer et al., 1996; Ristow, 2000).
For the tangential force, a linear spring at the contact point between two particles provides a restoring force. If
this restoring force is larger than the Coulomb friction force, the spring is “cut” and the force is sliding friction
based on Coulomb’s law. The tangential force can therefor be expressed as F t

ij =−min
(
|ksβ|, |µF n

ij|
)
sgn(β)ŝ.

Here the tangential displacement β is given by β(t) =
∫t
ts
V s
ijdt (Rapaport, 2002) where ts is the initial contact

time between two particles. V s
ij is the relative tangential velocity of two particles and ŝ is the unit vector in

the tangential direction. The tangential stiffness is ks = 2
7kn (Schafer et al., 1996). The velocity-Verlet algorithm

(Ristow, 2000) is used to update the positions and velocities of particles.

The quasi-2D bounded heap simulated here is sketched in figure 2. To save computational cost, we simulate only
the steady filling stage, where the heap contacts the bounding endwall and rises steadily and uniformly, which
is similar to the experimental setup of Drahun & Bridgwater (1983). To accomplish this, the bottom wall of the
domain is inclined at an angle θ= 24o to horizontal, which is slight less than the dynamic angle of repose α in
our previous experiments (Fan et al., 2012). Upon filling, particles in contact with the inclined bottom wall are
immobilized to increase the effective wall friction similar to the physical situation where particles deposit on the
heap and stop flowing. When the heap is sufficiently deep (∼10 particle diameters) after an initial time period t0
(≈10dl/vr), the effect of the bottom wall on the flowing layer is negligible and the flow reaches a steady state
comparable to our experiments. The dimensions of the simulated domain are the same as those in our previous
experiments (Fan et al., 2012): the width of the domain, W , is 0.46 m and the gap thickness between the front and
back walls, T , is 0.013 m. Particles are fed into the left end of the domain 0.1 m above the bottom wall at a mass
flow rate ṁ. The width of the feed zone, the initial velocity, and the packing density of the particles in the feed
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Figure 2. Sketch (not to scale) of a quasi-2D bounded heap with bottom wall inclined by θ. The heap width is W and the gap thickness is
T . The length of the flowing layer from the downstream end of the feed zone to the bounding end wall is L. Two coordinates systems are
used. (xlab, ylab, zlab) refers to the laboratory coordinate system with origin at the left front corner and (x, y, z) refers to a moving rotated
coordinate system, where x denotes the streamwise direction, z denotes the direction normal to the flow, and y is the same as ylab. The
origin is at the intersection of the free surface, the front wall, and the downstream edge of the feed zone.

stream are varied to achieve different ṁ. We performed several trial computational runs and found the kinematics
and segregation insensitive to these feed parameters at constant ṁ.

The material density of the simulated particles ρ= 2500 kg/m3 and restitution coefficient e= 0.8. The particle-
particle and particle-wall friction coefficients are set to µ= 0.4. Note that the side walls are frictional and flat
to allow direct comparisons to experiments. To save computational time, the binary collision time is set to ∆t=
10−3 s, consistent with previous simulations (Chen et al., 2011) and sufficient for modeling hard spheres (Silbert
et al., 2007) based on comparison with results for ∆t= 10−4 s. The integration time step is ∆t/100 = 1.0×
10−5 s to assure numerical stability. To prevent crystallization, the particles have a uniform size distribution with
a variance of (0.1di)

2, where di is the mean particle diameter for each species i. There are up to one million
particles in our simulations depending on ṁ and particle size. Simulations typically are run for 15 to 100 seconds
of physical time, and the initial time for reaching steady state t0 is approximately 1/3 of the total simulation time.

As shown in figure 2, two different coordinate systems are used. The first is the fixed laboratory coordinate
system (xlab, ylab, zlab) with origin at the left bottom corner of the domain, which is used to measure particle
distributions of the final states. The second coordinate system (x, y, z) is rotated by the dynamic angle of repose α
of the flowing particles and moves upward so that the x−axis is always at the free surface. It is used for the time-
averaged kinematics in the flowing layer. The x-axis is along the streamwise direction, the y-axis is perpendicular
to the side walls and the z-axis is normal to the free surface. The origin in this moving coordinate system is located
at the intersection between the front wall, the end of the feed zone, and the free surface. The (x, y, z) velocities in
the flowing layer are u, v, and w, respectively.

2.2. Validation of DEM simulation: particle distribution compared with experiment

The DEM simulations in this study were validated by comparing the depth dependence of the streamwise velocity
and the spatial variation of species concentration to the same quantities obtained from experiments. Agreement
between the streamwise velocity profiles obtained in experiments using Particle Tracking Velocimetry (Jain et al.,
2002) and simulations was excellent and will be discussed in §3.3 after we present results from simulations.

Figure 3 shows a comparison of final states between DEM simulations and our previous experiments (Fan et al.,
2012) for identical conditions with a bidisperse mixture of different-sized particles. We plot the profiles of volume
concentration of small particles cs = fs/(fs + fl) in the steady filling stage along the x−direction excluding the
flowing layer, where fs and fl are the solids volume fraction of small and large particles, respectively. The volume
concentration profile for the experiment was obtained using image processing techniques, where the local particle
concentration of each species was calculated by first measuring the intensity of each pixel and then calibrating
by the intensity of mono-sized particles of each species. Note that the concentration profile measured from the
experiment represents the particle distributions at the front glass wall. To measure the concentration profiles
in the simulation, the domain was divided into ∆x= 1 cm wide slices in the x−direction and averaged in the
y−direction over particles close to the side wall (y < 2dl) to calculate the volume concentration of each species
in each bin. Figure 3 shows that excellent agreement is obtained between the simulations and experiments for a
mixture of 1 and 2 mm particles at ṁ= 33 g/s and ṁ= 120 g/s. We also found that excellent agreement was
obtained between simulations and experiments for other flow rates and particles size distributions. However, from
the simulations it is evident that concentration and kinematics vary slightly in the y−direction due to wall effects
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Figure 3. Comparison between experiments and simulations. (a) and (b) show snapshots of segregation patterns in experiments and
simulations at the same conditions, respectively. Large particles: black in (a) and blue in (b); small particles: white in (a) and red in
(b). (c) Comparison of small particle volume concentration cs along the x−direction between the simulations and the experiments for two
different feed rates for 1 mm and 2 mm diameter particles with equal initial mass fractions, where W = 0.46 m and T = 0.013 m . The
black solid curve (experiment) and diamond symbols (simulation) correspond to (a) and (b) where ṁ= 33 g/s. The red (light) solid curve
(experiment) and circle symbols (simulation) correspond to ṁ= 120 g/s.

(see Appendix 1), which is similar to what occurs in unbounded heap flow (Jop et al., 2005; Katsuragi et al.,
2010).

3. Results

3.1. Free surface, dynamic repose angle, and rise velocity

Unlike other free surface granular flows, in bounded heap flow the free surface rises as particles fall onto the
heap. Therefore, to measure the time-averaged kinematics such as the velocity profile and thickness of the flowing
layer at different locations, the free surface location needs to be determined at each instant of time. To do so,
the computational domain is divided into equal, non-overlapping bins of ∆x×∆y ×∆z, where ∆x= 10 mm,
∆y= T , and ∆z = 0.5 mm. The local solids volume fraction in each bin was calculated as fi = Vi

Vbin
, where Vi is

the fractional volume of all particles located in bin i, and Vbin = ∆x∆y∆z is the bin volume. Figure 4(a) shows
profiles of solids volume fraction in the z−direction at different streamwise locations for a mixture of equal
volumes of 1 mm and 2 mm particles for steady flow (t0 = 10 s) at ṁ= 33 g/s. At each streamwise location,
the solids volume fraction is f ≈ 0.65 in the static portion of the heap for small zlab (for example, in the region
zlab < 0.17 m for xlab = 0.1 m). Moving upward in the heap, the solids volume fraction decreases slightly in
the creeping region of the heap due to slow re-arrangement of particles (0.17 m < zlab < 0.185 m for xlab = 0.1
m). The solids volume fraction continues to decrease slowly moving upward through the flowing layer (0.185
m < zlab < 0.2 m for xlab = 0.1 m). Then the solids volume fraction decreases rapidly to zero close to the free
surface. In the upstream region of the heap (zlab > 0.205 m for xlab = 0.1 m), there is a non-zero solids volume
fraction above the free surface, corresponding to the bouncing of some particles after impact on the heap.

Based on the profiles of solids volume fraction, the location of the free surface zs at each streamwise position can
be estimated based on a cutoff value of solids fraction fc (similar to Freireich et al. (2009)). fc is typically selected
at an intermediate value, since too small a value includes bouncing particles in the flowing layer and too large a
value includes static particles. In this paper, we use fc = 0.35 because the measured free surface only varies by
one particle diameter when fc is changed between 0.1 and 0.5. The location of the entire free surface at different
times is plotted in figure 4(b), indicating a uniformly-sloped surface. The dynamic angle of repose of the heap,
α at different times was determined by calculating the slope of the free surface using a linear fit. As shown in
the inset of figure 4(b), α remains nearly constant (25.69±0.07◦ for the mixture of 1 mm and 2 mm particles at
ṁ= 33 g/s) during the entire course of the steady-state portion of the simulation.
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Figure 4. Determining the free surface, dynamic angle of repose and rise velocity. (a) Profiles of solids volume fraction, f , in the
z−direction at four different xlab location for a mixture of 1 mm and 2 mm particles at ṁ= 33 g/s and t0 = 10 s, where feed zone
is located in the interval 0<xlab < 8. Steady flow is achieved at t0 = 10 s. A cutoff value of fc = 0.35 determines the location of the free
surface at each x. (b) Free surface at t= t0, t= t0 + 2.5 s, and t= t0 + 5 s from bottom to top. Symbols are data from simulations and
lines are linear fits. The angle of repose α at each time is the inverse tangent of the slope of the linear fits. Inset: α as a function of t. (c)
zs at different locations xlab as a function of time. Symbols are data from simulations and lines are linear fits. The slope of the linear fit is
the rise velocity, vr , which is constant across the heap.

When the flow down the heap is continuous (as opposed to intermittently avalanching), the heap rises steadily
and uniformly at all positions along the slope. Figure 4(c) shows the free surface zs as function of time at three
different streamwise locations. The linear increase of zs as a function of time confirms that the free surface
rises steadily, as the slope of zs vs. t is the rise velocity. To facilitate locating the free surface at different times
and streamwise locations, we determine the free surface z̃s(x, t0) at the initial time t0 for the steady state using
the linear fit as in figure 4(b). Then the subsequent free surface location at time t is calculated as z̃s(xlab, t) =
z̃s(xlab, t0) + vr(t− t0). The differences between the calculated free surface and measured free surface from
simulations ∆zs = z̃s(xlab, t)− zs(xlab, t) is |∆zs/ds|< 1 indicating that this approach is accurate.

With the free surface location and the dynamic angle of repose known as a function of time, we can transform
from the laboratory (xlab, ylab, zlab) to the instantaneous moving reference frame at the free surface (x, y, z). From
here on, the kinematics at each time are measured in the coordinates (x, y, z), with corresponding velocity field
(u, v, w). The z−component of the rise velocity in this coordinate system is v′r = vrcosα.

3.2. Kinematics of monodisperse systems

3.2.1. Streamwise velocity

We measure the local, time-averaged, streamwise velocity u (and the normal velocity w) by dividing the domain
into equal, non-overlapping bins of ∆x×∆y ×∆z, where ∆x= 10 mm, ∆y= T , and ∆z = 1 mm. The

streamwise velocity in bin i averaged over δt is given by ui =
∑Ni

1 Vijuj∑N
1 Vij

, where Vij is the fractional volume

of particle j located in bin i, uj is the velocity component in the streamwise direction of particle j, and Ni is
the total number of particles that are partially or entirely located in bin i during δt. Figure 5(a) shows profiles
of u at steady state (t > t0) in the z−direction at four different streamwise locations averaged over δt= 10 s for
1.5 mm monodisperse particles at ṁ= 33 g/s. The velocity profiles exhibit two regimes: a rapid decrease of u
from a maximum value at the free surface in most of the flowing layer and a slow decay to the creeping region
near the bottom of the flowing layer. In the quasi-static region below the flowing layer, particles move at small
nonzero velocities (∼O(1 mm/s)). The “error" bars in the plots represent the standard deviations of time-averaged
u (associated with granular temperature), which show larger standard deviations for larger u, consistent with other
results (e.g. Jain et al. (2002) in rotating tumblers). The streamwise velocity profiles resemble those in unbounded
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Figure 5. Profiles of streamwise velocity and shear rate in the depth direction, z. (a) Time-averaged steady state streamwise velocity
profiles at four different streamwise locations for 1.5 mm monodisperse particles at ṁ= 33 g/s; error bars indicate the standard deviation
of the mean values. (b) Profiles of shear rate γ̇ = ∂u/∂z at different streamwise locations as in (a).

heap flow (Komatsu et al., 2001; GDR MiDi, 2004; Jop et al., 2005; Richard et al., 2008; Katsuragi et al., 2010)
or rotating tumbler flow (Bonamy et al., 2002; Jain et al., 2002; Hill et al., 2003). However, unlike unbounded
heap flow, the streamwise velocity at the same depth z in bounded heap flow decreases in the streamwise direction
(as x increases).

Figure 5(b) shows profiles of shear rate γ̇ = ∂u/∂z in the depth direction associated with the velocity profiles in
figure 5(a). The shear rate at the same depth decreases in the streamwise direction. In a region that is only a few
particles thick near the free surface, the shear rate increases slightly to a maximum value as z decreases. Below
this region the shear rate decreases smoothly to zero as the static portion of the heap is approached. The shear
rate profile in the depth direction is neither constant nor exponential, which indicates that the streamwise velocity
profile in the flowing layer is neither linear nor exponential as commonly assumed (Komatsu et al., 2001; GDR
MiDi, 2004).

3.2.2. Kinematics along the streamwise direction

As mentioned in §1 and unlike the constant flow rate along the streamwise direction in unbounded heap flow or
inclined chute flow, the local flow rate in bounded heap flow decreases linearly along the streamwise direction, so
kinematic properties, including the surface velocity (us), the flowing layer thickness (δ), and average shear rate
(γ̇) may change along the streamwise direction.

In figure 6(a), the local, time-averaged, 2D flow rate q(x) =
∫z=0
z=zwall

u(x, z)dz is plotted as a function of x, and
shows a linear decrease along the streamwise direction, as expected due to the uniform deposition of material on
the heap. The flow rate reaches zero at the downstream bounding endwall at x= 0.42 m. Close to x= 0, the small
deviation from a purely linear decrease is due to a loss of flux as a result of excluding the bouncing particles in
the calculation of q(x). Figure 6(b) shows that the velocity at the free surface us also decreases approximately
linearly in the streamwise direction. The depth-averaged shear rate γ̇ is calculated by averaging the local shear
rate ∂u/∂z over the flowing layer at each x. γ̇ decreases to nearly zero in the streamwise direction as shown in
figure 6(c).

To determine the thickness of the flowing layer, it is necessary to locate the bottom of the flowing layer zbottom

(or equivalently, the boundary between the flowing layer and the quasi-static region). We tested three different
methods to do this based on the streamwise velocity profiles. In the first method, similar to Komatsu et al. (2001),
Andreotti & Douady (2001), and Courrech du Pont et al. (2005), the velocity profile at each streamwise location
is fit to u(x, z) = uo(x)exp(z/zo), where uo is the nominal surface velocity at each x and zo is a characteristic
depth, to which zbottom is proportional. In the second method, the bottom of the flowing layer is determined by
extrapolating the approximately linear part of the velocity profile to zero (GDR MiDi, 2004). In the third method,
a cutoff value uc, proportional to us at each x (e.g. 0.1us) determines zbottom. Figure 6(d) shows δ as a function
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Figure 6. Kinematic parameters vary in the streamwise (x−)direction for 1.5 mm particles at ṁ= 33 g/s. (a) Local 2D flow rate q; (b)
streamwise surface velocity us; (c) flowing layer averaged shear rate γ̇; (d) flowing layer thickness δ measured using three different
methods as described in text. Solid curve is the theoretical prediction from equation 3.1 proposed by Khakhar et al. (2001).

of x determined using these three methods. The values calculated for zbottom and, consequently, δ are similar,
provided that the appropriate scale factor (δ= 2.3zo) for the first method and the cutoff value (0.1us) for the
third method are used. Similar to other free surface flows, δ spans a few particle diameters (6d to 7d for most of
the length of the flowing layer shown in figure 6(d)) (Orpe & Khakhar, 2001; Felix et al., 2007; Pignatel et al.,
2012). The flowing layer thickness decreases slightly along much of the length of the flowing layer, but decreases
somewhat more at the end of the heap.

Khakhar et al. (2001) proposed a relation between δ and γ̇ in bounded heap flow along the streamwise direction
based on mass conservation:

δ(x) = [δ2
L + 2vr(L− x)/γ̇]1/2, (3.1)

where L is the length of the flowing layer and δL is the thickness of the flowing layer at x=L. Using vr, γ̇, and
δL from simulation, we found that δ calculated from equation 3.1 matches the values measured directly from the
simulation fairly well, as shown in figure 6(d). However, our results show a decrease of γ̇ along the streamwise
direction, contrary to Khakhar et al. (2001) where γ̇ was predicted to be constant in the streamwise direction.
This discrepancy is possibly due to the measurement technique used by Khakhar et al. (2001) to determine δ
which they found to decrease along the x−direction by manually locating the bottom of the flowing layer using a
constant streamwise velocity cutoff instead of the relative value used here.

3.2.3. Streamwise and normal velocity scaling

A scaling for streamwise velocity profiles at different streamwise locations is possible by normalizing u by us and
z by δ at each x so that the streamwise velocity profiles at all streamwise locations collapse onto a single curve, as
shown in figure 7(a). Throughout most of the flowing layer (|z/δ|< 1), the scaled velocity u/us decreases rapidly
from 1 at the free surface. Deeper in the flowing layer, u/us decreases approximately exponentially, similar to
unbounded heap flow or rotating tumbler flow (Komatsu et al., 2001; GDR MiDi, 2004; Courrech du Pont et al.,
2005). This exponential tail can be seen more clearly in figure 7(b), where u/us is plotted on a log scale. In deeper
regions (|z/δ|< 2) velocities are very small (|u/us|< 0.01), but nonzero, though there is substantial scatter. Note
that in unbounded heap flow or rotating tumbler flow, the velocity can be scaled with

√
gd at different flow rates

(GDR MiDi, 2004), where d is the particle diameter for monodisperse systems. However, since us changes with
x in bounded heap flow (figure 5(a)), this constant scaling for u is insufficient.

A difference between bounded heap flow and other free surface flows is that particles in the flowing layer have
a positive average velocity normal to flow due to the rise of the free surface in the continuous flow regime. For
bidisperse flows this positive normal velocity contributes to the separation of small and large particles in the
streamwise direction that controls the final segregation state of the heap. This does not occur in other free surface
flows due to the unchanging location of the free surface (figure 1). Because of the important role of the vertical



9

10−3 10−2 10−1 100

s

0 0.2 0.4 0.6 0.8 1

u/u

−3

−2

−1

0

z/
δ

(a) (b)

Figure 7. (a) Profiles of u at all x for 1.5 mm particles at ṁ= 33 g/s, where u is normalized by us and z is normalized by δ such that
all velocity data fall onto a single curve. Symbols in different colors represent data at different x. (b) Semi-log plot of (a). Solid line is
exponential fit u/us = 2.4e3.3z/δ for −1.6< z/δ <−0.7.

movement of the flowing layer in the final segregation configuration in the bounded heap, an analytical expression
for the normal velocity of the heap is useful. To this end, we start with the conservation of mass:

∂u

∂x
+
∂w

∂z
= 0, (3.2)

and assume a linear decrease of the streamwise velocity u in the x−direction based on the results in §3.2.1 such
that to a first approximation:

u(x, z) = u(0, z)(1− x/L), (3.3)

where u(0, z) gives the depth dependence at x= 0. Substituting equation 3.3 into equation 3.2, integrating with
the boundary condition w= 0 at z = 0 in the moving reference frame, and noting that w is a function of z only
(uniform rise of the heap), an expression for the normal velocity w(z) in the flowing layer is obtained:

w(z) =
1

L

∫0

z
u(0, ξ)dξ. (3.4)

The normal velocity profile can be calculated based on equation 3.4, if u(0, z) is known. Even though the
often-used linear or exponential relations do not capture the exact functional form of the streamwise velocity
as shown in figure 5(b), we try both forms for u(0, z), a linear expression u(0, z) = u(0, 0)(1 + z/δ) and an
exponential expression u(0, z) = u(0, 0)ekz/δ, to obtain analytical solutions for the normal velocity. Here, u(0, 0)
is the surface velocity at x= 0, and k is the ratio of the thickness of the the flowing layer to the characteristic
length scale of the exponential fit, where k= 2.3 in this study. u(0, 0) is associated with the 2D flow rate q at
x= 0 by q0 =

∫0
−δ u(0, z)dz. For the linear streamwise velocity profile, u(0, 0) = 2q0/δ, and for the exponential

streamwise velocity profile, u(0, 0) = kq0
δ(1−e−k)

. Substituting u(0, 0), q0 = vrL, and u(0, z) into equation 3.4, the
normal velocity using the linear streamwise velocity profile is

w̃= 2z̃ + z̃2. (3.5)

The exponential streamwise velocity profile yields

w̃=
1

1− e−k

(
ekz̃ − 1

)
, (3.6)

where w̃=w/v′r and z̃ = z/δ. Note that both equations 3.5 and 3.6 automatically meet the boundary condition
that w=−v′r at z =−δ.

Figure 8 shows theoretical predictions from equations 3.5 and 3.6 (curves), and time-averaged normal velocity
measured from simulations in the flowing layer for 1.5 mm particles at ṁ= 33 g/s at different streamwise
locations. Both simulation data and the theoretical curves show that normal velocity in the moving reference
frame decreases from zero at the free surface to −v′r at the bottom of the flowing layer, though the data are
somewhat scattered at different streamwise locations due to the stochastic nature of the flow. The theoretical
predictions from both equations 3.5 and 3.6 agree with the simulation data, even though some deviations exist.
For example, in the upper region of the flowing layer (|z/δ|< 0.4), both analytical solutions slightly underpredict
normal velocity. Nonetheless, both analytical solutions provide reasonable predictions for the normal velocity.
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Figure 8. Scaled normal velocity, w/v′r , vs. scaled depth z/δ for 1.5 mm particles at ṁ=33 g/s. Different color symbols are for 0<x/L<
1. Curves show predictions for linear (dashed, equation 3.5) and exponential (solid, equation 3.6) streamwise velocity profiles.

10−3 10−2 10−1 1000 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

u/us

z/
δ

(b)(a)

Figure 9. (a) Non-dimensionalized streamwise velocity profiles at different mass feed rates (10≤ ṁ≤120 g/s), particle size ratios (1≤
R≤ 3), and local particle concentrations (0< cs < 0.9) from 11 DEM simulations (dots) and one experiment (open circles). (b) Semi-
logarithmic plot of (a). Different colors denote different feed rates and particle sizes and size distributions.

3.3. Kinematics at different feed rates and particle size distributions

The results for a monodisperse system with one specific flow rate described in §3.2 demonstrate that the
streamwise velocity in bounded heap flow is characterized by the local surface velocity us and the thickness
of the flowing layer δ (see figure 5), where us and δ change along the streamwise direction. However, it is not
clear if this scaling is more universally applicable when the feed rate and particle size distributions change. The
particle size distribution is characterized by size ratio R (R= 1 for the monodisperse systems and R> 1 for
the bidisperse systems) and particle mean diameters: the local mean particle diameter d= nsds + nldl, where
ns = csR3

csR3+cl
and nl = cl

csR3+cl
are the local number fractions, and cs and cl are local volume concentrations of

small and large particles, respectively.

A total of 11 simulations were performed including four monodisperse systems and seven bidisperse systems
with equal volumes of each species, as listed in table 1. The streamwise velocity profiles at different streamwise
locations for all these different simulations are plotted in figure 9, where again u is normalized by local surface
velocity and z is normalized by local flowing layer thickness. All simulation data collapse onto a single curve in the
flowing layer, which is identical to that in figure 7, independent of feed rate and particle size distribution. Clearly,
the scaling is valid over a broad range of flow rates and particle size distributions. Furthermore, streamwise
velocity profiles from experiments obtained using Particle Tracking Velocimetry1 show excellent quantitative
agreement with the scaled simulation results (open circles in figure 9 are for 3 mm monodispere glass particles at
x/L= 0.5 and with ṁ= 21 g/s).

1 Videos of particle flow in a 36d wide by 26d high region were acquired at 300 fps using a Casio EX-F1 camera. Before processing,
images were shifted vertically so that the free surface was at a fixed location. Then velocity fields were calculated using the Particle
Tracking Velocimetry technique (Jain et al., 2002).
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Symbol ṁ (g/s) ds (mm) dl (mm)
C 10 1.5 –
� 33 1.5 –
♦ 91 1.65 –
◦ 120 1.5 –
H 10 1 2
N 33 1 2
J 120 1 2
I 33 1.5 3
 33 1.5 2.25
� 33 1 3
� 120 1 3

Table 1. Simulation parameters
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Figure 10. Scaled local kinematic properties at different feed rates and size ratios as listed in table 1. (a) Dimensionless surface velocity
usδ/q0 vs. x/L; (b) Normalized average shear rate γ̇δ2/q0 vs. x/L; (c) δ vs. x/L; (d) δ/d vs. x/L. Filled (open) symbols denote
bidisperse (monodisperse) systems, see table 1.

We further investigate the dependence of the surface velocity, shear rate, and thickness of the flowing layer along
the streamwise direction on the feed rate and the particle size distribution, as shown in figure 10. The surface
velocity nondimensionalized by the surface velocity at x= 0, u(0, 0) = 2q0/δ from §3.2.3, is usδ/(2q0), which
can be plotted along the streamwise direction at all feed rates and particle size distributions. As shown in figure
10(a), plotting usδ/(2q0) along the streamwise direction collapses the data onto a single curve that decreases
linearly along the x−direction to the end of the flowing layer, though deviations occur close to the feed zone
(x= 0), probably due to particles bouncing as they fall on the heap. The dimensionless shear rate γ̇/(2q0/δ

2)
is plotted in figure 10(b). Again, the data for the different simulation runs collapse onto a single curve, linearly
decreasing with x. Since the scaling of us and γ̇ depend on the local thickness of the flowing layer δ, how δ varies
as flow rates and particle size distributions vary needs further investigation. Figure 10(c) shows δ as a function
of x/L at different flow rates and particle size distributions. Except for the regions close to feed zone (x< 0.2)
where particle bouncing effects occur, the flowing layer thickness generally increases as the feed rate increases
for the same particle size distribution (namely, the same size ratio and the particle diameter of each component).
However, the profiles of the scaled thickness of the flowing layer δ/d in the streamwise direction (figure 10(d))
do not show clear trend when feed rates and particle size distributions are changed.

The dependence of δ on flow rate and particle size has been studied in other free surface flows such as rotating
tumbler flow or unbounded heap flow for monodisperse systems (e.g. GDR MiDi (2004); Renouf et al. (2005);
Pignatel et al. (2012) and references therein). In all cases, δ/d∝ (q∗)a, where q∗ = q/(d

√
gd) is the dimensionless
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). Symbols are defined in table 1.

flow rate. In figure 11, we plot δ/d as a function of the local q∗ for x/L≥ 0.2 on a log-log scale and find that
data from all simulations appear to follow a power law relation between δ/d and q∗ with a≈ 0.22. This value for
a differs from that reported by GDR MiDi (2004) and Renouf et al. (2005), where a≈ 0.5, but is close to what
Pignatel et al. (2012) found at comparable q∗ in rotating tumblers, where a ranged from 0.1 to 0.45. Perhaps what
is most important here is that figure 11 can be used to predict the flowing layer thickness, at least approximately,
over a wide range of flow rates and particle sizes.

4. Discussions and conclusions

We have shown that streamwise velocity profiles in continuous, bounded, heap flow at different feed rates and
particle size distributions collapse onto a single curve when u is scaled by the local surface velocity us and depth
is scaled by the local flowing layer thickness δ (figure 9), where us depends on the feed rate q and δ (figure 10(a)).
This result demonstrates a universal functional form for the streamwise velocity in bounded heap flow for both
monodisperse and bidisperse systems with the local flowing layer thickness being the only scaling parameter at a
given feed rate. The fact that streamwise velocity profiles are independent of the local particle size distributions
associated with segregation of bidisperse particles along the streamwise direction is different from other free
surface flows such as inclined chute flow (Rognon et al., 2007; Tripathi & Khakhar, 2011) or rotating tumbler flow
(Hill & Zhang, 2008). Specifically, Rognon et al. (2007) found that in bidisperse systems the segregating larger
particles in the upper portion of the flowing layer have a smaller velocity as they slide over the smaller particles
in the lower portion of the flowing layer, which results in a different velocity profile from a monodisperse system.
Tripathi & Khakhar (2011) further showed that varying the local concentration of large particles can result in a
non-monotonic change of streamwise velocity, where a minimum streamwise velocity occurs at a mass fraction of
70% large particles. They also showed that velocity profiles depend on the size ratio of the two species. Although
it was not explicitly stated, Hill & Zhang (2008) showed that in a rotating tumbler with a bidisperse mixture, the
streamwise velocities at the upper portion of the flowing layer decrease as more large particles segregate to this
region. The underlying mechanism for the different effects of particle size distribution on the streamwise velocity
between bounded heap flow and other free surface flows is not clear, but might be associated with the linear
decrease in local flow rate due to uniform particle deposition into the static bed. For certain parameter values, this
effect seems to dominate over the different mobilities of large and small particles in the flow when they segregate.

As we have discussed, the flowing layer thickness can be determined from the velocity profile using any of
several techniques as shown in §3.2.2. However, our results demonstrate that the flowing layer thickness as a
scaling parameter is insensitive to the specific functional form of the streamwise velocity profile and the specific
measurement approach. The local flowing layer thickness depends only on the local flow rate and the local average
particle diameter (figure 11). For a monodisperse system, the velocity field is well defined by these two variables.
For a bidisperse system, however, local mean particle diameter changes as segregation occurs, so determining the
streamwise velocity for bidisperse system requires a prediction of the local concentration of each species.

Although we have found a scaling for the streamwise velocity in bounded quasi 2D heap flow, a specific
functional form has not yet been determined. A non-monotonic local shear rate in the depth-direction results
in the streamwise velocity that is neither linear nor exponential. To determine the streamwise velocity profile
theoretically, a constitutive law that determines the stress is necessary. With recent substantial progress on the
rheology of dense granular flow, a local rheological model like that proposed by Jop et al. (2006) or a non-local
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Figure A.12. Side wall effects on kinematics and segregation in bidisperse quasi-2D bounded heap flow. (a) Profiles of surface velocity
in the streamwise direction averaged over different portions of the gap between sidewalls in the lateral (y) direction: 0< y < 4 mm and
8.7< y < 12 mm (wall), 4< y < 8.7 mm (center), and 0< y < 12.7 mm (mean). (b) Profiles of mass concentration of small particles
along the streamwise directions averaged over different portions of the gap in the lateral direction. The data are for a mixture of 1 and 2
mm particles at ṁ= 33 g/s.

model like that proposed by Kamrin & Koval (2012) might be adapted to bounded heap flow. Subsequently,
the normal velocity could be obtained based on mass conservation. However, without an exact expression for the
streamwise velocity, assuming a linear or an exponential streamwise velocity profile, similar to previous studies in
other free surface flows (e.g. GDR MiDi (2004) and reference therein), gives expressions for the normal velocity
that match the simulation data equally well.

The mean flow kinematics of the bidisperse granular systems presented here provide a necessary precursor for
modeling segregation in bounded heap flow. The motion of each species in the segregating mixture can be
determined by superposing the relative motion of the species – the segregation velocity – onto the mean flow.
Thus, the local concentration of each species can be determined using the transport equation for each species
and considering the combined effects of advective fluxes related to the mean flow, the segregation fluxes, and the
diffusive fluxes due to particle collisions. This approach has been used to model size segregation in other free
surface flows, such as inclined chute flow (Dolgunin & Ukolov, 1995; Savage & Lun, 1988; Gray & Thornton,
2005; Gray et al., 2006). However, in these studies, the kinematics are relatively simple: the flow is fully-developed
(∂u/∂x= 0), mean flow has no normal component (w= 0), and the streamwise velocity profile is linear. In
contrast, bounded heap flow is more complicated in that the mean flow decelerates in the streamwise direction
(∂u/∂x< 0) and the normal velocity profile is non-zero and non-linear. As a result, the advection of each species
associated with mean flow may become important, and the shear rate could influence the segregation velocity of
each species (May et al., 2010; Marks et al., 2011; Fan & Hill, 2011b) and the diffusion coefficients (Utter &
Behringer, 2004). These effects might also need to be included when modeling segregation in bounded heap flow.

5. Acknowledgements

We are grateful for helpful discussions with Karl Jacob and Ben Freireich. We also acknowledge financial support
from The Dow Chemical Company.

Appendix 1 Wall effects

In quasi-2D unbounded heap flow or inclined chute flow, the side walls significantly influence flow kinematics
and rheology (Jop et al., 2005; Katsuragi et al., 2010). Particles are slowed down due to wall friction resulting
in a blunt velocity profile with slight decrease of the velocity close to the side walls. In bounded heap flow, the
side walls have a similar effect on the streamwise velocity. Figure A.12(a) shows the streamwise surface velocity
us averaged over different portions of the gap between side walls to investigate wall effects. Although surface
velocities in different portions of the gap exhibit a similar linear decrease in the streamwise direction, surface
velocities close to the wall (data averaged over 4 mm thick slices in the y−direction adjacent to both side walls)
are roughly 10% smaller than mean surface velocities, while those in the central region of the heap (4< y < 8.7
mm) are 10% larger. Furthermore, the strength of segregation is also affected by the side walls. As shown in
figure A.12(b), the profiles of volume concentration of small particles cs in the streamwise direction show that
segregation strengthes close to side walls. Although cs decreases from the side walls to the center in the upstream
region of the heap (xlab/W < 0.6), cs does not vary in the spanwise direction in the downstream region. This
indicates that a small degree of horizontal segregation occurs in the lateral direction, presumably since small
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particles segregate toward the side walls due to wall exclusion of large particles or shear-induced segregation (Fan
& Hill, 2011a). In this work, we report kinematic quantities averaged over the entire gap (0< y < T ), since the
wall effects are relatively small.
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