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Various aspects of axial banding of size-varying bidisperse granular mixtures in cylindrical tumblers have
been documented repeatedly over a decade or so, but the dependence of surface band formation on the relative
concentration of particles and rotation rate has not been thoroughly examined. Coarsening patterns analogous
to nucleation and spinodal decomposition occur as the relative concentration of small and large particles and
the rotation rate of the tumbler are varied. A phase diagram with a portion analogous to a miscibility gap can
be constructed from the space-time plots. A dynamic scaling approach similar to that for reacting lamellae can
be applied to the coarsening patterns as a result of large bands growing at the expense of neighboring smaller
bands.
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I. INTRODUCTION

Bidisperse mixtures of particles of different sizes segre-
gate into alternating surface bands of individual components
�with a core of small particles below the surface� along the
axis of a rotating tumbler instead of remaining well mixed
�1–4�. Although numerous experiments have investigated the
effects of particle size �3,5,6�, fill level �4,6,7�, particle res-
titution coefficient �6,7�, tumbler geometry �5,8–10�, rota-
tional speed �4–7,9,11–14�, and interstitial fluid �9,12,13,15�,
a theoretical framework that can describe and predict mixing
and segregation remains an open problem.

Axial banding has been compared to spinodal decompo-
sition �2,3,16�. However, the analogy has not been explored
in the context of the entire phase diagram or with respect to
nucleation. Our recent work on how the mixture composition
affects the evolution of axial segregation �17� provides a
starting point for such exploration. In fact, the large amount
of information available provides the motivation to seek al-
ternative approaches to make sense of the data. This paper
proposes two analogies for axial segregation patterns of a
size-varying granular mixture. The first points to similarities
between the phase diagram of a prototypical chemical binary
mixture and the phase diagram of space-time plots for the
granular system. The second uses a scaling approach previ-
ously used to describe the dynamics of lamellae produced by
chaotic mixing of fluids �18,19�. While the physics of these
systems is clearly different, the analogies are useful to quali-
tatively understand the data.

II. EXPERIMENTAL METHODS

Data were obtained using a method identical to that used
in our previous work �17�. Briefly, a horizontal acrylic tube
of length L=75 cm and inner diameter D=6.35 cm was par-
tially filled with a mixture of dS=0.6 mm �0.57�0.08 mm�

smooth, spherical silver glass beads ��=2.4 g /cm3� and
dL=2 mm �2.0�0.06 mm� smooth, spherical black basalt
beads ��=2.6 g /cm3�. The mixture was completely sub-
merged in tap water. The volume concentrations of small
particles, cs, varied as 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90%. A graduated cylinder was used to mea-
sure the volume of each particle type so that the total volume
of particles would fill half the tumbler. The rotational speeds
of the tube, �, ranged from 10 to 130 rpm in 10 rpm intervals
and were chosen so that the flowing layer was in the con-
tinuous cascading flow regime, characterized by a nearly flat
free surface, at lower speeds but shifted to the cataracting
regime, an “S”-shaped flowing layer, at higher rotational
speeds �20–23�. These speeds correspond to Froude num-
bers, Fr=�2R /g, of 3.55�10−3�Fr�0.6, where R is the
radius of the tube and g is the acceleration due to gravity.

A digital camera was synchronized with the stepper motor
driving the tumbler to acquire images of the bed of particles.
Space-time plots were created by stacking single pixel thick
lines of the average intensity over 600 tumbler rotations to
track the evolution of band formation. A thresholding algo-
rithm was used to enhance clarity. A phase diagram of space-
time plots is shown in Fig. 1.

III. GRANULAR PHASE DIAGRAM

A binary chemical system can undergo phase transitions
depending on the free energy of the system and the concen-
tration of the two species. Traditional temperature-
composition phase diagrams can be divided into a miscible
region and an immiscible region. The miscible region is a
single phase in stable equilibrium. The immiscible region is
more complicated. If the system falls into metastable equi-
librium, concentration fluctuations occur at small localized
regions for either low or high fractions of either species. The
phase transition is nucleation. At moderate relative concen-
trations, the system is in unstable equilibrium. Concentration
fluctuations occur throughout the entire system as it under-*jm-ottino@northwestern.edu
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goes a phase transition known as spinodal decomposition
�24,25�.

While there is no direct relation between the angular ve-
locity of the tumbler and granular temperature, the granular
temperature would be expected to increase with increased
angular velocity and therefore plays a similar role as tem-
perature �3�. Based on this simple assumption, there is an
analogy between the temperature-composition phase diagram
of a binary chemical system and the angular velocity-
composition phase diagram for a binary granular system, the
matrix of space-time plots in Fig. 1. This analogy can be
utilized to categorize a granular system as a granular nucle-
ation region, a granular spinodal region, or a miscible region.

Consider first the miscible region corresponding to a
single phase in stable equilibrium. In Fig. 1, the large �dark�
particles fill the entire space-time plot in each cell of the
matrix at low small-particle fractions �10%�, as would be
expected, with a few exceptions. At large small-particle con-
centrations �90%�, small particles dominate.

Phase separation analogous to spinodal decomposition oc-
curs for systems at moderate small-particle concentrations.
Alternating small and large particle bands form along the
length of the tumbler for small-particle concentrations of
40% to 80% for low angular velocities, as shown in Fig. 1.
Figure 2 demonstrates four characteristics of the space-time
plots that define the spinodal decomposition region within
the dotted lines in Fig. 1. First, bands form quickly, on the
order of 50 tumbler revolutions, along the entire length of the
tumbler. Second, the average wavelength is approximately
equal to the tumbler diameter �8,10,17�. Third, the percent

surface area �17� of small particles reaches equilibrium
within 100 rotations and remains constant �Fig. 2�b��. And
fourth, after reaching a maximum, bands merge and the pat-
tern coarsens, much like spinodal decomposition in a binary
chemical system, so that the number of bands decreases loga-
rithmically in a step-wise fashion when the number of revo-
lutions exceeds 40 �9,17� �Fig. 2�c��.

A region corresponding to phase separation which appears
like nucleation occurs for granular systems in rotating tum-
blers at low or high small-particle fractions, as shown
in Fig. 1. At low small-particle fractions, 20%–30%, few
small-particle bands form, less than L /D, and those that form
do not merge for almost all angular velocities. At small-
particle fractions of 50%–80% at higher angular velocities
��60 rpm� and small-particle fraction of 90% at 10 rpm,
few large-particle bands form along the length of tumbler.
Typical space-time plots of nucleation of small- and large-
particle bands are shown in Figs. 3�a� and 3�b�, respectively.
A characteristic of granular nucleation is that it takes much
longer for a band to appear at the surface than it does for
spinodal band formation, anywhere from 200 to 300 revolu-
tions. Bands often appear near the end walls first and there is
slow change in the percent of surface area as a function of
tumbler revolutions �Fig. 3�c��. The number of bands in-
creases slowly in time and bands rarely merge �Fig. 3�d��.
Unlike the situation akin to spinodal decomposition, the band
structure is not periodic.

Clearly, axial segregation dynamics depends on the rela-
tive particle concentration and the angular velocity of the
tumbler. Depending on the parameters of the system, either
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FIG. 1. The matrix of space-time portraits for the liquid granular system shows band formation and evolution as a function of small-
particle percentage and angular velocity for 600 tumbler revolutions. In each cell, time progresses from top to bottom. White regions
correspond to small particles; dark regions correspond to large particles. The granular nucleation region occurs for small-particle percentages
of 20%–40%, 80%, and 90%. The granular spinodal region, bounded approximately by the dotted line, occurs for lower angular velocities
in small-particle percentages of 40%–80%.
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no bands appear �such as the miscible region�, some bands
appear and grow slowly in time with no merging �such as
nucleation�, or bands appear along the entire length of the
tumbler and the segregation pattern coarsens at a logarithmic
rate �such as spinodal decomposition�. However, it is also
evident that the granular phase diagram is much more com-
plicated than for a binary chemical system in that there are

some regions of the phase diagram that do not fit any of the
three categories. An example is the unexpected sharp transi-
tion from all black at 120 rpm to almost all white at 130 rpm
for a small-particle concentration of cs=10%, the top left
corner of Fig. 1. Clearly, interesting phenomena occur at
high angular velocities that deserve further investigation.
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FIG. 2. �a� Space-time plot for a granular mixture with moderate
small-particle fraction �2500 rotations, cs=60% at 10 rpm� typical
of those bounded by the dotted line for low angular velocities with
small-particle percentages of 40%–80%. �b� The percent surface
area of small particles rises sharply and remains constant. �c� The
number of bands reaches a maximum and then decreases
logarithmically.
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FIG. 3. Typical space-time plot �600 rotations� for a granular
mixture in the granular nucleation region. �a� For low small-particle
fractions �cs=20% at 70 rpm�, there is nucleation of small-particle
bands. �b� For high small-particle fractions �cs=90% at 10 rpm�,
there is nucleation of large-particle bands. �c� The percent surface
area of small or large particle bands changes slowly in time. �d� The
total number of bands increases slowly in time and no merging
occurs.

(b)

400 Rev 800 Rev

1200 Rev 1600 Rev

2000 Rev 2400 Rev

Band Width (cm)

N
um
be
ro
fB
an
ds

(a)

FIG. 4. Example of granular dynamic scaling that applies to any
space-time plot bounded by the dotted line in Fig. 1. �a� Histograms
of band thickness s at every 400 revolutions. �b� The six curves for
the scaling anzatz, s2f�s�=s /S�t�, corresponding to 400 ���, 800
���, 1200 ���, 1600 ���, 2000 �� �, and 2400 �� � revolutions
collapse for ten different experiments under the same conditions of
cs=60% at 10 rpm over a duration of 2500 revolutions.
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IV. GRANULAR DYNAMIC SCALING

Scaling arguments are useful to determine if properties of
a system are independent of dynamical details. Scaling laws
have been previously used to describe the dynamics of a
lamellae system in chaotic mixing of fluids, critical phenom-
ena, and aggregation processes �18,19,26,27�. These struc-
tures dynamically evolve toward a universal striation thick-
ness distribution, f�s�, regardless of initial conditions
�18,19�. A similar scaling approach can be used to analyze
axial banding systems that undergo logarithmic coarsening.

Consider a system with a distribution, f�s , t�, of bands of
thickness s. We postulate, s�f�s , t�=g�s /S�t��, where g�y� is
the scaling solution, y=s /S�t� is the scaling argument, and
S�t� is the mean band thickness �18,19�. If a band merges and
grows, it does so as a neighboring band shrinks. Since the
percent surface area of the system remains constant
�Fig. 2�b��, the area, A=�0

	sf�s , t�ds=�0
	s1−�g�y�ds

= �S�t��2−��0
	y1−�g�y�dy, is also constant. Since the last inte-

gral is independent of time, it then follows that �=2.
The dynamic scaling analysis is as follows. Since the

number of bands in a granular system is small, ten indepen-
dent space-time plots such as Fig. 2�a� for the same initial
conditions are placed side by side, equivalent to a tumbler 10
times its actual length. The band widths of the composite
plot provide the mean band thickness, S�t�, and histogram of
the width distribution, f�s , t�, for several times �Fig. 4�a��.
The initial band thickness distribution in Fig. 4�a� is sharply

peaked at a band width of about 3 cm, or approximately D /2,
since the initial system wavelength is on the order of the
tumbler diameter. As bands merge, the number of wide bands
increases; wide bands grow at the expense of neighboring
narrow bands. These values are plotted according to the scal-
ing relation, s2f�s�=g�s /S�t��, in Fig. 4�b�. Regardless of the
band thickness distribution and the overall number of bands
in the system at different times, the curves for 400–2400
revolutions collapse �Fig. 4�b��. Similar results occur for all
concentrations within the granular spinodal boundary in
Fig. 1.

V. CONCLUSIONS

The analogy to phase transitions similar to nucleation and
spinodal decomposition as well as a dynamic scaling relation
that suggests universality of band thickness distribution pro-
vides insight into the axial segregation of binary mixtures in
horizontal rotating tumblers. However, there are still issues
concerning the onset of axial segregation and the physical
origin of the apparent “negative diffusivity” used in phenom-
enological models for granular systems connected with spin-
odal decomposition �2,16,28�. Experimental or computa-
tional analysis related to the core of small particles beneath
the surface that precedes band formation �3,4,12� could help
elucidate the origin of nucleation and spinodal decomposi-
tion behavior. Clearly, the phase diagram for granular mix-
tures is complicated and further exploration is needed.
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