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Segregation patterns formed by time-periodic flow of polydisperse granular material �varying in particle
size� in quasi-two-dimensional �quasi-2D� tumblers capture the symmetries of Poincaré sections, stroboscopic
maps of the underlying flow, derived from a continuum model which contains no information about particle
properties. We study this phenomenon experimentally by varying the concentration of small particles in a
bidisperse mixture in quasi-2D tumblers with square and pentagonal cross sections. By coupling experiments
with an analysis of periodic points, we explain the connection between the segregation patterns and the
dynamics of the underlying flow. Analysis of the eigenvectors and unstable manifolds of hyperbolic points
shows that lobes of segregated small particles stretch from hyperbolic points toward corners of the tumbler,
demonstrating the connection between regions of chaotic flow and the shape of the segregation patterns.
Furthermore, unstable manifolds map the shape of lobes of segregated particles. The techniques developed here
can also be applied to nonpolygonal tumblers such as elliptical tumblers, as well as to circular tumblers with
time-periodic forcing.
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I. INTRODUCTION

A distinguishing feature of flowing granular matter is the
tendency to segregate; mixtures of particles with varying size
�S systems� or varying density �D systems� subject to flow
often segregate leading to what on first viewing appear to be
baffling results �1–4�. In D systems, the heavier particles are
driven by gravity lower in the flowing layer, forcing the
lighter particles toward the top due to buoyancy forces �5–7�.
In S systems, smaller particles will percolate through the
spaces between the larger particles and segregate toward the
bottom of the layer pushing the large particles toward the top
�8–11�.

An example of size segregation in a half-full quasi-two-
dimensional �quasi-2D� square tumbler is shown on the left
side of Fig. 1. Initially the tumbler is partially filled with a
mixture of particles of two different sizes. The tumbler is
rotated at a rate where the flow is in the rolling regime �also
referred to as the continuous-flow regime� �2–4,12–14�. As
the tumbler rotates, the particles near the surface flow in a
thin layer. Particles enter this layer on the upstream end from
a near-static fixed bed in solid body rotation with the tum-
bler. Particles exit the flowing layer on the downstream end
of the flowing layer. The net result of the percolation of
smaller particles in the thin surface flowing layer coupled
with the time-periodic flow due to tumbler geometry is the
formation of a core having two lobes rich in small black
particles near the center of the tumbler with a region rich in
large clear particles near the periphery, as shown in the left
portion of Fig. 1.

The computationally derived Poincaré section in the right
portion of Fig. 1 is a stroboscopic mapping of a few
points initially placed in a square tumbler and advected ac-
cording to a kinematic continuum model of the flow without

consideration of segregation �15�. The Poincaré section cap-
tures the time-periodic behavior of the flow. Such Poincaré
sections can also be generated using a discrete mapping of
granular flows in rotating tumblers rather than based on a
continuum model �16�. Some points in the Poincaré section
are confined to islands along the diagonals, while others are
advected over much of the tumbler �1�. What is surprising is
that the structure of the segregation pattern on the left shows
remarkable similarity with that of the Poincaré section on the
right, in spite of the very different means by which the two
figures are generated. The computational model used to gen-
erate the Poincaré section contains no information on particle
properties or segregation. The medium is taken to be mono-
disperse. Despite the difference between the bidisperse ex-
periment and the monodisperse model, the smaller particles
in the experiment form lobes that overlap with the location
of the islands in the Poincaré section. In this paper we ex-
amine to what extent and why experimental segregation pat-
terns and computationally derived Poincaré sections appear
to capture the same patterns and symmetries in time-periodic
granular flow.

Insight into the relationship between Poincaré sections
and flow in physical bidisperse systems can be obtained from
techniques commonly applied to chaotic mixing in fluids.
Dye experiments in mixing of fluids, primarily for time-
periodic flows, have been instrumental over the last two de-
cades in yielding insights into the working of chaotic flows.
Strategically placed colored blobs, after a few periods of the
flow, produce persistent large scale structures—templates of
the manifold structure or the chaotic nature of the flow �17�.
Typically, colored blob experiments reveal regions of chaotic
mixing. In the case of the half-full square in Fig. 1, the
chaotic region of the flow is everything outside of the is-
lands. Blob experiments have been attempted in granular
flows �18�. However, forming a blob in granular matter is
difficult. Moreover, very quickly the granular “blob” be-
comes broken and the connectivity of the “dyed” structure is
lost, as opposed to the companion fluid case where the*Electronic address: r-lueptow@northwestern.edu
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stretching and folding of the fluid continuum is readily vis-
ible. Segregation experiments in granular matter, on the other
hand, tend to make visible regions in which islands occur, as
shown in Fig. 1. Thus, granular and fluid experiments high-
light different aspects of the underlying chaotic flows—and
in some sense they may be imagined as complementary, like
the positive and negative images of a photograph. Where dye
experiments in fluids identify chaotic regions, segregation
experiments in granular matter identify islands.

Although it is apparent that the lobes in segregation ex-
periments have some connection with the islands in Poincaré
sections, the nature of the relationship is unclear. In particu-
lar, can the patterns of segregated small particles always be
predicted by the islands? After all, Poincaré sections are
computed from a simple kinematic continuum model that
does not contain any information about particle segregation.
We approach these issues through both experiment and nu-
merical analysis by studying quasi-2D square, pentagonal,
elliptical, and circular tumblers of varying fill fractions. The
extent to which segregating granular materials reveal the un-
derlying flow as displayed by Poincaré sections is explored
by varying the concentration of small particles in segregation
experiments. Numerical techniques borrowed from fluid
mixing studies further expand our understanding of the rela-
tionship between segregation patterns and Poincaré sections.

II. TIME-PERIODIC FLOW

A Poincaré section such as a stroboscopic map provides
information about the time-periodic nature of the underlying
flow in the tumbler. Points are initially placed throughout the
tumbler. The points are then advected according to a con-
tinuum model, and their locations are plotted after each pe-
riod of flow as described below. Some points explore much
of the domain of the tumbler, while other points are trapped
in islands, such as those in the Poincaré section in Fig. 1
along the diagonals of the tumbler. These different regions of
the flow can be characterized in terms of periodic points. A
periodic point is a point that returns to its initial position
after some number of iterations of a time-periodic flow or
mapping. Consider a point x�x ,y� with an initial location x0.
A mapping function F describes the advection of x through

one period of flow. The location of x after n iterations of a
mapping is

xn = Fnx0. �1�

If x0=P, xn=P, and xm�P where m�n, then P is a periodic
point of order n. In general, a periodic point is a period-n
point if that point returns to its initial position after n
iterations.

The nature of the periodic point provides information
about the character of the flow in the surrounding region
�19�. There are three different types of periodic points: ellip-
tic, hyperbolic, and parabolic. The behavior of the flow near
elliptic points is the subject of the Kolmogorov-Arnold-
Moser �KAM� theorem �20–22�. Particles initially located
near a period-n elliptic point return to the vicinity of that
elliptic point after n periods of flow. There is also a rotation
or twist of the material near the elliptic point �23�. In the
generation of a Poincaré section, points initially placed near
an elliptic point and plotted each time period tend to form
closed rings, such as the ellipse-like rings that make up the
islands along the diagonals in the Poincaré section in Fig. 1.
The closed rings are examples of KAM structures. Points
cannot cross these structures, so that material outside the
KAM structure stays outside and material inside the KAM
structure stays inside. Since these structures are barriers to
mixing of material they are often referred to as islands
�19,24,25�. An island is of period n if it is characterized by a
period-n elliptic point. In general, larger islands have lower
order elliptic points �26�. The islands in Fig. 1 are period-2
because the elliptic points that characterize them return to
their initial positions every two periods of one-quarter
revolution.

In the case of a granular tumbler, the mapping F comes
from integration of the velocity field in the tumbler
�1,15,27�. We apply a simple 2D kinematic continuum model
for the velocity field to study the underlying flow. All dy-
namics of the flow occur in a thin rapidly flowing surface
layer that is typically a maximum of 5–10 particles thick
�28�. Below the surface layer is an essentially static or fixed
bed of particles in solid body rotation with the tumbler. Set-
ting the origin of the coordinate system at the midpoint of the
free surface with x in the streamwise direction and y normal
to the surface directed upward, the flow in this surface layer
is given by

vx�x,y� = 2u�1 +
y

��x�
� , �2�

vy�x,y� = − �x� y

��x�
�2

, �3�

where the depth averaged velocity in the flowing layer
u=�L2 /2�0, � is the rotation rate of the tumbler, and L is the
distance from the origin to the tumbler wall, where 2L is
referred to as the flowing layer length �1,15�. The flowing
layer thickness ��x� is modeled as parabolic with a maximum
of �0 at x=0 �1,15�.

FIG. 1. �Color online� Left: segregation experiment in half-full
square tumbler with 40% small �0.3 mm� black particles and 60%
large �1.2 mm� clear particles by weight. Steady state pattern after
10 clockwise revolutions of the tumbler at 1.44 RPM. Right:
Poincaré section of half-full square.
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� = �0�1 − � x

L
�2� . �4�

Previous experiments in laboratory scale tumblers have
shown that �0 is proportional to L �18�. In the tumbler ge-
ometries discussed here, L is time periodic. For example, in a
half-full square tumbler, L is a maximum when the flowing
layer is along the diagonal and a minimum when the flowing
layer is parallel to a wall. This occurs four times for each
revolution of the tumbler �so a period is one-quarter revolu-
tion�. In general, for a N-sided polygonal tumbler, a period is
1
N revolutions. �For elliptical and circular tumblers, the peri-
odicity of the flow is defined differently and will be dis-
cussed later.� The mapping F involves the tracking of the
motion of a particle via the integration of the velocity field
through the flowing layer using Eqs. �2� and �3�, as well as
through the solid body rotation in the fixed bed of the
tumbler.

Periodic points tend to be found in symmetric pairs. The
symmetries can be found from geometric insight and some
basic knowledge of the underlying flow �23�. Consider the
half-full square tumbler in Fig. 1. Based on the Poincaré
section, elliptic points are expected to lie along diagonals
between the bottom corners and the center of rotation. To
find the elliptic points, a series of points separated by a small
distance are placed along the diagonal and then advected
according to the model for the number of periods that corre-
spond to the order of the periodic point in question. The
point that moves the least from its initial position is noted
and a new line of points is placed along the diagonal near
this point but with a much smaller separation distance. The
process is repeated until a point is identified along the line
that moves less than some tolerance, typically on the order of
the computational precision of the calculations. The location
�x̄ , ȳ� of this point is the periodic point. A similar method is
used to find the hyperbolic points, except that the points are
placed along a line between the center of the tumbler and the
midpoint of the bottom wall, based on the Poincaré section.

The type of periodic point �elliptic, hyperbolic, and para-
bolic� can be identified in the following way. By computing
the Jacobian, J, of the linearization of mapping F near a
periodic point, its type can be identified by the eigenvalues
�1 and �2 �29�. Note that when det�J�=1, �1�2=1. If �1,2

=A± iB where B�0, then the point is elliptic. The islands in
the Poincaré section in Fig. 1 are characterized by period-2
elliptic points. If �1,2 are both real �B=0� and A� ±1, then
the point is hyperbolic. Hyperbolic points are related to
stretching and compression in the flow. Regions around hy-
perbolic points are typically chaotic. The eigenvalue with
modulus greater than one has an eigenvector that corre-
sponds to the direction of stretching. The eigenvalue with
modulus less than one has an eigenvector that corresponds to
the direction of compression. There are two period-2 hyper-
bolic points that lie within the regions of chaotic flow in the
half-full square in Fig. 1 �one near the center of the fixed bed
of granular material and one in the flowing layer�. If �1,2
= ±1, the point is parabolic. Parabolic points characterize
steady shear flow and are not of interest in this paper �since
the flows here are time periodic, not steady�.

The terms in the Jacobian matrix are derived from four
points placed around the periodic point of interest �x̄ , ȳ�: �x̄
+� , ȳ� , �x̄−� , ȳ� , �x̄ , ȳ+�� , �x̄ , ȳ−��. The spacing � is typically
very small �in this case, � /Lmin=0.001, where Lmin is the
minimum value of L�. The Jacobian matrix of the linearized
mapping is defined as

J = �Jxx Jxy

Jyx Jyy
� , �5�

where

Jxx =
xn�x̄ + �, ȳ� − xn�x̄ − �, ȳ�

2�
, �6a�

Jxy =
xn�x̄, ȳ + �� − xn�x̄, ȳ − ��

2�
, �6b�

Jyx =
yn�x̄ + �, ȳ� − yn�x̄ − �, ȳ�

2�
, �6c�

Jyy =
yn�x̄, ȳ + �� − yn�x̄, ȳ − ��

2�
, �6d�

where the subscript n is the number of iterations of the pe-
riodic mapping as defined previously �29�. The accuracy
check comes from verifying that det�J�=1 within some tol-
erance based on the precision of the computations. These
points are then advected for the number of periods that
correspond to the period of point �x̄ , ȳ� �i.e., for a period-n
point, the points are advected for n periods�. Then the Jaco-
bian can be calculated from the equations above and the
eigenvalues calculated from det�J−�I�=0, where I is the
identity matrix. With the eigenvalues and the Jacobian in
hand, the corresponding eigenvectors can be found.

III. CAPTURING PATTERNS

The extent to which segregation experiments capture the
symmetries of the Poincaré section is explored using square
and pentagonal tumblers. For the experiments, the square
tumbler is 157 mm on a side and the pentagonal tumbler is
141 mm on a side. Since the tumblers are only 6 mm thick in
the axial direction, they are considered to be quasi-2D. The
dynamics that create the patterns we study here are essen-
tially 2D since there is negligible axial flow of particles. In
the bidisperse experiments, the large particles are
1.21±0.04 mm clear glass beads while the small particles are
0.29±0.01 mm painted black glass beads. The rotation rate
of the tumbler is set at 1.44 revolutions per minute, clock-
wise, fast enough so the flow is in the rolling �continuous-
flow� regime. Images are taken with a four megapixel Canon
digital camera. Numerical Poincaré sections corresponding
to the experimental conditions are generated by placing 13
evenly spaced points in the lower half of the tumbler along
the diagonal extending from the center to the lower left cor-
ner of the tumbler. The points are then advected for 500
periods of flow and their locations are plotted at the end of
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each period. An underlying assumption in the connection be-
tween the segregation patterns and the symmetries of the
underlying dynamics displayed in the Poincaré section is that
the velocity field in the flowing layer �Eqs. �2�–�4�� is inde-
pendent of the particle type. For particular particle types,
size, and density combinations, particle-to-tumbler size ra-
tios, fill fractions, and rotation rates, radial streaks of segre-
gated particles can sometimes be observed rather than pat-
terns resembling the symmetries of the Poincaré section
�1,6,7,30,31�. However, for the particle types, rotation rate,
and fill fractions considered in this paper, streak patterns
were not observed.

First we consider segregation in a half-full square tumbler
by varying the concentration of small particles. Figure 2
shows experimental results for trials with concentrations of
small black particles ranging from 2.5 to 60 % by weight
�corresponding to measured volume fractions of 1.3 to
58.8 %�. In all cases, small particles segregate to form two
lobes extending toward the corners of the tumbler. The seg-
regation is imperfect. Clear beads are interspersed among the
small black beads. For lower concentrations the lobes stretch
along the diagonals of the square tumbler, but are shifted
slightly clockwise. The lobe on the right side appears to be
larger in these images because a portion of the left lobe has
already entered the flowing layer. In the 40% by weight case,
the lobes do not stretch much further than the 20% case but
are much thicker. At 60% by weight, the lobes are very thick
and appear to be symmetric about the vertical midline. This
observation yields insights into the tendency of the lobes of
segregated particles to move toward the location of islands,
as will be discussed later. The presence of lobes even for low
concentrations �less than 10% by weight� suggests that the

segregation pattern is shaped by the underlying dynamics of
the flow in the chaotic regions rather than simply marking
the location of the islands.

Previous experiments have shown a wide range of pat-
terns for tumblers of different geometries and different fill
fractions �1,27�. Examining a variety of different systems
provides insight into the relationship between the Poincaré
section and segregation patterns. Using the half-full square
as reference, we can change the dynamics of the flow in two
ways: fill fractions can be altered from half-full, or the num-
ber of sides of the tumbler can be changed �in this case a
regular pentagonal tumbler�.

First consider the higher-order geometry of a half-full
pentagonal tumbler, the Poincaré section for which is shown
in Fig. 3. In this case, one period of flow is one-fifth revolu-
tion. Unlike the half-full square tumbler, a half-full pentago-
nal tumbler has two maxima in flowing layer length during
each period �and hence streamwise velocity, vx�: one where
the flowing layer intersects a corner on the right side of the
tumbler and one where it intersects a corner on the left side.
Instead of the period-2 islands in the half-full square, the
Poincaré section for the pentagon has period-2 islands near
the center, surrounded by period-5 islands. Unlike the half-
full square tumbler, the Poincaré section shows a smaller
region of chaotic flow.

Figure 4 shows experiments in a half-full pentagonal tum-
bler using mixtures that are 10, 30, and 50 % by weight
small particles. For a mixture of 10% by weight small par-
ticles, the small particles form a pattern with two lobes ex-

FIG. 3. �Color online� Poincaré section of a half-full pentagonal
tumbler.

FIG. 2. Series of segregation experiments in half-full square tumbler with varying concentrations of small black particles by weight
percent.

FIG. 4. �Color online� Comparison of segregation experiments
to Poincaré sections for half-full pentagonal tumbler. Top: segrega-
tion experiments varying the concentration by weight of small par-
ticles. Bottom: Poincaré sections with the initial locations of points
chosen so the patterns correspond to areas occupied by small
particles.
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tending from the center toward each of the bottom corners.
The corresponding Poincaré section obtained using only a
few initial points clustered near the center of rotation �left-
most Poincaré section in the lower row of Fig. 4� displays
period-2 islands in the underlying flow that match the lobes
in the experiment. Increasing the concentration does not
result in the lengthening of the lobes, as it did, in the half-full
square case. Instead, it changes the pattern altogether. For
30% by weight small particles, the pattern now has 5
“bumps” along its edges. These bumps correspond to the
locations of period-5 islands in the Poincaré section gener-
ated by seeding seven initial points from the center of the
tumbler to about half-way to the lower left corner �middle of
the lower row of Fig. 4�. As the concentration of small par-
ticles increases further to 50% by weight, the outer boundary
of the pattern of small particles takes on a shape similar to
the rings that lie to the outside of the period-5 islands in the
corresponding Poincaré section �rightmost Poincaré section
in the lower row of Fig. 4�.

By using a polydisperse particle mixture �three different
particle sizes�, the symmetries of both the period-2 and
period-5 islands can be captured simultaneously, as shown in
Fig. 5. The mixture consists of 5% by weight 0.35±0.02 mm
particles �purple�, 25% by weight 0.75±0.02 mm particles
�yellow�, and 70% by weight 1.19±0.04 mm particles
�black�. The smallest particles form two lobes resembling the
period-2 islands in the Poincaré section of Fig. 3. The me-
dium particles mimic the period-5 islands of the Poincaré
section. The interface between the medium and large par-
ticles is blurred, because the ratio of particle diameter of
large to medium particles is less than two, resulting in a
relative weakening of segregation compared to collisional
diffusion.

While the dynamics and segregation patterns can be al-
tered by changing the shape of the tumbler, the pattern can
also be changed by simply increasing the fill fraction of the
square tumbler. In the half-full square, the maximum flowing
layer length �and hence the streamwise velocity, vx� occurs
when the free surface intersects two opposing corners along
the diagonal. For deviations from half-full, the free surface
will intersect opposing corners along the diagonal at different
points in rotation rather than simultaneously. Therefore, the

flowing layer length has multiple maxima during each period
of flow �one-quarter revolution for a square tumbler�. Figure
6 shows a set of experiments and Poincaré sections for a
63%-full square tumbler, where the flowing layer length has
two maxima during each period of the flow. In this case there
is a small, unmixed core centered at the axis of rotation
because these particles never reach the flowing layer �this
core is not readily visible in Fig. 6�. The Poincaré section has
three period-3 islands near the unmixed core and five
period-5 islands closer to the tumbler walls. Note that for the
configuration shown, one of the period-3 regions is located
within the flowing layer. Showing the tumbler in the dia-
mond orientation �where the diagonal is horizontal� would
reveal all three period-3 islands in the bed of solid body
rotation. The segregation experiment with 10% by weight
small particles shows three lobes �two of these lobes lie
along the diagonals and one is in the flowing layer�. At 30%
by weight small particles, the boundary of the segregated
small particles has five “bumps” corresponding to the
period-5 islands in the Poincaré section. For 50% by weight
small particles, the boundary of the segregated region dis-
plays the pattern outside of the period-5 islands of the
Poincaré section. Thus, as with the half-full pentagonal tum-
bler, the segregation patterns in the 63%-full square tumbler
appear to be governed by the dynamics of the underlying
flow displayed in the Poincaré sections.

IV. RELATING PATTERNS AND DYNAMICS

Segregation patterns clearly mimic the dynamics of the
underlying flow as revealed by the Poincaré sections. How-
ever, the connection is not expected because the computa-
tional model from which the Poincaré section is derived con-
tains no information about particle properties or segregation.
We study this phenomenon via techniques borrowed from
analysis of fluid mixing �17,19�, by comparing a 75%-full
square tumbler to a half-full square tumbler. The 75%-full
square tumbler proves to be an ideal case for demonstrating

FIG. 5. �Color online� Polydisperse segregation experiment in a
half-full pentagonal tumbler.

FIG. 6. �Color online� Comparison of segregation experiments
to Poincaré sections for 63%-full square tumbler. Top: segregation
experiments varying small particle concentration in weight percent.
Bottom: Poincaré sections with the initial locations of points chosen
so the patterns correspond to areas occupied by small particles.
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these techniques and gaining insight into the interplay of
segregation and the underlying flow dynamics.

The Poincaré section of the 75%-full square has three
period-3 elliptic points surrounded by islands �shown in Fig.
7� where, again, a period is defined as one-quarter revolution
of the tumbler. Two of the islands are visible in the lower
half of the Poincaré section. The third island is within the
flowing layer near the free surface. Rotating the tumbler one-
eighth revolution would show all three islands in the bed of
solid body rotation. Surrounding the islands are regions of
chaotic flow.

When the concentration of small particles is varied, the
results are, at first glance, puzzling in comparison to those of
the previous cases. In Fig. 7, all three experiments show
patterns with some common features. There is an unmixed
core of particles centered at the axis of rotation that do not
enter the flowing layer at any point during rotation. At the
low concentration of 10% by weight small particles, short
“fingers” of small particles stretch toward the period-3 is-
lands but do not reach them. This is similar to the low con-
centration experiments in the half-full square �Fig. 2� where
the lobes point toward the islands without reaching them. As
the concentration is increased to 30% by weight small par-
ticles, the lobes are thicker and reach out beyond the
period-3 islands in the Poincaré section. Further increasing
the concentration of small particles results in the lobes be-
coming thicker. However, for the 50% by weight small par-
ticles case, the lobes have grown thicker mostly on the clock-
wise side of the lobe as compared to the 30% case. In all
cases, the lobes seems to curve or stretch clockwise from the
core toward the period-3 islands. The lobes do not merely
mark the islands for all small particle concentrations, but
stretch toward them through the chaotic regions as the
concentration is increased.

The underlying dynamics illustrated by the Poincaré sec-
tion are a result of the time-periodic flow created here by
tumbler geometry. By studying how the segregation patterns
form in the experiment as a function of tumbler geometry
and rotation, the connection between the symmetries of the
Poincaré sections and segregation patterns can be better un-
derstood. The segregation patterns studied here tend to form
very quickly, on the order of one to three tumbler revolu-
tions. Figure 8 provides a series of images taken from frames
of video footage during the early stages of an experiment, to
follow the evolution to the steady segregation pattern in a
75%-full square tumbler with 30% by weight small particles.
�The particle sizes in this case are slightly different than
other experiments, as noted in the caption.� The initial con-
dition is achieved by centrifuging and abruptly stopping the

tumbler resulting in a homogeneous mixture �upper left im-
age in Fig. 8�. The initial condition appears black because the
small black particles are mixed with the large clear particles.
After one-half revolution �two periods�, the particles that
have passed through the layer have segregated to some
extent. In a manner similar to the half-full square in Fig. 2,
lobes of small particles stretch along paths where the flowing
layer is increasing in length. After two periods as the tumbler
in Fig. 8 rotates clockwise, the first stretch of the particles is
toward corner B and the second stretch is toward corner A.
After four periods of flow �one revolution�, three lobes are
visible. Note that the lobe that stretches toward corner A is
partially within the flowing layer. The lobes are not static,
but rotate with the elliptic points that characterize them in
such a way that they point toward successive corners in a
clockwise fashion after passing through the flowing layer.
For example, the lobe that is pointing to C after four periods
points to D after six periods as the lobe passes through the
flowing layer. A stable pattern is formed in just six periods of
flow �one and one-half revolutions�.

Figure 9 shows the dynamics of the pattern over one-
quarter revolution to illustrate the rotation of the lobes. The
three lobes are all in the bed of solid body rotation when the
tumbler is in the diamond configuration in Fig. 9�a�. As the
tumbler rotates clockwise, the left lobe at the tagged corner

FIG. 7. �Color online� Poincaré section and segregation experiments with varying concentrations of small particles in a 75%-full square
tumbler.

FIG. 8. Evolution of segregation pattern. Top left: initial condi-
tion. Top right: after 1

2 revolution clockwise �2 periods�. Bottom
left: after 1 revolution �4 periods�. Bottom right: after 1 1

2 revolu-
tions �6 periods�. 1.11±0.10 mm clear glass beads and
0.35±0.03 mm painted black glass beads. Letters label corners of
the tumbler. Images captured by a video camera.
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in the image enters the flowing layer �b�. As rotation contin-
ues, the small particles at the leading edge of the lobe drift
toward the bottom of the layer connecting with the core �c�.
The length of the flowing layer increases as it approaches a
corner on the right side �d�. Small particles behind the lead-
ing edge therefore remain in the flowing layer longer and
flow over the first small particles, stretching toward the cor-
ner �e�. The particles that formed the base of the original lobe
form the tip of the new lobe �f�. The net effect of this process
is a clockwise rotation of the particles within the lobe so that
after one period the lobe points to the corner that is ahead of
the original tagged corner.

The observations from the evolution toward the steady
pattern in Fig. 8 and of the motion of the segregation pattern
with respect to the tumbler in Fig. 9 provide insight into how
the segregation experiments mimic the underlying flow that
defines the Poincaré sections. The particles in the segregation
experiment do not simply fill in the regions occupied by the
islands in the Poincaré sections. Instead, the segregation pat-
tern is also governed by the chaotic regions of flow related to
the hyperbolic points in the Poincaré sections. Thus, the seg-
regation patterns in Figs. 2 and 7 are a result of the driving
forces of segregation and the effect of time-periodic flow in
the chaotic regions due to tumbler geometry orientation.

V. INSIGHTS FROM EIGENVALUE/EIGENVECTOR
ANALYSIS

A distinguishing characteristic between the segregation
experiments of the half-full and 75%-full square tumblers is
the direction in which the lobes curve. The images of the
half-full square tumbler in Fig. 2, particularly at lower con-
centrations, show lobes curving or stretching in a counter-
clockwise direction. Conversely, the lobes in the 75%-full
square shown in Fig. 7 curve and stretch in a clockwise
direction. To gain some insight into this aspect of the segre-
gation pattern, we turn to analysis of the eigenvalues and

eigenvectors of the hyperbolic points, a technique borrowed
from the study of chaotic fluid flows. For both the half-full
and 75%-full tumblers the hyperbolic points are located
along the lines from the center of the tumbler to the midpoint
of the sides, between the islands evident in the Poincaré sec-
tions. Figure 10 shows the direction of the eigenvectors for
the hyperbolic points superimposed over both the Poincaré
sections and experimental images for the two cases. For the
half-full square, in the orientation shown, one of the two
hyperbolic points is within the flowing layer �not shown�. In
both cases, the eigenvectors corresponding to stretching are
directed along one side of a lobe. The lobes for these two
cases stretch from the hyperbolic points in the direction
given by the stretching eigenvector and curve toward a cor-
ner of the tumbler. Physically, the stretch corresponds to the
lengthening of the flowing layer which occurs in these
systems when the free surface approaches a corner. Thus,
the opposite curvature of the lobes for the two cases in Fig.
10 arises from the stretching eigenvectors pointing in the
direction of opposite corners.

The rotation of the lobes with respect to the tumbler,
shown in Fig. 9, can be further explained in terms of stretch-
ing at hyperbolic points. Figure 11 shows the location of a
single hyperbolic point and its eigenvectors for a series of
rotational positions of the 75%-full tumbler. The outline of
the tumbler configurations at the approximate times in which
the hyperbolic point enters and exits the flowing are shown
with dotted lines. Until the hyperbolic point reaches the
flowing layer, the eigenvectors move around the center of the
tumbler in solid body rotation. When the hyperbolic point
reaches the flowing layer, the stretching eigenvector rotates

FIG. 9. �Color online� Orientation of the segregation pattern as
the tumbler rotates clockwise through 1

4 revolution for 30% by
weight small particles in a 75%-full tumbler. A dot labels one corner
of the tumbler. Images captured by a digital camera in continuous
shooting mode.

FIG. 10. �Color online� The eigenvectors for hyperbolic points
in a half-full square tumbler �top� and 75%-full square tumbler
�bottom� with the arrowheads showing the direction of stretching
and compression as determined from the eigenvalues. The experi-
mental pictures are mixtures of 20% small particles for the half-full
square and 30% small particles for the 75%-full square.
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such that its direction is nearly the same as that of the com-
pression eigenvector. This is due to the high shear within the
flowing layer. The deformation in the flowing layer is mainly
stretching in the streamwise direction. When the hyperbolic
point exits the flowing layer and re-enters the bed of solid
body rotation, the compression eigenvector rotates such that
the angle between the two eigenvectors is identical to the
angle before the hyperbolic point entered the flowing layer.
Thus, the stretching eigenvector initially pointed toward the
upper corner �as it enters the layer� stretches toward the right
corner �as it flows in and leaves the layer� rotating the eigen-
vector with respect to the tumbler. This is directly related to
the rotation of the segregation pattern shown in Fig. 9. The
eigenvectors in Fig. 11 rotate in the same manner as the
lobes in the segregation pattern in Fig. 9.

VI. FURTHER INSIGHT FROM MANIFOLD ANALYSIS

An extension of the eigenvector analysis is to consider
manifolds associated with the hyperbolic points. A stable

manifold for a hyperbolic point P is the set of points in the
tumbler that approach P as the number of mappings applied
approaches infinity. Similarly, an unstable manifold is the set
of points that approaches P as inverse mappings are applied
�equivalent to running time in reverse�. The stretching eigen-
vector is tangent to the unstable manifold at P and the com-
pression eigenvector is tangent to the stable manifold at P. A
circle of points seeded around a hyperbolic point will move
in the directions of stretching, tracing the unstable manifold.
From here, the points follow a path that leads them toward
another hyperbolic point �or back to the original� approach-
ing from the direction of the compression eigenvector. How-
ever, in chaotic systems the unstable manifold will often not
join the stable manifold but rather cross it many times during
the approach to a hyperbolic point �19�. Figure 12 shows a
manifold analysis for a 75%-full square using the method of
Swanson et al. in which a very small ring of points is placed
around a hyperbolic point and allowed to advect for a certain
number of periods �17�. The points are plotted every time the
hyperbolic point returns to its original location �for this case,
every cycle of three periods of flow, since the hyperbolic
points are period-3�. In the time evolution plots shown in
Fig. 12, the curves stretch toward hyperbolic points and then
fold over themselves. The curves eventually stretch toward
other hyperbolic points, again folding over themselves as
they approach the hyperbolic point. Three unstable manifolds
�one beginning at each hyperbolic point� are superimposed
over an experimental image with 30% small particles by
weight. The trajectories follow along the edges of the lobes.
The folding near hyperbolic points on the outside of the seg-
regated pattern corresponds with areas that contain only large
particles for this particular fraction of small particles, effec-
tively mapping the boundary between small and large par-
ticles. In some sense, the manifold analysis is an integrated
view of the effect of the chaotic regions on the flow. Whereas
the stretching eigenvectors reveal the rotational orientation
of the segregation pattern �clockwise or counterclockwise�,
the unstable manifolds reveal how the pattern changes �how
the lobes will curve� as the small particle concentration is
increased. This further demonstrates that the segregation that
occurs in the flowing layer is connected with areas in which
stretching is occurring, resulting in the final segregation
pattern.

VII. CONCLUSIONS

We have made arguments about the connection between
the underlying granular flow as evidenced by the Poincaré

FIG. 11. Eigenvectors of a period-3 hyperbolic point for varying
rotational position of the tumbler. The dotted lines show the con-
figuration of the tumbler when the hyperbolic point enters and exits
the flowing layer.

FIG. 12. �Color online� Unstable manifold
analysis for a 75%-full square tumbler. The loca-
tions of the hyperbolic points are shown with
dots. Left: plots after 4, 6, 8, and 10 three-period
cycles. Right: unstable manifolds after 10 three-
period cycles overlaid on an experimental picture
of a mixture with 30% small particles.
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sections and segregation patterns using examples of half-full
and greater than half-full polygonal tumblers. Time period-
icity arises from rotational orientation of the tumbler geom-
etry, so that the flowing layer thickness, shape, and velocity
field, Eqs. �2�–�4�, become functions of time �18�. In the
segregation experiments shown here, particles are sorted in
the flowing layer; large particles rise to the top and small
particles percolate to the bottom. Once segregated, the par-
ticles flow as if they were monodisperse. The large particles
are subject to the dynamics of the flow in the top portion of
the flowing layer which corresponds to the outermost regions
of the Poincaré section. The small particles are subject to the
dynamics in the bottom portion of the flowing layer which
corresponds to the innermost regions of the Poincaré section.
In Figs. 4 and 6 the segregation patterns resemble the islands
in the Poincaré sections. However, the patterns do not merely
mark the islands, but are also influenced by the chaotic re-
gions. In the cases of the half-full and 75%-full square, lower
particle concentrations do not even reach the islands shown
by Poincaré sections �Figs. 2 and 7�. Here the small particles
are only subject to the dynamics of the chaotic regions. Fig-
ures 9–11 show that the orientation of the lobes in the seg-
regation patterns correspond to the orientation of the eigen-
vectors of the hyperbolic points that characterize the chaotic
regions. Thus, coupling the knowledge of the symmetries of
the Poincaré sections with a knowledge of the dynamics in
the chaotic regions, reveals the general features of the segre-
gation pattern �rotational orientation and shape of the lobes�,
and how these patterns vary as a function of small particle
concentration. It is remarkable that a simple model taking
into account only gross aspects of segregation is capable of
capturing patterns in such a faithful way. The reason for this
agreement is that the dynamics is dominated by geometrical
aspects rather than details of the dynamics taking place at the
particle level.

This analysis can in fact be applied generally to many
different time-periodic granular flows. For example, in addi-
tion to studying even and odd sided polygonal tumblers of
varying fill fractions, smooth geometries such as an elliptical
tumbler can be considered. The ellipse is interesting because
unlike a polygon, the flowing layer length and depth vary

smoothly �dL /dt is a continuous function�. In a half-full el-
liptical tumbler, the flowing layer length and the streamwise
velocity are at a maximum when the free surface is along the
major axis and at a minimum when the free surface is along
the minor axis. Over one revolution of the tumbler, the maxi-
mum is reached two times. Therefore the period for this sys-
tem is one-half revolution. There is only one island in the
Poincaré section for a half-full elliptical tumbler shown in
Fig. 13�b�. With the major axis along the horizontal, this
island is stretched through the flowing layer with equal
amounts on both the left and right in the fixed bed. Rotating
the tumbler one-quarter revolution shows the island
completely in the bed of solid body rotation �Fig. 13�e��.

For a mixture of 20% by weight small particles, shown in
Fig. 13�a�, there are more small particles on the right side
than the left. This asymmetry is reminiscent of the asymme-
try observed in the half-full square in Fig. 2. Upon first
glance there appears to be two lobes in the segregation ex-
periment, however, when shown with the free surface along
the minor axis �Fig. 13�f��, there is only one lobe which
corresponds to the single island shown in the Poincaré sec-
tion �Fig. 13�e��. By considering the direction of stretching at
the hyperbolic point, it is clear that the unstable manifold
traces the location of the right half of the pattern, similar to
the observations for the 75%-full square tumbler in Fig. 12.

The analysis presented here can be further applied to
granular flows in quasi-2D tumblers that are time periodic
not through the geometry, but due to a time-periodic rotation
rate �32�. Figure 14 illustrates how the analysis applies to the
case of a circular tumbler with a time-periodic rotation rate
of the following form:

� = �ave + �amp sin�2�fet� , �7�

where �ave is the average rotation rate and where �ave±�amp
is in a range where the flow is in the continuous-flow regime.
The forcing frequency is given by fe. In the case of Fig. 14,
fe=4. This means that the rotation rate reaches a maximum
four times and a minimum four times during one revolution
of the tumbler. Thus the period of flow is one-quarter revo-
lution �analogous to the square tumbler�. The flowing layer

FIG. 13. �Color online� Elliptical tumbler. �a� Segregation experiment �21.5 cm major axis, 14.4 cm minor axis� with 20% by weight
small particles with hyperbolic point and corresponding eigenvectors labeled. �b� Poincaré section with major axis horizontal. �c� Manifold
tracing. �d� Overlay of segregation experiment with manifold tracing. �e� Poincaré section with minor axis horizontal showing a single island.
�f� Segregation experiment with minor axis horizontal showing a single lobe.
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thickness varies with the rotation rate �32–34�. When the
rotation rate increases, so does the flowing layer thickness. In
both the rotating half-full square and the time-periodically

rotated half-full circle with fe=4 there are two period-2 is-
lands in the Poincaré section and two lobes of small particles
in the segregation experiment. The segregation pattern in
Fig. 14 shows the same clockwise rotation from the Poincaré
section evident in the half-full square. There are also simi-
larities between the time-periodic circular tumbler and the
half-full square tumbler in terms of the direction of the
stretching eigenvector �compare to Fig. 10�.

The techniques presented here can be applied very
broadly to any quasi-2D tumbler geometry. Furthermore, the
interplay between segregation and the underlying flow dy-
namics may be applicable to granular flows in three-
dimensional �3D� tumblers. We can construct the flow skel-
eton made up of the arrangement and interaction of the
periodic points and periodic lines in a 3D time-periodic
granular flow. Key questions are if the analogy between the
segregation experiments and symmetries of the underlying
flow dynamics still hold in 3D tumblers and how these
analogies can be utilized and visualized in the substantially
more complex 3D systems. Extending this approach to more
complex flow systems will certainly demand further ad-
vances in the tools and techniques for analyzing chaotic
systems.
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