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Three-dimensional velocity field for wavy Taylor–Couette flow
Alp Akonura) and Richard M. Lueptow
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208

~Received 13 September 2002; accepted 3 January 2003; published 4 March 2003!

The stability of wavy supercritical cylindrical Couette flow has been studied extensively, but few
measurements of the velocity field in flow have been made. Particle image velocimetry was used to
measure the azimuthal and radial velocities in latitudinal planes perpendicular to the axis of rotation
for wavy cylindrical Couette flow in the annulus between a rotating inner cylinder and a fixed outer
cylinder. These measurements were matched to previous measurements of the axial and radial
velocity measured in several meridional planes resulting in an experimentally measured,
time-resolved, three-dimensional, three-component velocity field for wavy cylindrical Couette flow.
Using this complete velocity field it is possible to evaluate details of the flow field. The vortical
motion transports azimuthal momentum radially while the axial exchange of fluid between vortices
in wavy flow transports azimuthal momentum axially. As the Reynolds number increases, these
effects strengthen. Streams of net axial flow stretch axially along the length of the annulus and wind
around the vortices from the inner cylinder to the outer cylinder and back while also winding
azimuthally in the annulus. The azimuthal velocity measured at the center of a vortex is similar to
the azimuthal wave speed. Measurements of the azimuthal velocity in cylindrical surfaces
concentric with the axis of rotation suggest that the origin of the waviness is related to a jet-like
azimuthal velocity profile rather than the radial outflow jet. Near both cylinder walls, the shear stress
is quite large, decreasing to near zero at the middle of the annular gap. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1556615#
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I. INTRODUCTION

Since Taylor’s pioneering experiments and analysis,1 su-
percritical cylindrical Couette flow has been studied in gr
detail.2–5 Most research has been directed toward the sta
ity of the flow with only minor attention to the supercritica
velocity field that develops in the annulus. Nevertheless,
understanding of the velocity field is crucial to engineeri
applications of the flow such as Couette mixing devices
rotating filter separators.

A limited number of measurements of the velocity ha
been made at single points in vortical nonwavy cylindric
Couette flow. Gollub and Freilich and Berlandet al. mea-
sured the radial velocity (v r) at a fixed radial position and
several axial positions using laser Doppler velocime
~LDV !.6,7 Heinrichs et al. used LDV to measure the axia
velocity (vz) in Taylor vortex flow at a series of points dis
tributed in the axial direction for a fixed radial position8

Wereley and Lueptow generated contour plots of the a
muthal velocity (vu) based on extensive LDV measuremen
over a two-dimensional~r,z! grid of about 300 points pe
vortex pair.9 All of these LDV measurements were used
confirm the validity of Davey’s perturbation expansion of t
Navier–Stokes equations about the cylindrical Couette fl
solution,10 particularly that the vortices strengthen with i
creasing rotating Reynolds number, Re5riVd/n, whereV is
the angular velocity of the inner cylinder,d5r o2r i is the
gap between the outer cylinder of radiusr o and the inner

a!Currently at Baxter Healthcare Corporation, Round Lake, IL 60073.
9471070-6631/2003/15(4)/947/14/$20.00
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cylinder of radiusr i , andn is the kinematic viscosity. Wer-
eley and Lueptow measured the radial and axial velocitie
a meridional plane for nonwavy Taylor vortex flow usin
particle image velocimetry~PIV!.11 Davey’s theoretical ve-
locity field matched their experimentally measured veloc
quite well. From their measurements, Wereley and Luep
were able to calculate the azimuthal component of veloc
to provide all three components of the velocity field for th
axisymmetric flow.

Wavy vortex flow in a cylindrical Couette device is su
stantially more complex than nonwavy flow. Flow visualiz
tion of wavy vortex flow suggests a stack of closed cell v
tices that undulate with identical phase. However, the fl
field is much more complicated than this.11 The vortex cen-
ters~defined as the point within a vortex where the axial a
radial velocities vanish in a meridional plane! have radial
undulations in addition to moving axially. There is cycl
transport of significant quantities of fluid between vortice
In addition, local regions of net axial flow exist in parall
axial bands in the annulus coinciding with the wavy stru
ture. Furthermore, the flow field is unsteady and fully thre
dimensional~three components of velocity and three nonze
gradients of velocity!, compared to nonwavy Taylor vorte
flow, which is steady and has only two nonzero gradients

Wavy vortex flow is also complicated in that the flo
state is nonunique. Coles showed that a multiplicity of wa
vortex flow states differing in axial wavelength and the nu
ber of azimuthal waves around the annulus can occur fo
given Reynolds number.12 While nonlinear theory has bee
used to successfully predict the onset of waviness, the ph
© 2003 American Institute of Physics
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cal mechanism responsible for azimuthal waviness has b
the subject of surprisingly little inquiry. Marcus suggest
that a local, inviscid centrifugal instability of the radial ou
flow jet is responsible for the azimuthal waviness.13 How-
ever, Jones noted that the radial outflow jet results in str
azimuthal jets at the outflow region as it carries high a
muthal momentum outward.14 These azimuthal jets are muc
stronger than the radial jets that create them. Jones sug
that it is the azimuthal jets that destabilize the flow mak
the vortices wavy. Coughlin and Marcus concluded that
either scenario, radial jet or azimuthal jet, the important f
tures related to waviness are at the outflow jet where both
radial and azimuthal velocities as well as the axial gradi
of the azimuthal velocity are greatest.15

Few measurements of the velocity field for higher-ord
supercritical cylindrical Couette flow regimes have be
made. These measurements are substantially more diffi
because of the temporal and spatial dependence of the v
ity field. Gollub and Swinney and Brandstater and Swinn
measured the time dependence of the radial velocity (v r) at a
single location in the annulus for a large range of Reyno
numbers using LDV to demonstrate that the Landau pict
of the transition to turbulence is not accurate and to de
mine that the attractor dimension is two for wavy vort
flow.16,17 Wereley and Lueptow used LDV to measure t
two-dimensional ~r,z! spatial distribution of the time-
averaged azimuthal velocity (vu) for wavy, modulated wavy,
and turbulent vortex flow.9 They found that the magnitude o
the radial gradient of azimuthal velocity increases near b
the inner and outer cylinders and that the radial outflow
gion between adjacent vortices becomes more jet-like as
Reynolds number increases. A small number of space–
measurements of wavy vortex flow have been made. Tak
et al. used an ultrasonic Doppler method to measure
space–time~z,t! dependence of a single velocity compone
(vz) in wavy vortex flow.18 Ultrafast nuclear magnetic reso
nance imaging was used by Kose to measure the t
dimensional space~r,z! dependence of a single velocity com
ponent (v r) for wavy vortex flow, but the sampling rate wa
too slow to adequately resolve the time dependence of
flow.19 Only the PIV measurements by Wereley and Luept
provided temporal as well as two-dimensional spatial dep
dence~r,z,t! for two velocity components (v r ,vz).

11 From
these measurements, they found, among other things, tha~1!
vortex centers move radially as well as axially in the ann
lus; ~2! cyclic transfer of a significant volume of fluid be
tween vortices occurs; and~3! regions of local net axial flow
corresponding to the axial deformation of the wavy vort
tube appear. As will be explained later in this paper, th
measurements of the wavy velocity field in a meridion
plane were combined with our new PIV measurements i
latitudinal plane~perpendicular to the axis of rotation! to
provide a complete time-dependent, three-dimensional
locity field for all three velocity components.

Numerical simulations of Taylor vortex flow and wav
vortex flow have been successful in providing limited info
mation about the velocity field.13,14,20–30However, most of
these studies focused on the computational methods, w
aimed at very specific cases, modeled nonphysical co
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
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tions, or provided minimal information about the veloci
field. Marcus’ detailed results and analysis are a nota
exception.13 Unfortunately, several of these studies provi
results for nonphysical situations such as wavelengths
are quite different from those seen experimentally or sin
wave situations, which occur quite infrequently.

Except for the PIV measurements of Wereley a
Lueptow,11 the measurements of the velocity field for cylin
drical Couette flow have been quite limited in scope. Ev
these PIV measurements only provide two components of
velocity field. In this paper we present measurements of
third velocity component. Specifically, we present here tim
resolved two-dimensional (r ,u,t) measurements of both th
radial and azimuthal velocities (v r ,vu) as a function of Rey-
nolds number for wavy vortex flow with the inner cylinde
rotating and the outer cylinder fixed. These measureme
are combined with Wereley and Lueptow’s equivalent tim
resolved two-dimensional~r,z,t! measurements of the radia
and axial velocities (v r ,vz) to provide a complete time
resolved, three-dimensional, three-component velocity fi
for typical wavy vortex flows at three Reynolds numbers.

The particle image velocimetry~PIV! measurements o
the velocity field for supercritical cylindrical Couette flow
described in this paper were aimed toward several objecti
The first objective was to accurately measure the remain
component of the velocity field in wavy vortex flow at se
eral Reynolds numbers. The second objective was to ex
ine the space- and time-dependence of the complete velo
field for a typical wavy vortex flow. The third objective wa
to determine the degree to which azimuthal momentum
transferred via the vortical motion and how this affects t
velocity field as well as the shear stress distribution. T
final objective was to provide the complete velocity field f
typical wavy vortex flows for comparison to theory and com
putations. Although the emphasis here is on understand
the structure of wavy vortex above the transition from no
wavy to wavy vortex flow, we briefly consider issues relat
to the physical origin of the waviness.

II. EXPERIMENTAL METHODS

The flow cell used for the experiments was nearly ide
tical to that used by Wereley and Lueptow.11 It consisted of a
pair of concentric acrylic cylinders, the inner one rotati
and the outer one fixed. The inner cylinder had a radius
r i54.24 cm and the outer cylinder had a radius ofr o

55.21 cm resulting in a gap width ofd50.9760.002 cm
and a radius ratio ofh5r i /r o50.81. The two cylinders were
held concentric by aluminum endcaps, which also provid
the fixed-end boundary conditions at the two axial extrem
of the annulus. The lower endcap had a clear acrylic wind
to permit observation of laser-sheet-illuminated plan
which were perpendicular to the axis of rotation. The ratio
the length of the annulus to the gap width wasG547.8.

The inner cylinder, which was turned on a lathe to ass
concentricity with the rotational axis, was driven by a ste
per motor capable of microstepping at 25 000 steps per re
lution. An optical encoder with a resolution of 300 pulses p
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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949Phys. Fluids, Vol. 15, No. 4, April 2003 3D velocity field for wavy Taylor–Couette flow
revolution was used for computer control of the rotation
speed of the inner cylinder to better than 0.1% for the ra
of speeds used in these experiments.

The working fluid was a glycerol–water mixture wit
silver-coated hollow glass spheres~Potters Industries, NJ!
added as PIV seed particles in a volume concentration
about 1.031024. The particles had a density of 1.6 g/cm3

and an average diameter of 14mm. The particles remained in
uniform suspension for several hours even with no flow
cause of their small size. The temperature of the work
fluid, which was room temperature, varied by no more th
0.5 °C over the course of a 1–1.5 h experiment. The visco
of the working fluid, which was based on the average te
perature during an experiment, was between 3.0 and 3.3
measured using a falling ball viscometer with an uncertai
of less than 1%.

The uncertainty in the Reynolds number due to
variation in the inner cylinder speed, fluid viscosity, a
other factors was at most 4%. The uncertainty in the velo
measurements depends on the ability of seed particles to
low the flow and the accurate measurement of the partic
average displacement between PIV images. The seed
ticles were assumed to follow the flow quite accurately
cause the Stokes number was several orders of magn
less than 0.14, the maximum Stokes number for whic
particle can be assumed to accurately follow the flow.31 A
cross-correlation PIV algorithm with a Gaussian fit for t
correlation peak32 provided subpixel resolution to determin
particles’ average displacement between images across a
of small interrogation regions in the illuminated plane. T
temporal resolution in the delay between laser pulses o
few nanoseconds over a period of 1.2–5 ms resulted in n
ligible error.

For each Reynolds number at which velocity measu
ments were made, the annulus was filled with fluid, and
inner cylinder was run at high speed for a few minutes
thoroughly mix the fluid and the tracer particles. The inn
cylinder was stopped and the working fluid was allowed
settle to quiescence with the particles remaining in susp
sion. Then the inner cylinder speed was quasistatic
ramped to the desired speed at a relatively slow rate of
Re/s to avoid sensitivity of the system to the accelerat
condition. After the inner cylinder reached the desired spe
the flow was allowed to develop at that Reynolds number
at least 10 min to ensure that the flow was fully develop
before measurements began. Holding the inner cylin
speed constant and repeating the measurements some
later showed that this procedure generated repeatable re

The flow velocities were measured using a TSI, Inc. P
ticle Image Velocimetry system based on cross-correlatin
pair of images to avoid directional ambiguity. A du
Nd:YAG laser system was used to illuminate a horizon
plane through the vertical axis of the cylindrical Couette flo
device. The laser sheet had a thickness of 1.0 mm. A T
Inc. Cross-Correlation CCD camera with resolution of 10
by 1016 pixels was positioned to view the illuminated pla
through a clear window in the end cap of the Couette c
Each pixel in the image corresponded to 11.3mm in the flow
field. The camera was fitted with a telecentric lens to av
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
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parallax viewing along the narrow annulus that otherw
made it quite difficult to determine the exact position of t
sidewalls. Because of the limited focal length of the telec
tric lens, the illuminated measurement plane was about o
quarter of the annulus length from the window in the e
cap. Velocity vectors were calculated on a rectangular grid
15 points in the direction tangent to the circumference of
inner cylinder and 21 points perpendicular to the tang
direction. Based on comparing PIV results with the analy
solution for nonvortical flow, interrogation regions of 128 b
64 pixels with 50% overlap provided optimal results. Typ
cally, 150 image pairs were acquired at either 5 or 15 H
corresponding to the passage of 7 to 8 azimuthal waves.
time between laser pulses in each pair ranged from 0.001
0.005 s, depending on the Reynolds number to assure a
ticle displacement of 13–15 pixels between images in
fastest part of the flow field. The velocity vectors calculat
on the rectangular grid were later interpolated onto a po
grid concentric with the cylinders. PIV measurements
stable circular Couette flow ensured that the PIV system c
rectly measured the azimuthal velocity within 1% and t
radial velocity to within 4% of the inner cylinder speed.

PIV measurements were made at 16–18 latitudi
planes~perpendicular to the axis of rotation!. The measure-
ment planes were spaced by 1.78 mm (Dz;0.18d). Thus,
measurements were made over an axial extent of about 3d to
assure capturing at least two full vortices. The lowest m
surement plane was 10.8 cm from the lower endwall of
Couette cell to accommodate the focal length of the telec
tric lens and to permit a clear image of the measurem
plane through the necessary depth of seeded fluid. This
sition is about 11d from the endwall, far enough to avoid an
undesirable effects related to Ekman vortices at the endw

The critical Reynolds number at the onset of Taylor vo
tex flow for h50.81 is Rec597.1, based on interpolation o
a theoretical prediction.33 Nonwavy Taylor vortex flow in the
test cell was characterized by 24 pairs of vortices in
annulus. Wavy vortices were first easily detectable using P
at Re5126, or at a reduced Reynolds number of«
5Re / Rec2150.28, consistent with previous results that i
dicate the transition to wavy flow occurs for 0.09<e<0.31
for 0.8<h<0.9.9,12,14,34,35

III. WAVY VORTEX FLOW

A. Constructing the three-dimensional experimental
velocity field for wavy vortex flow

Wavy vortex flow is a very complex flow to measure a
analyze because it is unsteady and fully three-dimensio
~three components of velocity and three nonzero gradient
velocity!, compared with nonwavy Taylor vortex flow, whic
is steady and has no azimuthal gradient (]u50). Thus, re-
constructing the complete velocity field from PIV measu
ments in azimuthal and latitudinal planes was challeng
and somewhat complicated.

To begin, it was necessary to reconstruct an entire
muthal wave from many short segments of the wave
tained in several latitudinal (r –u) planes. The difficulty re-
sulted from the PIV image area extending only about 1
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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around the annulus, only 13% of the azimuthal wavelen
for the condition of four waves around the annulus. Multip
overlapping PIV image pairs were obtained in each latitu
nal plane. Knowing the wave speed, the image pairs could
pieced together to provide the composite velocity field for
entire wave.~An analogy would be taking many pictures of
train as it passed by a camera at a fixed location. By plac
individual pictures of short sections of the train side-by-si
a composite picture of the entire train could be created.! PIV
images were recorded long enough to include about
waves, owing to limitations in computer storage of the ima
files. Based on the wave speed, the records at equiva
phases in the wave were ensemble averaged. Then the r
velocity profile was smoothed by Fourier transforming t
data, eliminating the highest frequency components, and
inverse Fourier transforming the data back into the time
main. This created a typical radial-azimuthal (v r2vu) veloc-
ity field for that r –u plane. The process was repeated
about 18 axial locations to provide measurements in latitu
nal planes spanning more than two vortices.

Since the measurements in each latitudinal plane w
obtained independently, it was necessary to phase-align
measurements with one another. Our previous measurem
of wavy vortex flow in a meridional plane indicate that the
is no phase difference for different parts of the wa
vortex.11 In other words, the axial motion of the inflow
boundary, the outflow boundary, and the vortex center in
velocity field are in phase with each other as a wavy vor
passes through a meridional plane. This permitted the r
tive rotation of velocity measurements in a particular lati
dinal plane with respect to another latitudinal plane
matching the minima and maxima of the radial velocity fie
in the two planes. This was repeated for all latitudinal plan
so the extrema in the radial velocity in all of ther –u planes
were aligned to obtain a complete phase-matched rad
azimuthal velocity field. Approximately 12 latitudinal plane
correspond to the axial extent of a vortex pair, although
matching was based on 16 latitudinal planes to assure
the entire vortex pair was captured.

The entire three-dimensional velocity field was co
structed by combining the current measurements in latitu
nal (r –u) planes with previous measurements in meridio
(r –z) planes,11 shown schematically in Fig. 1, using the r
dial velocity, which was measured in both cases. Before
could be accomplished, it was necessary to interpolate
velocities onto comparable grids, since the numbers of v
tors calculated across the annular gap was different for
latitudinal and meridional planes. In addition, the veloc
was measured at only 8 meridional planes for each wa
while it was measured at much higher resolution in the l
tudinal plane measurements. This, however, was not with
complications. Although the apparatus was nearly the sa
for measurements in the latitudinal planes and the meridio
planes, the inner and outer cylinders were slightly differ
owing to the need to avoid reflections of the laser light fro
the cylinders in slightly different ways for the measureme
in the different planes. Consequently, the radius ratio for
latitudinal measurements wash50.81, while it was h
50.83 for the meridional plane measurements. This mi
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
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difference has a slight effect on the theoretical critical Re
nolds number@Rec597 for h50.81 vs Rec5102 for h
50.8333]. As a result, two corrections were necessary. Fi
the rotational speeds in the current measurements were
justed so that the reduced Reynolds number,«, matched that
in the meridional plane experiments. Second, all distan
were scaled based on the gap width before aligning the
locity fields.

The final interpolation grid consisted of 90 points in th
azimuthal direction for one wave at«51.48, 5.03~4 azi-
muthal waves around the annulus! and 180 points for one
wave at«50.28~2 azimuthal waves around the annulus!, 19
points between the inner and outer cylinder~plus the bound-
ary conditions on the inner and outer cylinders!, and 24
points axially extending two vortices~32 points for «
55.03). The resulting interpolated grid spacing is indica
in Table I. The exact value for the axial wavelengthl listed
in Table I was somewhat problematic to determine, since
based on measurements in a finite number of latitud
planes, thereby limiting the axial resolution. In addition,
required matching velocity fields at two slightly different r
dius ratios. The wavelength indicated in Table I is the av
age value over several waves with a confidence of61%. The
wavelengths are similar to those for previous experime
and theory.36,37

FIG. 1. Schematic of the meridional and latitudinal measurement pla
The latitudinal (r –u) planes were shifted azimuthally and axially as a gro
with respect to the meridional (r –z) planes to minimize the rms differenc
in the radial velocity, which was measured in both cases, resulting in
complete three-dimensional velocity field.

TABLE I. Wavelength and resolution of interpolated velocity field.

« l/d Dr /d Du Dz/d

0.28 2.16 0.050 1° 0.090
1.48 2.16 0.050 1° 0.090
5.03 2.18 0.050 1° 0.068
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Radial velocity (v r) and azimuthal difference velocity (vu2vu,stable) in a latitudinal plane shown at inflow~top!, vortex center~middle!, and outflow
~bottom! boundaries for«51.48. The dashed lines represent the azimuthal position of the meridional plane that is shown on the right. The dashed lin
on the meridional plane represent the axial position of the latitudinal planes. The inner cylinder rotates counterclockwise.
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After the interpolation, the data set was smoothed
removing high wavenumber components in the Fourier tra
form of the velocity profiles that were related to experime
tal noise. At this point, the radial velocities could be match
between the meridional plane measurements and the lati
nal plane measurements, shown schematically in Fig. 1. T
required rotating the latitudinal planes as a group and sh
ing them axially as a group with respect to the meridio
planes until the rms difference between the two radial velo
ties was minimized. Thus, using the azimuthal and axial
riodicity in the velocity field permitted the construction o
the complete three-dimensional velocity field for all thr
velocity components for a single azimuthal wave and exte
ing axially slightly more than one axial wavelength. Th
process was repeated for the three rotational speeds c
sponding to«50.28, 1.48, and 5.03.

An example of the velocity field is shown in Fig. 2 fo
«51.48. The radial and axial velocities are shown in t
meridional plane. The difference between the measured
muthal velocity (vu) and the theoretical azimuthal velocit
for the stable cylindrical Couette flow (vu,stable) at the same
Reynolds number is used here for the azimuthal velocity
more readily display the details of the azimuthal veloc
field. Using (vu2vu,stable)/r iV for the azimuthal velocity
amplifies the deviation of the velocity profile from that fo
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
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nonvortical flow that results from the transport of azimuth
momentum by the Taylor vortices.

At this Reynolds number the flow has four azimuth
waves, so one-quarter of the annulus depicts one wavelen
Each of the quarter-circle sections on the left-hand side
the figure shows the azimuthal velocity at six positions alo
the wave and the radial velocity at the middle of the annu
gap. The upper curve is the outer cylinder, and the low
curve is the inner cylinder, which is rotating counte
clockwise. The three quarter-circle sections are at the lat
dinal planesz5z/d50.36, 0.90, and 1.44, corresponding a
proximately to an inflow region between vortices~I!, the
center of the vortex~C!, and an outflow region between vo
tices ~O!. The axial positionz50 was arbitrarily set at the
bottom of the meridional measurement plane, which
shown on the right-hand side of Fig. 2, and is located
proximately 11d from the bottom of the annulus. The le
boundary of the meridional plane is the rotating inner cyl
der ~IC! and the right-hand side is the stationary outer cyl
der ~OC!. The meridional plane intersects the latitudin
planes near the left end of the latitudinal sections as in
cated by the dashed lines. Likewise, the positions of the l
tudinal planes are indicated by dashed lines on the me
onal plane labeled I, C, and O. The middle latitudinal pla
is near the center of the vortex where the downward a
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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flow occurs near the inner cylinder and upward axial flo
occurs near the outer cylinder. Of course, the radial velo
varies with axial position, depending on what portion of t
vortex is sliced by the latitudinal plane. In the upper latit
dinal plane in Fig. 2, which is above the vortex center,
flow is radially inward. The lower plane in Fig. 2 is belo
the vortex center where the flow is outward. In these regio
the radial velocity is nearly uniform withu, but it varies
substantially withu at the center of a vortex. The radia
velocity in the middle latitudinal plane is zero at two poin
corresponding to the curve coincident with the center of
vortex, which necessarily pierces the latitudinal plane twi

Of course, the variation in the radial velocity withu
results in a variation in the azimuthal velocity withu. The
scale for the azimuthal velocity difference vectors (vu

2vu,stable), which is displayed at the bottom of Fig. 2,
more than 5 times that for the radial velocity (v r) reflecting
the order of magnitude difference in these velocities. T
inner cylinder is moving to the left in the latitudinal plane
shown in this paper. An azimuthal velocity difference (vu

2vu,stable) to the left indicates that fluid is locally movin
faster than it would if the flow were nonvortical~a velocity
surplus!; an azimuthal velocity difference to the right ind
cates fluid moving slower than stable flow~a velocity defi-
cit!. Of course, at the walls of the annulus, the velocity d
ference is zero. Nevertheless, for some of the azimu
velocity profiles shown in Fig. 2, visual inspection sugg
that the profiles may not go to zero, particularly at the inn
wall. The problem is complicated by the inability of PIV t
measure extremely close to a wall, because the PIV inte
gation region overlaps the wall. However, careful inspect
of the velocity data revealed that the velocity gradient n
the wall is quite steep. Simply extrapolating the velocity p
file by eye does not accurately account for the steep velo
gradient at the wall.

In the inflow region in the upper latitudinal plane, th
radially inward velocity carries low azimuthal momentu
from the outer fixed cylinder inward decreasing the a
muthal velocity across the entire annulus compared to wh
would be for nonvortical flow. On the other hand, the radia
outward velocity in the lower latitudinal plane carries hig
azimuthal momentum outward from the inner rotating cyl
der resulting in substantial velocity surplus near the ou
cylinder. However, an azimuthal velocity deficit occurs
outflow regions near the inner cylinder as low moment
fluid is carried upward along the inner cylinder. Near t
center of the vortex, corresponding to the middle latitudi
plane in Fig. 2, the azimuthal velocity surplus or deficit d
pends on the rotation of the vortex and the fluid that is c
ried with it. In this case, the vortex is rotating so that the flo
is downward at the inner cylinder carrying low momentu
fluid from the inflow boundary with it across the plane ne
the center of the vortex. The result is a velocity deficit ne
the inner cylinder. The upward flow near the outer cylind
carries higher momentum fluid from the outflow bounda
with it augmenting the azimuthal velocity at the outer cyli
der. Of course, the opposite situation occurs in the adja
vortex ~not shown! because the vortex rotates with the opp
site sense.
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B. 3-D experimental velocity field for wavy vortex
flow

Now it is possible to consider the velocity field in th
latitudinal plane for several slices spanning a vortex pair,
shown in Fig. 3 for«51.48. The slices through a vortex pa
are shown starting from the top of a vortex pair in the upp
left to the bottom of the vortex pair in the lower right. Th
velocity field in the highest latitudinal plane (z52.34 in the
upper left! is near an outflow region. Moving downward i
the left column the planes pass through a vortex center
then an inflow region. Moving top to bottom in the righ
column the planes begin near an inflow region, pass thro
another vortex center, and finally to another outflow reg
(z50.36). The next slice below that in the lower right corn
is periodic with the slice shown in the upper left corner.

The radial velocity varies substantially with axial an
azimuthal position. The azimuthal velocity profile is fair
uniform with u at the inflow region (z51.44) and the out-
flow region (z50.36). Upon close examination, it is evide
that the outflow is stronger than the inflow, consistent w
previous measurements in nonwavy and wavy Taylor vor
flow.6–9,38At other axial positions, the radial velocity varie
substantially due to the waviness of the vortices. Position
zero radial velocity in some latitudinal planes correspond
the center of the vortex.

The effect of the radial velocity on the azimuthal velo
ity profile (vu2vu,stable) is dramatic as the wavy vortica
motion redistributes the azimuthal velocity to different d
grees along the length of the wave. For axial positions wh
the radial velocity is relatively uniform, such as near t
inflow boundary atz;1.5 or the outflow boundary atz
;0.5, the azimuthal velocity profile varies only slightly wit
azimuthal position. At axial positions where the radial velo
ity changes sign, such as at the vortex centers (z;0.9 and
2.0!, the azimuthal velocity profile varies substantially in
single latitudinal plane. Interestingly, the azimuthal veloc
deficit for radial inflow is substantially greater than the v
locity surplus for radial outflow. Furthermore, the veloci
deficit for inflow extends across the entire annulus, wher
the velocity surplus at an outflow region only occurs near
outer cylinder. Similar results occur for all three Reynol
numbers that were measured. It has been shown both ex
mentally and computationally that, on average, the grad
near the outer cylinder is not as steep as that near the i
cylinder and that the deviation of the velocity profile fro
nonvortical is not as severe near the outer cylinder as n
the inner cylinder.9,13 The implication is that the azimutha
velocity is augmented over less of the flow domain~only
near the outer cylinder in outflow regions! than it is dimin-
ished~in the inflow region and near the inner cylinder in th
outflow region!. The result is the asymmetry in the azimuth
flow between the inflow and outflow regions.

Figure 4 shows contours of the out-of-plane axial co
ponent of velocity. The latitudinal planes shown in the figu
correspond to those in Fig. 3. The asterisks mark where
curve coincident with the center of the wavy vortex pas
through the latitudinal plane. Near the center of a vortexz
;0.9), the axial velocity is downward near the inner cyli
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Velocity field in the latitudinal plane for several latitudinal slices spanning a vortex pair in the axial direction for«51.48. The axial positions of the
latitudinal planes have the same relationship to the wave as indicated in Fig. 2.
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der and upward near the outer cylinder. At the center of
adjacent vortex (z;2.0), the axial velocity is opposite
However, at the inflow boundaries (z;1.5) or outflow
boundaries (z;0.5), the positive and negative axial veloci
contours extend across the gap. The axial velocities in th
regions are less than those near the center of the vo
~based on the number of contours!, but not substantially less

These latitudinal planes can be imagined to be stac
one on top of the other with the shaded region correspond
to downward axial velocity greater than 0.06r iV. A continu-
ous region of downward axial velocity starts near the ou
cylinder atz52.34 and extends downward. From top to b
tom ~decreasingz! this region of negative axial velocity
moves to the right and then crosses the annulus to the i
cylinder byz51.26. It then moves left and back across t
annulus to the outer cylinder to repeat the situation in
next vortex pair. A similar result occurs for positive axi
velocity contours, although the region is not shaded in
figure. Of course, these regions of positive or negative c
tours correspond to continuous upward or downward stre
of axial flow in the annulus extending the entire length of t
annulus between vortices and across vortex pairs. They
respond to azimuthal locations where the velocity field in
meridional plane appears as shown at position I in Fig
where there is an upward axial flow from one vortex to a
other. Although Wereley and Lueptow identified these
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
e

se
ex

d
g

r
-

er

e

e
-
s

r-
a
,

-
-

gions of net axial flow,11 they were unable to detect that the
axial flow streams wind from the inner cylinder to the out
cylinder and back as indicated in Fig. 4.

The results in Fig. 4 indicate that wavy vortex flo
should be viewed quite differently from the simplistic ide
of independent, wavy, toroidal vortex tubes. Instead, fl
flows in continuous axial streams that extend axially throu
the entire stack of wavy vortices along the length of t
annulus. These streams of upward and downward axial fl
wind from side to side and from the inner to outer cylind
connecting adjacent vortices and permitting fluid to flo
substantial axial distances when compared to the axial
mension of the vortex. An upward and a downward ax
stream occur for each wave, so for the 4-wave system a«
51.48 shown in Fig. 4, there are four upward streams a
four downward streams in the annulus. Of course, this a
transport together with the azimuthal velocity leads to
enhanced chaotic mixing and transport in wavy vortex fl
that has been studied in some detail.39–46

Apart from the streams of axial flow, there seems to
no obvious relation between the radial and azimuthal vel
ity vectors in a latitudinal plane~Fig. 3! and the axial veloc-
ity contours~Fig. 4!. It is, however, useful to note the pos
tions where the three-dimensional contour of the vor
centers intersects the planes, marked with a pair of aster
~for two intersections! in four of the planes shown in Fig. 4
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Axial velocity contours in the latitudinal plane for several latitudinal slices spanning a vortex pair in the axial direction for«51.48. The velocity
increment between contour lines is 0.02r iV. Positive contours are dotted; negative contours are dashed; contours for zero and20.06r iV are solid. In the
shaded region,vz,20.06r iV. Asterisks denote the positions where the curve coincident with the center of the vortex intersects the latitudinal plan
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The intersection is, of course, always at the contour of z
axial velocity. It is interesting that the pair of intersections
not symmetric with respect to the high axial velocity regio
~shaded contours!, but is offset to one side.

Although the axial motion of wavy vortices is obviou
from flow visualization, it has recently been shown that t
vortex centers oscillate radially as well as axially.11 A projec-
tion of the instantaneous radial position of the vortex cen
on a latitudinal plane is shown in Fig. 5. At«51.48, which
corresponds to the Reynolds number for the maximum ra
displacement,11 the solid curve indicating the amplitude o
the vortex center motion is about 22% of the gap wid
Hatched curves concentric with the cylinders in Fig. 5 in
cate the minimum and maximum radial position for this ca
At other Reynolds numbers the displacement of the vor
centers is less. For«50.28~dot-dash curve!, the vortex cen-

FIG. 5. Azimuthal position of vortex centers. Dotted-dashed curve i«
50.28; solid curve is«51.48; dashed curve is«55.03; dotted curves are
the maximum and minimum limits of radial vortex motion at«51.48.
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ter moves across 10% of the gap and for«55.03 ~dashed
curve!, the vortex center moves across 12% of the gap.~In
the case of«50.28, the path of the vortex center is com
pressed fromp @2 waves around the annulus# to p/2 to show
the entire path in the same figure as the other Reynolds n
bers.!

The three components of the velocity field can be sho
simultaneously in meridional planes. Figure 6 depicts
radial and axial velocities as vectors and the out-of-pla
azimuthal velocity as contours for four phases in a wave
«51.48. The sequence can be thought of as four meridio
slices through a single wave at equally spaced azimuthal
sitions or as snapshots of the flow at four instants in time
a wave passes through a single meridional plane. As
scribed by Wereley and Lueptow,11 there is significant axial,
inter-vortex flow that changes depending on the phase in
cycle. At the first instant shown, there is a net upward fl
winding around the vortices, while at the third instant show
there is a net downward flow. At the second instant, ther
a downward axial flow between the vortices so that the low
vortex has fluid flowing into it, while at the fourth instan
the same vortex has fluid flow out of it.

The contours of the azimuthal velocity in Fig. 6 sho
the impact of the inter-vortex flow and vortical flow on th
azimuthal velocity. Near vortex centers the azimuthal vel
ity contours are oriented radially indicating a uniform az
muthal velocity across a significant portion of the annu
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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955Phys. Fluids, Vol. 15, No. 4, April 2003 3D velocity field for wavy Taylor–Couette flow
FIG. 6. Radial (v r) and axial (vz) velocity vectors in a
meridional plane overlaid with azimuthal velocity (v0)
contours shown at equally spaced azimuthal positio
for «51.48. ~a! ru50, ~b! ru5l/4, ~c! ru5l/2, and
~d! ru53l/4, wherel is the azimuthal wavelength
which corresponds to an angle ofp/2 for four azimuthal
waves. The azimuthal velocity contours are equa
spaced between 0 at the outer cylinder~OC! and 1.0r iV
at the inner cylinder~IC!.
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gap. In inflow regions, the contours are quite close to e
other near the inner cylinder resulting in locally high she
stress while the contours are spaced quite far apart nea
outer cylinder. The converse does not occur to the same
tent in outflow regions. Instead, the contours in an outfl
region remain closely spaced near the walls of both cylind
while becoming widely spaced at the center of the annu
gap. The result is an axially and azimuthally varying sh
stress at the outer cylinder while the shear stress is m
more uniform at the inner cylinder. The vortex centers
main at positions corresponding to nearly the same azimu
velocity at all phases in the wave, even though the posi
of the vortex center moves both radially and axially. T
vortex center is at a position corresponding to an azimu
velocity that is about 40% that of the inner cylinder. Th
result is quite interesting in that the wave speed of the tr
eling azimuthal wave for these experiments is about 0.4r iV
at this Reynolds number.11 The similarity in the azimutha
velocity at the center of a vortex and the wave speed s
gests that while fluid near the inner cylinder travels mu
faster and fluid near the outer cylinder travels much slow
the structure to which the wave speed corresponds tra
with the vortex center. This result has implications for t
origin of the azimuthal waviness as discussed shortly.

The effect of the Reynolds number on the velocity fie
is shown in Fig. 7. At low Reynolds numbers, the vortic
motion is much weaker than at higher Reynolds numb
The length of the velocity vectors indicates that the rad
and axial velocities at low Reynolds numbers are a sma
proportion of the surface speed of the inner cylinder than
higher Reynolds numbers. Of course, the absolute~non-
scaled! magnitude of the vortical velocity increases subst
tially with Reynolds number as well. The strength of t
vortices affects the degree of distortion of the azimuthal
locity contours. At the lowest Reynolds number, the conto
are smoothly distorted by the vortical flow. At higher Re
nolds numbers the distortion is significant. In fact, at«
55.03 the vortical flow is strong enough to wrap the a
muthal velocity contours around the vortex centers sligh
and create relative large regions across the annular
where the azimuthal velocity does not vary substantia
Note that the position of the vortex center corresponds
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decreasing azimuthal velocity contours as the Reynolds n
ber increases: about 0.45r iV at «50.28 to about 0.35r iV at
«55.03. This decrease in azimuthal velocity is similar to t
decrease in azimuthal wave speed with increasing Reyn
number,11,47 further suggesting a relation between the a
muthal velocity of the fluid near the vortex center and t
azimuthal wave speed.

The distortion of the azimuthal velocity contours is d
rectly dependent on the phase of the wave. Figure 8 sh
the azimuthal velocity contour,v0 /r iV, that corresponds to
the wave speed,vwave/r iV, throughout one wave at«
51.48. In other words, the fluid at each contour is moving
precisely the same speed as the azimuthal wave. Figure~a!
shows five contours uniformly sampled in time through t
first half of the wave; Fig. 8~b! shows the second half of th
wave. If the contours were animated, they would move
cording to the arrows as time progresses. The bold conto
which are identical in Figs. 8~a! and 8~b!, indicate the begin-
ning and end of the half-phase. The bulges in the conto

FIG. 7. Radial (v r) and axial (vz) velocity vectors in a meridional plane
overlaid with azimuthal velocity (v0) contours shown at the same approx
mate phase of the azimuthal wave.~a! «50.28, ~b! «51.48, ~c! «55.03.
The azimuthal velocity contours are equally spaced between 0 at the o
cylinder ~OC! and 1.0r iV at the inner cylinder~IC!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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result from the radial transport of azimuthal momentum
the vortices: inflow regions correspond to leftward maxim
in the contours while outflow regions correspond to rig
ward maxima in the contours. An animation of these figu
indicates that not only do the bulges oscillate up and do
with the azimuthal wave, they subtly change in axial exte
These changes are not sinusoidal. At certain points in
phase, the axial extent of the bulges changes more qui
than at other points in the phase. The asterisks in Fig
indicate the instantaneous position of the vortex cen
which moves radially as well as axially, even though t
wave speed contour remains essentially centered in the
nulus. The vortex center remains fairly close to the wa
speed contour, but is in the region of fluid that is just sligh
faster than the wave speed.

The character of these contours changes substant
with the Reynolds number as indicated in Fig. 8~c!. At the
lower two Reynolds numbers~dash-dot and solid curves!, the
leftward ~inflow! and rightward~outflow! bulges are similar
in size. The outflow is much stronger at the higher Reyno
number~dashed curve! resulting in a broadening of the ou
flow bulge and a narrowing of the inflow bulge. In this cas
the inflow bulge is only about one-third as wide as the o
flow bulge. The strength of the outflow also results in th
contour shifting radially outward. The fluid to the left of th
contour is moving faster than the wave speed, while the fl
to the right is moving more slowly. At the highest Reynol
number, a very large proportion of the fluid moves fas
than the wave speed. At the lower Reynolds numbers ab
half the fluid moves faster than the wave speed and
moves slower. The axial transport between vortices is a
evident in the contour at the highest Reynolds number.
narrow bulge to the left is tilted downward because of the
downward axial flow at this point in the phase.

In Fig. 9 the azimuthal velocity vectors are shown in
frame rotating with the speed of the traveling wave, which
equivalent to (vu2vwave)/r iV, in a cylindrical surface con-

FIG. 8. Azimuthal velocity (v0) contour corresponding to the wave speed
«51.48: ~a! up-cycle;~b! down-cycle. The limit contours at each half-cyc
are bold;~* ! vortex centers.~c! Contours corresponding to the wave speed
approximately the same phase of the wave for«50.28 ~dash-dot!, «
51.48 ~solid!, and«55.03 ~dashed!.
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centric with the axis of rotation at a position midway acro
the gap. The coordinateg5@(r i1r o)/2#u/d is the azimuthal
distance along the cylindrical surface, so that 0<g<7.42
corresponds to one-quarter of the annulus. The asterisks
respond to the projections of the positions of the vortex c
ters, while the open circles correspond to inflow or outflo
regions ~based on the radial velocity!. Curves are leas
squares fits through these positions. The traveling wav
moving to the right. Consequently, the inflow region has
velocity deficit with respect to the traveling wave speed~left-
ward vectors! and the outflow region has an augmented v
locity ~rightward vectors!. The character of the azimutha
velocity changes substantially as the Reynolds number
creases. At«50.28 and 1.48, the contour of vortex cente
corresponds fairly closely to the position of zero azimuth
velocity in the rotating frame. This means that the vort
center, which is near the middle of the annular gap, is tr
eling azimuthally at about the same velocity as the azimu
wave. However, at the highest Reynolds number,«55.03,
the azimuthal velocity is positive along the contour of vort
centers. This comes about because the azimuthal veloci
higher than the wave speed through a larger portion of
annular gap, as was evident in Fig. 8~c!. Thus, the azimutha
velocity at the center of the annular gap is greater than
wave speed. The axial component of velocity is greatest

t

t

FIG. 9. Azimuthal velocity (v0) in a frame rotating with the speed of th
traveling wave in a cylindrical surface at a radial position midway across
annular gap.~a! «50.28, ~b! «51.48, ~c! «55.03. ~* ! Vortex centers;~s!
outflow or inflow boundaries. Solid curves are least-squares fits.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. Shear stress in a meridional plane overlaid with radial (v r) and axial (vz) vectors.~a! «50.28,~b! «51.48,~c! «55.03. In each part, the left plane
is the azimuthal shear stress,t rud/mr iV, and the right plane is the axial shear stress,t rzd/mr iV. Bold solid contours are zero shear stress. Solid contours
positive and dashed contours are negative shear stress. The contour spacing is 0.5 for azimuthal shear stress (t ru) and 0.2 for axial shear stress (t rz).
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«51.48, as first noted by Wereley and Lueptow.11 It is also
clear that the axial component of velocity is typically in th
same direction as the wave amplitude. The flattening of
waviness at vortex centers and outflow boundaries comp
to inflow boundaries is evident at the highest Reynolds nu
ber, consistent with previous results.11

We can now turn to the question of the origin of th
azimuthal waviness. Two shear layers in the azimuthal
locity are most clearly evident in Figs. 9~a! and 9~b! for the
lower Reynolds numbers, although two shear layers also
pear in Fig. 9~c! for the highest Reynolds number. Furth
note that at the two lower Reynolds numbers, the inflect
in the azimuthal velocity occurs at the vortex center, wh
happens to be where the azimuthal velocity matches
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
e
ed
-

-

p-

n
h
e

wave speed. Finally, the change in the azimuthal veloc
from an inflow region to an outflow region is about 0.3r iV
~based on Fig. 9!, whereas the change in the radial veloc
across the same distance is less than half as much~based on
Figs. 6 and 7!. These results suggest that the azimuthal wa
ness is more likely related to an instability in the azimuth
velocity profile as the vortices redistribute the flow in
streams of high and low azimuthal momentum, as sugge
by Jones,14 than to the radial outflow jets.

From the velocity field it is possible to calculate th
components of the shear stress using finite differences~cen-
tral differences for the interior and forward/backward diffe
ences at the wall!. Here we consider onlyt r0 andt rz because
they are important in determining the torque for inner cyl
ear
ashed
FIG. 11. Azimuthally averaged shear stress in a meridional plane.~a! «50.28, ~b! «51.48, ~c! «55.03. In each part, the left plane is the azimuthal sh
stress,t rud/mr iV, and the right plane is the axial shear stress,t rzd/mr iV. Bold solid contours are zero shear stress. Solid contours are positive and d
contours are negative shear stress. The contour spacing is 0.5 for azimuthal shear stress (t ru) and 0.2 for axial shear stress (t rz).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



su
re
of
rd
r
th
e

p

p
ra
as
gh

-
n
y

zi-
ear
ce
ere
igh
the

ow
nd-
ear

azi-
of

ear
ed

re
long
at

ial
de-
on-
The
xial

ently,
ially
axial
be-
d or
the
ze.
tan-

are
de

a

958 Phys. Fluids, Vol. 15, No. 4, April 2003 A. Akonur and R. M. Lueptow
der rotation and are responsible for preventing particles
pended in a fluid from coming in close contact with the po
of the inner cylindrical filter surface in the application
rotating filtration, which we briefly discuss later. The thi
component of shear,tuz , which we do not discuss furthe
because it is not particularly helpful in understanding
flow, is half the magnitude oft rz and an order of magnitud
smaller thant ru .

The instantaneous dimensionless shear stress com
nentst rzd/mr iV andt rud/mr iV are shown in Fig. 10 at the
time instants shown in Fig. 7, wherem is the dynamic vis-
cosity. The gray scale is adjusted so that larger values
shear stress are darker, and values of shear stress with o
site sign are white with dashed contours. The same g
scale is used for all three Reynolds numbers to allow e
comparison. At all three Reynolds numbers, regions of hi

FIG. 12. Axially and azimuthally averaged azimuthal shear stress (t ru)
normalized by the local shear stress at transition to Taylor vortex flow
«50; ~* ! «50.28; ~s! «51.48; ~L! «55.03. Solid horizontal line repre-
sents stable flow.
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est azimuthal shear stress,t ro , correspond to regions of ra
dial inflow impinging on the inner cylinder. In this regio
slow fluid from near the outer cylinder is brought inward b
the radial flow resulting in high radial gradients of the a
muthal velocity. For the highest Reynolds number, the sh
stress at the inner cylinder for an inflow boundary is twi
that for an outflow boundary. The shear at positions wh
radial outflow impinges on the outer cylinder also have h
shear, though not as high as where inflow impinges on
inner cylinder. At the outer cylinder, the shear at an outfl
boundary is more than three times that for an inflow bou
ary at the highest Reynolds number. The azimuthal sh
stress is lowest in the middle of the annulus, where the
muthal velocity profile flattens as a result of the transport
azimuthal momentum by the vortices.9,13 The axial shear
stress,t rz , is not nearly as strong as the azimuthal sh
stress. It is highest near the walls at axial positions align
with the vortex centers.~Although the gray scale fort rz is
identical to that for t ro , the contours are spaced mo
closely.! Of course, the axial shear stress changes sign a
the cylinder walls, depending on whether the axial flow
the wall is upward or downward.

Because of the undulation of the wavy vortices, the ax
locations of highest shear stress along the cylinder walls
pend on the phase of the vortices. Thus, it is useful to c
sider the time-averaged shear stress, shown in Fig. 11.
averaged azimuthal shear stress is more uniform in the a
direction than the instantaneous shear stress. Consequ
there are no local regions that are exposed to substant
higher shear stresses than other regions. The averaged
shear stress is not as uniform along the cylinder walls,
cause some axial positions always have a net downwar
upward flow. This is a consequence of the magnitude of
undulation of the vortices being less than the vortex si
However, the magnitude of the axial shear stress is subs
tially less than that of the azimuthal shear.

Although contours of the dimensionless shear stress
instructive, they do not display the increase in the magnitu

t

re
-

FIG. 13. Vorticity in a meridional plane for«51.48.~a!
vud/r iV, ~b! v rd/r iV, ~c! vzd/r iV. The contour line
spacing is 0.1 forvu , 0.2 forv r , and 0.5 forvz . Solid
contours are positive vorticity, dashed contours a
negative vorticity. Bold solid contours are zero vortic
ity.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of the dimensional shear stress with increasing Reyno
number. In Fig. 12, the azimuthally and axially averag
azimuthal shear stress is normalized by the local azimu
shear stress at the transition from nonvortical flow («50).
At the inner cylinder the shear stress increases much fa
than the rotational speed. For example, at«55.03, the rota-
tional speed has increased by a factor of 6, but the sh
stress at the inner cylinder has increased by a factor o
due to the redistribution of the azimuthal momentum by
vortical flow. The normalized shear stress is nearly as hig
the outer cylinder. However, the shear stress in the middl
the annulus is actually lower than it is for«50 at all Rey-
nolds numbers. This result has significant impact on b
medical and biotechnological applications of vortical Co
ette devices, where the cells that are being processed
often quite susceptible to damage by high shear—e
though the shear is high at the walls of the device, the sh
in the middle of the annulus is quite small.

The shear stress and vorticity are closely related, but
still interesting to consider the vorticity, shown in Fig. 13 f
«51.48 where the shading is darkest for the most posi
vorticity and lightest for negative vorticity. Consider first th
azimuthal vorticity in Fig. 13~a!. The largest azimuthal vor
ticity coincides with the vortical motion, as would be e
pected, with little azimuthal vorticity between vortices. R
gions of high radial vorticity extend across the entire annu
with the vorticity changing sign approximately at boundar
between vortices, as shown in Fig. 13~b!. This boundary cor-
responds to the shear layer between vortices evident in
9. As expected, the axial vorticity shown in Fig. 13~c! is an
order of magnitude larger than the other components of v
ticity owing to the strong radial gradient of the azimuth
velocity at the walls. However, the radial transport of t
axial vorticity due to the vortical flow is clearly evident i
the curved contours at the inflow and outflow boundaries

IV. CONCLUSIONS

Previous studies of cylindrical Couette flow have be
incomplete in addressing the velocity field for wavy flow d
primarily to the difficulty in making such measurements. W
have made extensive PIV measurements in meridional
latitudinal planes that have enabled us to construct a ti
resolved, three-dimensional field of all three velocity comp
nents at three Reynolds numbers for wavy vortical flow.

The vortices strengthen with increasing Reynolds nu
ber, and the azimuthal velocity profile at a particular ax
location depends strongly on the fluid transport by the vo
ces. This results in an azimuthal velocity deficit at inflo
regions and a velocity surplus at outflow regions. Intere
ingly, the azimuthal velocity deficit at inflow regions
greater than the velocity surplus at outflow regions. Ho
ever, it has been shown that the gradient near the outer
inder is not as steep as that near the inner cylinder and
the deviation of the velocity profile from nonvortical is n
as severe near the outer cylinder as near the in
cylinder.9,13The consequence is that the azimuthal velocity
augmented only near the outer cylinder in outflow regio
whereas it is diminished in a much larger region includi
Downloaded 02 Jun 2003 to 129.105.69.212. Redistribution subject to A
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the inflow region and near the inner cylinder in the outflo
region. Thus, there is a significant asymmetry in the a
muthal flow between the inflow and outflow regions.

Of course, the waviness of the vortices results in s
stantial variation in the azimuthal velocity in any given la
tudinal plane, particularly near a vortex center. In additio
relatively strong axial flows carry fluid along the length
the annulus. This is a very different view of wavy vorte
flow than the simplistic ideal of independent, wavy, toroid
vortex tubes. Instead, fluid flows in continuous axial strea
that extend axially through the entire stack of wavy vortic
along the length of the annulus. These axial streams w
around the vortices from the inner cylinder to the outer c
inder and also wind azimuthally about one-half wavelen
and back. The combination of the vortical flow and the
axial streams suggests significantly enhanced mixing
chaotic advection.

The azimuthal velocity near the centers of the vortex
quite similar to the traveling azimuthal wave velocity. Th
suggests that the waviness that is apparent both visually
via spectra of the velocity field is related to the motion of t
vortex centers. This is especially interesting given that
clear explanation of the origin of the waviness has been
forth to date. Marcus13 suggested that the waviness
‘‘caused by a local, inviscid, centrifugal instability of th
outflow boundary.’’ On the other hand, Jones14 proposed that
‘‘it is the azimuthal jets which destabilize the axisymmetr
flow.’’ These azimuthal jets are generated by the strong ra
flows at the inflow and outflow boundaries. As a result, ‘‘t
onset of wavy vortices occurs close to the onset of axisy
metric vortices for narrow gaps.’’ Our results in Fig. 9 sho
relatively strong shear layers in the azimuthal velocity co
pared to the radial inflow and outflow shear layers betwe
the vortices. These results suggest that the azimuthal w
ness is more likely related to an instability in the azimuth
velocity profile as proposed by Jones.

Finally, the shear stress distribution reflects the transp
of fluid by the vortices. Near the inner and outer cylinde
the shear stress is quite large, especially at the highest R
nolds numbers. In the middle of the annulus, the shear st
is less than it would be if the flow were not vortical. Th
result is particularly important with regard to rotating filtra
tion devices used in biological separations in which blood
a biosuspension in the annulus is filtered using a porous
ner cylinder. The high shear near the inner cylinder proba
acts to prevent plugging of the pores of the inner cylind
with cells, while the cells in the middle of the annulus a
exposed only to a very low shear. The strong mixing rela
to the vortical motion and transport between vortices res
in cells only being exposed to the highest shear for a v
short time.
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