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The stability of wavy supercritical cylindrical Couette flow has been studied extensively, but few
measurements of the velocity field in flow have been made. Particle image velocimetry was used to
measure the azimuthal and radial velocities in latitudinal planes perpendicular to the axis of rotation
for wavy cylindrical Couette flow in the annulus between a rotating inner cylinder and a fixed outer
cylinder. These measurements were matched to previous measurements of the axial and radial
velocity measured in several meridional planes resulting in an experimentally measured,
time-resolved, three-dimensional, three-component velocity field for wavy cylindrical Couette flow.
Using this complete velocity field it is possible to evaluate details of the flow field. The vortical
motion transports azimuthal momentum radially while the axial exchange of fluid between vortices
in wavy flow transports azimuthal momentum axially. As the Reynolds number increases, these
effects strengthen. Streams of net axial flow stretch axially along the length of the annulus and wind
around the vortices from the inner cylinder to the outer cylinder and back while also winding
azimuthally in the annulus. The azimuthal velocity measured at the center of a vortex is similar to
the azimuthal wave speed. Measurements of the azimuthal velocity in cylindrical surfaces
concentric with the axis of rotation suggest that the origin of the waviness is related to a jet-like
azimuthal velocity profile rather than the radial outflow jet. Near both cylinder walls, the shear stress
is quite large, decreasing to near zero at the middle of the annular ga@00® American Institute

of Physics. [DOI: 10.1063/1.1556615

I. INTRODUCTION cylinder of radiusr;, andv is the kinematic viscosity. Wer-
_ _ _ _ _ eley and Lueptow measured the radial and axial velocities in
Since Taylor’s pioneering experiments and a'?a|§7§537 a meridional plane for nonwavy Taylor vortex flow using
percritical cylindrical Couette flow has been studied in greaparticle image velocimetryPIV).! Davey’s theoretical ve-
12-5 . .
detail”™ Most research has been directed toward the stabilicity field matched their experimentally measured velocity
ity of the flow with only minor attention to the supercritical quite well. From their measurements, Wereley and Lueptow
velocity field that develops in the annulus. Nevertheless, afyere aple to calculate the azimuthal component of velocity
understanding of the velocity field is crucial to engineering, provide all three components of the velocity field for this
applications of the flow such as Couette mixing devices a”%xisymmetric flow.
rotating filter separators. _ Wavy vortex flow in a cylindrical Couette device is sub-
A limited number of measurements of the velocity haveganiiajly more complex than nonwavy flow. Flow visualiza-
been made at single points in vortical nonwavy cylindricals, of wavy vortex flow suggests a stack of closed cell vor-
Couette flow. ,GOHUb gnd Fre'“Ch_ and Bgrlamzdi a,l'_ Mea-  tices that undulate with identical phase. However, the flow
sured the radial velocityu() at a fixed radial position and o4 is mych more complicated than thisThe vortex cen-
Sf[‘;f/raéjaé""‘.' _pc;]smctmsl, usw:jg LB\S/etr Doppler Vtehloc'm?tlryters(defined as the point within a vortex where the axial and
( ) einrichs et al. use 0 measure the axial - jial velocities vanish in a meridional plankave radial
velocity (v;) in Taylor vortex flow at a series of points dis- undulations in addition to moving axially. There is cyclic

tributed in the axial direction for a fixed radial positibn. .transport of significant quantities of fluid between vortices.
Wereley and Lueptow generated contour plots of the azi-

. ) In addition, local regions of net axial flow exist in parallel
muthal velocity ¢ ,) based on extensive LDV measurements__. . S .
. . : . axial bands in the annulus coinciding with the wavy struc-
over a two-dimensionalr,z) grid of about 300 points per S
. ture. Furthermore, the flow field is unsteady and fully three-
vortex pair® All of these LDV measurements were used to

confirm the validity of Davey'’s perturbation expansion of thed'rm;ni'to naf(tCr(Iae ﬁ;mp?:enrts dof[ Verlog\?,/ anth hr:eer r\;o?tziro
Navier—Stokes equations about the cylindrical Couette flo adients of velocity compared to nonwavy faylor vorte

solution!® particularly that the vortices strengthen with in- low, which is steady qnd has only t\.NO nonzero gradients.
creasing rotating Reynolds number, ReQ)d/v, where() is Wavy vortgx flow is also complicated in .th_at_ the flow
the angular velocity of the inner cylinded=r,—r, is the state is nonunique. Coles showed that a multiplicity of wavy

gap between the outer cylinder of radius and the inner vortex flow states differing in axial wavelength and the num-
ber of azimuthal waves around the annulus can occur for a

given Reynolds numbéf. While nonlinear theory has been
dCurrently at Baxter Healthcare Corporation, Round Lake, IL 60073. used to successfully predict the onset of waviness, the physi-
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cal mechanism responsible for azimuthal waviness has bedions, or provided minimal information about the velocity
the subject of surprisingly little inquiry. Marcus suggestedfield. Marcus’ detailed results and analysis are a notable
that a local, inviscid centrifugal instability of the radial out- exception:® Unfortunately, several of these studies provide
flow jet is responsible for the azimuthal wavinédsdow-  results for nonphysical situations such as wavelengths that
ever, Jones noted that the radial outflow jet results in strongre quite different from those seen experimentally or single
azimuthal jets at the outflow region as it carries high azi-wave situations, which occur quite infrequently.
muthal momentum outward. These azimuthal jets are much Except for the PIV measurements of Wereley and
stronger than the radial jets that create them. Jones suggestseptow.’ the measurements of the velocity field for cylin-
that it is the azimuthal jets that destabilize the flow makingdrical Couette flow have been quite limited in scope. Even
the vortices wavy. Coughlin and Marcus concluded that inthese PIV measurements only provide two components of the
either scenario, radial jet or azimuthal jet, the important feavelocity field. In this paper we present measurements of the
tures related to waviness are at the outflow jet where both théhird velocity component. Specifically, we present here time-
radial and azimuthal velocities as well as the axial gradientesolved two-dimensionak (6,t) measurements of both the
of the azimuthal velocity are greatést. radial and azimuthal velocities {,v,) as a function of Rey-
Few measurements of the velocity field for higher-ordermnolds number for wavy vortex flow with the inner cylinder
supercritical cylindrical Couette flow regimes have beenrotating and the outer cylinder fixed. These measurements
made. These measurements are substantially more difficuitre combined with Wereley and Lueptow’s equivalent time-
because of the temporal and spatial dependence of the velo@solved two-dimensiondl,z,t) measurements of the radial
ity field. Gollub and Swinney and Brandstater and Swinneyand axial velocities «; ,v,) to provide a complete time-
measured the time dependence of the radial veloeity 4t a  resolved, three-dimensional, three-component velocity field
single location in the annulus for a large range of Reynolddor typical wavy vortex flows at three Reynolds numbers.
numbers using LDV to demonstrate that the Landau picture  The particle image velocimetr§PlV) measurements of
of the transition to turbulence is not accurate and to deterthe velocity field for supercritical cylindrical Couette flow
mine that the attractor dimension is two for wavy vortex described in this paper were aimed toward several objectives.
flow.*®*” Wereley and Lueptow used LDV to measure theThe first objective was to accurately measure the remaining
two-dimensional (,z) spatial distribution of the time- component of the velocity field in wavy vortex flow at sev-
averaged azimuthal velocity {) for wavy, modulated wavy, eral Reynolds numbers. The second objective was to exam-
and turbulent vortex flow.They found that the magnitude of ine the space- and time-dependence of the complete velocity
the radial gradient of azimuthal velocity increases near botffield for a typical wavy vortex flow. The third objective was
the inner and outer cylinders and that the radial outflow reto determine the degree to which azimuthal momentum is
gion between adjacent vortices becomes more jet-like as thgansferred via the vortical motion and how this affects the
Reynolds number increases. A small number of space—timeelocity field as well as the shear stress distribution. The
measurements of wavy vortex flow have been made. Takedinal objective was to provide the complete velocity field for
et al. used an ultrasonic Doppler method to measure thdypical wavy vortex flows for comparison to theory and com-
space—timéz,H dependence of a single velocity componentputations. Although the emphasis here is on understanding
(v,) in wavy vortex flow!® Ultrafast nuclear magnetic reso- the structure of wavy vortex above the transition from non-
nance imaging was used by Kose to measure the twowavy to wavy vortex flow, we briefly consider issues related
dimensional spac,z) dependence of a single velocity com- to the physical origin of the waviness.
ponent ¢,) for wavy vortex flow, but the sampling rate was
too slow to adequately resolve the time dependence of the
flow.'® Only the PIV measurements by Wereley and Lueptow); ExXPERIMENTAL METHODS
provided temporal as well as two-dimensional spatial depen-
dence(r,z,) for two velocity componentsy(, ,v,).** From The flow cell used for the experiments was nearly iden-
these measurements, they found, among other thingg/lthat tical to that used by Wereley and Luept&it consisted of a
vortex centers move radially as well as axially in the annu-pair of concentric acrylic cylinders, the inner one rotating
lus; (2) cyclic transfer of a significant volume of fluid be- and the outer one fixed. The inner cylinder had a radius of
tween vortices occurs; an@) regions of local net axial flow r;=4.24 cm and the outer cylinder had a radius rgf
corresponding to the axial deformation of the wavy vortex=>5.21 cm resulting in a gap width af=0.97+0.002 cm
tube appear. As will be explained later in this paper, thesand a radius ratio ofy=r;/r,=0.81. The two cylinders were
measurements of the wavy velocity field in a meridionalheld concentric by aluminum endcaps, which also provided
plane were combined with our new PIV measurements in a@he fixed-end boundary conditions at the two axial extremes
latitudinal plane(perpendicular to the axis of rotatipio  of the annulus. The lower endcap had a clear acrylic window
provide a complete time-dependent, three-dimensional vee permit observation of laser-sheet-illuminated planes,

locity field for all three velocity components. which were perpendicular to the axis of rotation. The ratio of
Numerical simulations of Taylor vortex flow and wavy the length of the annulus to the gap width was 47.8.
vortex flow have been successful in providing limited infor- The inner cylinder, which was turned on a lathe to assure

mation about the velocity fieltf'*2°~**However, most of concentricity with the rotational axis, was driven by a step-
these studies focused on the computational methods, weper motor capable of microstepping at 25 000 steps per revo-
aimed at very specific cases, modeled nonphysical condlution. An optical encoder with a resolution of 300 pulses per
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revolution was used for computer control of the rotationalparallax viewing along the narrow annulus that otherwise
speed of the inner cylinder to better than 0.1% for the rangenade it quite difficult to determine the exact position of the
of speeds used in these experiments. sidewalls. Because of the limited focal length of the telecen-
The working fluid was a glycerol-water mixture with tric lens, the illuminated measurement plane was about one-
silver-coated hollow glass spher€Botters Industries, NJ quarter of the annulus length from the window in the end
added as PIV seed particles in a volume concentration ofap. Velocity vectors were calculated on a rectangular grid of
about 1.0<10 *. The particles had a density of 1.6 gftm 15 points in the direction tangent to the circumference of the
and an average diameter of 4in. The particles remained in inner cylinder and 21 points perpendicular to the tangent
uniform suspension for several hours even with no flow bedirection. Based on comparing PIV results with the analytic
cause of their small size. The temperature of the workingsolution for nonvortical flow, interrogation regions of 128 by
fluid, which was room temperature, varied by no more tharf4 pixels with 50% overlap provided optimal results. Typi-
0.5 °C over the course of a 1-1.5 h experiment. The viscositgally, 150 image pairs were acquired at either 5 or 15 Hz,
of the working fluid, which was based on the average temcorresponding to the passage of 7 to 8 azimuthal waves. The
perature during an experiment, was between 3.0 and 3.3 cStme between laser pulses in each pair ranged from 0.0012 to
measured using a falling ball viscometer with an uncertaintyd.005 s, depending on the Reynolds number to assure a par-
of less than 1%. ticle displacement of 13—15 pixels between images in the
The uncertainty in the Reynolds number due to thefastest part of the flow field. The velocity vectors calculated
variation in the inner cylinder speed, fluid viscosity, andon the rectangular grid were later interpolated onto a polar
other factors was at most 4%. The uncertainty in the velocitygrid concentric with the cylinders. PIV measurements of
measurements depends on the ability of seed particles to fostable circular Couette flow ensured that the PIV system cor-
low the flow and the accurate measurement of the particlegectly measured the azimuthal velocity within 1% and the
average displacement between PIV images. The seed pagdial velocity to within 4% of the inner cylinder speed.
ticles were assumed to follow the flow quite accurately be- PIV measurements were made at 16-18 latitudinal
cause the Stokes number was several orders of magnitugéanes(perpendicular to the axis of rotatipriThe measure-
less than 0.14, the maximum Stokes number for which ament planes were spaced by 1.78 miz{-0.18d). Thus,
particle can be assumed to accurately follow the flbe ~ measurements were made over an axial extent of atmbt 3
cross-correlation PIV algorithm with a Gaussian fit for theassure capturing at least two full vortices. The lowest mea-
correlation pea¥ provided subpixel resolution to determine surement plane was 10.8 cm from the lower endwall of the
particles’ average displacement between images across a gfibuette cell to accommodate the focal length of the telecen-
of small interrogation regions in the illuminated plane. Thetric lens and to permit a clear image of the measurement
temporal resolution in the delay between laser pulses of glane through the necessary depth of seeded fluid. This po-
few nanoseconds over a period of 1.2—5 ms resulted in negition is about 1d from the endwall, far enough to avoid any
ligible error. undesirable effects related to Ekman vortices at the endwalls.
For each Reynolds number at which velocity measure-  The critical Reynolds number at the onset of Taylor vor-
ments were made, the annulus was filled with fluid, and théex flow for =0.81 is Rg=97.1, based on interpolation of
inner cylinder was run at high speed for a few minutes toa theoretical predictiof Nonwavy Taylor vortex flow in the
thoroughly mix the fluid and the tracer particles. The innertest cell was characterized by 24 pairs of vortices in the
cylinder was stopped and the working fluid was allowed toannulus. Wavy vortices were first easily detectable using PIV
settle to quiescence with the particles remaining in suspergt Re=126, or at a reduced Reynolds number eof
sion. Then the inner cylinder speed was quasistatically= Re/Rg—1=0.28, consistent with previous results that in-
ramped to the desired speed at a relatively slow rate of 0.8icate the transition to wavy flow occurs for 0:98<0.31
Rels to avoid sensitivity of the system to the acceleratiorfor 0.8< 5=<0.9%1%14.3435
condition. After the inner cylinder reached the desired speed,
the flow was allowed to develop at that Reynolds number foljj. wavy VORTEX FLOW
at least 10 min to ensure that the flow was fully developed
before measurements began. Holding the inner cyIindef?‘ e
speed constant and repeating the measurements some tir\ﬁeelocIty field for wavy vortex flow
later showed that this procedure generated repeatable results. Wavy vortex flow is a very complex flow to measure and
The flow velocities were measured using a TSI, Inc. Paranalyze because it is unsteady and fully three-dimensional
ticle Image Velocimetry system based on cross-correlating &hree components of velocity and three nonzero gradients of
pair of images to avoid directional ambiguity. A dual velocity), compared with nonwavy Taylor vortex flow, which
Nd:YAG laser system was used to illuminate a horizontalis steady and has no azimuthal gradiesj=0). Thus, re-
plane through the vertical axis of the cylindrical Couette flowconstructing the complete velocity field from PIV measure-
device. The laser sheet had a thickness of 1.0 mm. A TSimnents in azimuthal and latitudinal planes was challenging
Inc. Cross-Correlation CCD camera with resolution of 1000and somewhat complicated.
by 1016 pixels was positioned to view the illuminated plane  To begin, it was necessary to reconstruct an entire azi-
through a clear window in the end cap of the Couette cellmuthal wave from many short segments of the wave ob-
Each pixel in the image corresponded to 1418 in the flow  tained in several latitudinalr & 0) planes. The difficulty re-
field. The camera was fitted with a telecentric lens to avoidsulted from the PIV image area extending only about 12°

. Constructing the three-dimensional experimental
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around the annulus, only 13% of the azimuthal wavelength
for the condition of four waves around the annulus. Multiple Lr
overlapping PIV image pairs were obtained in each latitudi-

nal plane. Knowing the wave speed, the image pairs could b
pieced together to provide the composite velocity field for an \ _Q/(
entire wave(An analogy would be taking many pictures of a \

train as it passed by a camera at a fixed location. By placinc I
individual pictures of short sections of the train side-by-side, I | |
a composite picture of the entire train could be createtl/
images were recorded long enough to include about 7.€ z
waves, owing to limitations in computer storage of the image !
files. Based on the wave speed, the records at equivaler ! B3
phases in the wave were ensemble averaged. Then the radi : : :
velocity profile was smoothed by Fourier transforming the
data, eliminating the highest frequency components, and the!
inverse Fourier transforming the data back into the time do-
main. This created a typical radial-azimutha} v ) veloc- /
ity field for that r—6 plane. The process was repeated at \ o
about 18 axial locations to provide measurements in latitudi-

nal planes spanning more than two vortices.
g. thp 9 ts i h latitudinal ol FIG. 1. Schematic of the meridional and latitudinal measurement planes.
Ince the measurements In each fatitudinal plane Wen?he latitudinal ¢ —6) planes were shifted azimuthally and axially as a group

obtained independently, it was necessary to phase-align th@h respect to the meridionat £7) planes to minimize the rms difference
measurements with one another. Our previous measuremerntghe radial velocity, which was measured in both cases, resulting in the

of wavy vortex flow in a meridional plane indicate that there complete three-dimensional velocity field.
is no phase difference for different parts of the wavy
vortex!! In other words, the axial motion of the inflow
boundary, the outflow boundary, and the vortex center in thdlifference has a slight effect on the theoretical critical Rey-
velocity field are in phase with each other as a wavy vortex10lds number[Rg=97 for »=0.81 vs Rg=102 for 7
passes through a meridional plane. This permitted the rela= 0.839. As a result, two corrections were necessary. First,
tive rotation of velocity measurements in a particular latitu-the rotational speeds in the current measurements were ad-
dinal plane with respect to another latitudinal plane byjusted so that the reduced Reynolds numbematched that
matching the minima and maxima of the radial velocity fieldin the meridional plane experiments. Second, all distances
in the two planes. This was repeated for all latitudinal planegvere scaled based on the gap width before aligning the ve-
so the extrema in the radial velocity in all of the  planes  locity fields.
were aligned to obtain a complete phase-matched radial- The final interpolation grid consisted of 90 points in the
azimuthal velocity field. Approximately 12 latitudinal planes @zimuthal direction for one wave at=1.48, 5.03(4 azi-
correspond to the axial extent of a vortex pair, although thénuthal waves around the annuiuend 180 points for one
matching was based on 16 latitudinal planes to assure th¥fave ate=0.28(2 azimuthal waves around the annyjus9
the entire vortex pair was captured. points between the inner and outer cylindeius the bound-

The entire three-dimensional velocity field was con-ary conditions on the inner and outer cylinderand 24
structed by combining the current measurements in latitudiPoints axially extending two vortice32 points for &
nal (r—6) planes with previous measurements in meridional= 9-03). The resulting interpolated grid spacing is indicated
(r—2) planest! shown schematically in Fig. 1, using the ra- in Table I. The exact value for the axial wavelengtlisted
dial velocity, which was measured in both cases. Before thi§ Table | was somewhat problematic to determine, since it is
could be accomplished, it was necessary to interpolate thRased on measurements in a finite number of latitudinal
velocities onto comparable grids, since the numbers of vedplanes, thereby limiting the axial resolution. In addition, it
tors calculated across the annular gap was different for thEequired matching velocity fields at two slightly different ra-
latitudinal and meridional planes. In addition, the velocity dius ratios. The wavelength indicated in Table | is the aver-
was measured at only 8 meridional planes for each wavedde value over several waves with a confidence %. The
while it was measured at much higher resolution in the lati-wavelengths are similar to those for previous experiments
tudinal plane measurements. This, however, was not withoi@nd theory:**’
complications. Although the apparatus was nearly the same
for measurements in the latitudinal planes and the meridional
planes, the inner and outer cylinders were slightly different®
owing to the need to avoid reflections of the laser light from NE Ar/d AB Az/d
the cylinders in slightly different ways for the measurements .
in the different planes. Consequently, the radius ratio for the (1)"212 g'ig g'ggg 1 g'ggg
latitudinal measurements wag=0.81, while it was n 503 518 0.050 10 0068
=0.83 for the meridional plane measurements. This minok

BLE I. Wavelength and resolution of interpolated velocity field.
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FIG. 2. Radial velocity ¢,) and azimuthal difference velocity f— vy «tanid in @ latitudinal plane shown at inflo@op), vortex cente(middle), and outflow
(bottom) boundaries foe =1.48. The dashed lines represent the azimuthal position of the meridional plane that is shown on the right. The dashed lines shown
on the meridional plane represent the axial position of the latitudinal planes. The inner cylinder rotates counterclockwise.

After the interpolation, the data set was smoothed bynonvortical flow that results from the transport of azimuthal
removing high wavenumber components in the Fourier transmomentum by the Taylor vortices.
form of the velocity profiles that were related to experimen- At this Reynolds number the flow has four azimuthal
tal noise. At this point, the radial velocities could be matchedwvaves, so one-quarter of the annulus depicts one wavelength.
between the meridional plane measurements and the latitudzach of the quarter-circle sections on the left-hand side of
nal plane measurements, shown schematically in Fig. 1. Thithe figure shows the azimuthal velocity at six positions along
required rotating the latitudinal planes as a group and shiftthe wave and the radial velocity at the middle of the annular
ing them axially as a group with respect to the meridionalgap. The upper curve is the outer cylinder, and the lower
planes until the rms difference between the two radial velocicurve is the inner cylinder, which is rotating counter-
ties was minimized. Thus, using the azimuthal and axial peelockwise. The three quarter-circle sections are at the latitu-
riodicity in the velocity field permitted the construction of dinal planes=2z/d=0.36, 0.90, and 1.44, corresponding ap-
the complete three-dimensional velocity field for all threeproximately to an inflow region between vorticéd, the
velocity components for a single azimuthal wave and extendeenter of the vortexC), and an outflow region between vor-
ing axially slightly more than one axial wavelength. This tices (O). The axial positiorz=0 was arbitrarily set at the
process was repeated for the three rotational speeds correettom of the meridional measurement plane, which is
sponding toe =0.28, 1.48, and 5.03. shown on the right-hand side of Fig. 2, and is located ap-

An example of the velocity field is shown in Fig. 2 for proximately 11d from the bottom of the annulus. The left
£=1.48. The radial and axial velocities are shown in theboundary of the meridional plane is the rotating inner cylin-
meridional plane. The difference between the measured azder (IC) and the right-hand side is the stationary outer cylin-
muthal velocity ¢ ,) and the theoretical azimuthal velocity der (OC). The meridional plane intersects the latitudinal
for the stable cylindrical Couette floww § a9 at the same planes near the left end of the latitudinal sections as indi-
Reynolds number is used here for the azimuthal velocity tacated by the dashed lines. Likewise, the positions of the lati-
more readily display the details of the azimuthal velocitytudinal planes are indicated by dashed lines on the meridi-
field. Using @ 4—vgstanid/ri€) for the azimuthal velocity onal plane labeled I, C, and O. The middle latitudinal plane
amplifies the deviation of the velocity profile from that for is near the center of the vortex where the downward axial
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flow occurs near the inner cylinder and upward axial flowB. 3-D experimental velocity field for wavy vortex
occurs near the outer cylinder. Of course, the radial velocitylow
varies with axial position, depending on what portion of the o it is possible to consider the velocity field in the

vortex is sliced by the latitudinal plane. In the upper latitu- a4y dinal plane for several slices spanning a vortex pair, as
dinal plane in Fig. 2, which is above the vortex center, theg g in Fig. 3 fore = 1.48. The slices through a vortex pair
flow is radially inward. The Iowe_r plane in Fig. 2 is belgw are shown starting from the top of a vortex pair in the upper
the vort_ex center Where the ﬂOW,'S outw_ard. In th_ese r€91oNSeft to the bottom of the vortex pair in the lower right. The
the radial velocity is nearly uniform wittd, but it varies o0ty field in the highest latitudinal plang € 2.34 in the
substantially with# at the center of a vortex. The radial upper lefi is near an outflow region. Moving downward in

velocity in the middle latitudinal plane is zero at two points, the left column the planes pass through a vortex center and
corresponding to the curve coincident with the center of th‘?hen an inflow region. Moving top to bottom in the right

vortex, which necessarily pierces the latitudinal plane tW'Ce'column the planes begin near an inflow region, pass through

resuig ?:Lgs\f}éri;?or\]/?;'attr']gna'zr:n;tﬂteh;??Izloéflo\(;it% VTV;]HZ' another vortex center, and finally to another outflow region
. . . y Wit (£=0.36). The next slice below that in the lower right corner
scale for the azimuthal velocity difference vectors, ( is periodic with the slice shown in the u lef
pper left corner.

~Ug.stabid Wh'Ch is displayed at _the bottgm of Flg..2, IS The radial velocity varies substantially with axial and
more than 5 times that for the radial velocity,] reflecting . - . . L .
azimuthal position. The azimuthal velocity profile is fairly

the order of magnitude difference in these velocities. The ™. . . .
inner cylinder is moving to the left in the latitudinal planes uniform .W'th 6 at the inflow region (= 1.'44). anq _the QUt'
shown in this paper. An azimuthal velocity difference, ( flow region @:0236)' Upon close exammanon, It IS e"'der.“
byemnd 10 the left indicates that fluid is locally moving that 'the outflow is stronger than the inflow, consistent with
faster than it would if the flow were nonvorticéd velocity prev:sogismeasureme_nts in honwavy and wavy Ta_ylor vortex
surplug; an azimuthal velocity difference to the right indi- flow.”™ .At other axial pOS|.t|0ns, the radlal.velouty varies
cates fluid moving slower than stable fld@ velocity defi- substantially due to the waviness of the vortices. Positions of
cit). Of course, at the walls of the annulus, the velocity dif-Zero radial velocity in some latitudinal planes correspond to

ference is zero. Nevertheless, for some of the azimuthdf'® center of the vortex. _ _
velocity profiles shown in Fig. 2, visual inspection suggest ~ 1he effect of the radial velocity on the azimuthal veloc-
that the profiles may not go to zero, particularly at the innef®y Profile (vy—vgsapd is dramatic as the wavy vortical
wall. The problem is complicated by the inability of PIV to motion redistributes the azimuthal veIout_y to dl_ff_erent de-
measure extremely close to a wall, because the PIV interrd@dr€es along the length of the wave. For axial positions where
gation region overlaps the wall. However, careful inspectiorin® radial velocity is relatively uniform, such as near the
of the velocity data revealed that the velocity gradient neat"flow boundary at{~1.5 or the outflow boundary af
the wall is quite steep. Simply extrapolating the velocity pro-~ 0.5, the azimuthal velocity profile varies only slightly with
file by eye does not accurately account for the steep Vebci@zimuthal position. At axial positions where the radial veloc-
gradient at the wall. ity changes sign, such as at the vortex centérs@.9 and

In the inflow region in the upper latitudinal plane, the 2.0), the azimuthal velocity profile varies substantially in a
radially inward velocity carries low azimuthal momentum single latitudinal plane. Interestingly, the azimuthal velocity
from the outer fixed cylinder inward decreasing the azi-deficit for radial inflow is substantially greater than the ve-
muthal velocity across the entire annulus compared to what focity surplus for radial outflow. Furthermore, the velocity
would be for nonvortical flow. On the other hand, the radially deficit for inflow extends across the entire annulus, whereas
outward velocity in the lower latitudinal plane carries high the velocity surplus at an outflow region only occurs near the
azimuthal momentum outward from the inner rotating cylin-outer cylinder. Similar results occur for all three Reynolds
der resulting in substantial velocity surplus near the outenumbers that were measured. It has been shown both experi-
cylinder. However, an azimuthal velocity deficit occurs in mentally and computationally that, on average, the gradient
outflow regions near the inner cylinder as low momentumnear the outer cylinder is not as steep as that near the inner
fluid is carried upward along the inner cylinder. Near thecylinder and that the deviation of the velocity profile from
center of the vortex, corresponding to the middle latitudinalnonvortical is not as severe near the outer cylinder as near
plane in Fig. 2, the azimuthal velocity surplus or deficit de-the inner cylindef:** The implication is that the azimuthal
pends on the rotation of the vortex and the fluid that is carvelocity is augmented over less of the flow domaimly
ried with it. In this case, the vortex is rotating so that the flownear the outer cylinder in outflow regionghan it is dimin-
is downward at the inner cylinder carrying low momentumished(in the inflow region and near the inner cylinder in the
fluid from the inflow boundary with it across the plane nearoutflow regior). The result is the asymmetry in the azimuthal
the center of the vortex. The result is a velocity deficit nearflow between the inflow and outflow regions.
the inner cylinder. The upward flow near the outer cylinder  Figure 4 shows contours of the out-of-plane axial com-
carries higher momentum fluid from the outflow boundaryponent of velocity. The latitudinal planes shown in the figure
with it augmenting the azimuthal velocity at the outer cylin- correspond to those in Fig. 3. The asterisks mark where the
der. Of course, the opposite situation occurs in the adjacemurve coincident with the center of the wavy vortex passes
vortex (not shown because the vortex rotates with the oppo-through the latitudinal plane. Near the center of a vortéx (
site sense. ~0.9), the axial velocity is downward near the inner cylin-
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FIG. 3. Velocity field in the latitudinal plane for several latitudinal slices spanning a vortex pair in the axial direction 1048. The axial positions of the
latitudinal planes have the same relationship to the wave as indicated in Fig. 2.

der and upward near the outer cylinder. At the center of theions of net axial flow; they were unable to detect that these
adjacent vortex {~2.0), the axial velocity is opposite. axial flow streams wind from the inner cylinder to the outer
However, at the inflow boundaries({1.5) or outflow cylinder and back as indicated in Fig. 4.
boundaries {~0.5), the positive and negative axial velocity The results in Fig. 4 indicate that wavy vortex flow
contours extend across the gap. The axial velocities in thesghould be viewed quite differently from the simplistic ideal
regions are less than those near the center of the vortedxf independent, wavy, toroidal vortex tubes. Instead, fluid
(based on the number of contoyrkut not substantially less. flows in continuous axial streams that extend axially through
These latitudinal planes can be imagined to be stackethe entire stack of wavy vortices along the length of the
one on top of the other with the shaded region correspondingnnulus. These streams of upward and downward axial flow
to downward axial velocity greater than OrQ8. A continu-  wind from side to side and from the inner to outer cylinder
ous region of downward axial velocity starts near the outeconnecting adjacent vortices and permitting fluid to flow
cylinder at{=2.34 and extends downward. From top to bot- substantial axial distances when compared to the axial di-
tom (decreasing?) this region of negative axial velocity mension of the vortex. An upward and a downward axial
moves to the right and then crosses the annulus to the innstream occur for each wave, so for the 4-wave system at
cylinder by /=1.26. It then moves left and back across the=1.48 shown in Fig. 4, there are four upward streams and
annulus to the outer cylinder to repeat the situation in thdour downward streams in the annulus. Of course, this axial
next vortex pair. A similar result occurs for positive axial transport together with the azimuthal velocity leads to the
velocity contours, although the region is not shaded in theenhanced chaotic mixing and transport in wavy vortex flow
figure. Of course, these regions of positive or negative conthat has been studied in some det&it*®
tours correspond to continuous upward or downward streams  Apart from the streams of axial flow, there seems to be
of axial flow in the annulus extending the entire length of theno obvious relation between the radial and azimuthal veloc-
annulus between vortices and across vortex pairs. They coity vectors in a latitudinal plané=ig. 3) and the axial veloc-
respond to azimuthal locations where the velocity field in aity contours(Fig. 4). It is, however, useful to note the posi-
meridional plane appears as shown at position | in Fig. 2tions where the three-dimensional contour of the vortex
where there is an upward axial flow from one vortex to an-centers intersects the planes, marked with a pair of asterisks
other. Although Wereley and Lueptow identified these re-(for two intersectionsin four of the planes shown in Fig. 4.
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FIG. 4. Axial velocity contours in the latitudinal plane for several latitudinal slices spanning a vortex pair in the axial direcienlf@8. The velocity
increment between contour lines is 0r(J2. Positive contours are dotted; negative contours are dashed; contours for zerd &, () are solid. In the
shaded regiony ,<—0.06 (). Asterisks denote the positions where the curve coincident with the center of the vortex intersects the latitudinal planes.

The intersection is, of course, always at the contour of zerder moves across 10% of the gap and #er 5.03 (dashed
axial velocity. It is interesting that the pair of intersections iscurve), the vortex center moves across 12% of the dap.
not symmetric with respect to the high axial velocity regionsthe case ofs =0.28, the path of the vortex center is com-
(shaded contouysbut is offset to one side. pressed fromr [2 waves around the annulu® 7/2 to show

Although the axial motion of wavy vortices is obvious the entire path in the same figure as the other Reynolds num-
from flow visualization, it has recently been shown that thepers)
vortex centers oscillate radially as well as axiafiy projec- The three components of the velocity field can be shown
tion of the instantaneous radial position of the vortex centesimultaneously in meridional planes. Figure 6 depicts the
on a latitudinal plane is shown in Fig. 5. At=1.48, which  radial and axial velocities as vectors and the out-of-plane
corresponds to the Reynolds number for the maximum radiadzimuthal velocity as contours for four phases in a wave at
displacement; the solid curve indicating the amplitude of ¢=1.48. The sequence can be thought of as four meridional
the vortex center motion is about 22% of the gap width.sjices through a single wave at equally spaced azimuthal po-
Hatched curves concentric with the cylinders in Fig. 5 indi-sjtions or as snapshots of the flow at four instants in time as
cate the minimum and maximum radial position for this caseq wave passes through a single meridional plane. As de-
At other Reynolds numbers the displacement of the vortexcriped by Wereley and LueptdWthere is significant axial,
centers is less. Far=0.28(dot-dash curvg the vortex cen-  nter-yortex flow that changes depending on the phase in the
cycle. At the first instant shown, there is a net upward flow
winding around the vortices, while at the third instant shown,
there is a net downward flow. At the second instant, there is
a downward axial flow between the vortices so that the lower
vortex has fluid flowing into it, while at the fourth instant,
the same vortex has fluid flow out of it.

The contours of the azimuthal velocity in Fig. 6 show
the impact of the inter-vortex flow and vortical flow on the
FIG. 5. Azimuthal position of vortex centers. Dotted-dashed curve is _aZImUthaI velocity. _Near vorte_x Cepters the aZImu_thaI velo_c-
—0.28; solid curve is:=1.48; dashed curve is=5.03; dotted curves are Ity contours are oriented radially indicating a uniform azi-
the maximum and minimum limits of radial vortex motionsat 1.48. muthal velocity across a significant portion of the annular
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FIG. 6. Radial ¢,) and axial ¢,) velocity vectors in a
meridional plane overlaid with azimuthal velocity ()
contours shown at equally spaced azimuthal positions
for e=1.48.(a) r0=0, (b) r6=\/4, (c) r6=\/2, and

(d) r6=3\/4, where\ is the azimuthal wavelength,
which corresponds to an angle nf2 for four azimuthal
waves. The azimuthal velocity contours are equally
spaced between 0 at the outer cylind@C) and 1.0;Q

at the inner cylinde(IC).

gap. In inflow regions, the contours are quite close to eacllecreasing azimuthal velocity contours as the Reynolds num-
other near the inner cylinder resulting in locally high shearber increases: about 048 at£=0.28 to about 0.35() at
stress while the contours are spaced quite far apart near tle=5.03. This decrease in azimuthal velocity is similar to the
outer cylinder. The converse does not occur to the same extecrease in azimuthal wave speed with increasing Reynolds
tent in outflow regions. Instead, the contours in an outflownnumber**’ further suggesting a relation between the azi-
region remain closely spaced near the walls of both cylindersuthal velocity of the fluid near the vortex center and the
while becoming widely spaced at the center of the annulaazimuthal wave speed.

gap. The result is an axially and azimuthally varying shear  The distortion of the azimuthal velocity contours is di-
stress at the outer cylinder while the shear stress is muctectly dependent on the phase of the wave. Figure 8 shows
more uniform at the inner cylinder. The vortex centers re-the azimuthal velocity contoun/r;), that corresponds to
main at positions corresponding to nearly the same azimuthahe wave speedp,../r;{2, throughout one wave at
velocity at all phases in the wave, even though the position=1.48. In other words, the fluid at each contour is moving at
of the vortex center moves both radially and axially. Theprecisely the same speed as the azimuthal wave. Figaje 8
vortex center is at a position corresponding to an azimuthathows five contours uniformly sampled in time through the
velocity that is about 40% that of the inner cylinder. This first half of the wave; Fig. &) shows the second half of the
result is quite interesting in that the wave speed of the travwave. If the contours were animated, they would move ac-
eling azimuthal wave for these experiments is about;004 cording to the arrows as time progresses. The bold contours,
at this Reynolds numbét. The similarity in the azimuthal which are identical in Figs.(®) and 8b), indicate the begin-
velocity at the center of a vortex and the wave speed sugring and end of the half-phase. The bulges in the contours
gests that while fluid near the inner cylinder travels much
faster and fluid near the outer cylinder travels much slower,
the structure to which the wave speed corresponds travels
with the vortex center. This result has implications for the
origin of the azimuthal waviness as discussed shortly.

The effect of the Reynolds number on the velocity field
is shown in Fig. 7. At low Reynolds numbers, the vortical
motion is much weaker than at higher Reynolds numbers.
The length of the velocity vectors indicates that the radial
and axial velocities at low Reynolds numbers are a smaller
proportion of the surface speed of the inner cylinder than at
higher Reynolds numbers. Of course, the absoluten-
scaled magnitude of the vortical velocity increases substan-
tially with Reynolds number as well. The strength of the
vortices affects the degree of distortion of the azimuthal ve-
locity contours. At the lowest Reynolds number, the contours
are smoothly distorted by the vortical flow. At higher Rey-
nolds numbers the distortion is significant. In fact, st
=5.03 the vortical flow is strong enough to wrap the azi-
muthal velocity contours around the vortex centers slightly'G. 7. Radial ¢,) and axial {,) velocity vectors in a meridional plane
and create relative large regions across the annular gg ;ga;i;vslgh(?lehm; ZZL:,%?;.tzvléiza;;c;nio;rzssf?gvinzalt.zhsef(scz;m;e:?&:?xr
where the azimuthal velocity does not vary substantially-the azimuthal velocity contours are equally spaced between 0 at the outer
Note that the position of the vortex center corresponds taylinder (OC) and 1.0,Q at the inner cylindefIC).
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FIG. 8. Azimuthal velocity {,) contour corresponding to the wave speed at () ——
£=1.48: (a) up-cycle;(b) down-cycle. The limit contours at each half-cycle N
are bold;(*) vortex centers(c) Contours corresponding to the wave speed at
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result from the radial transport of azimuthal momentum by
the vortices: inflow regions correspond to leftward maxima
in the contours while outflow regions correspond to right-
ward maxima in the contours. An animation of these figures
indicates that not only do the bulges oscillate up and down
with the azimuthal wave, they subtly change in axial exXtente g, 9. Azimuthal velocity o) in a frame rotating with the speed of the
These changes are not sinusoidal. At certain points in theaveling wave in a cylindrical surface at a radial position midway across the
phase, the axial extent of the bulges changes more quickignnular gap(a) £=0.28, (b) £=1.48,(c) £="5.03.(*) Vortex centers(O)
than at other points in the phase. The asterisks in Fig. gutflow or inflow boundaries. Solid curves are least-squares fits.
indicate the instantaneous position of the vortex center,

which moves radially as well as axially, even though the

wave speed contour remains essentially centered in the an-

nulus. The vortex center remains fairly close to the wavecentric with the axis of rotation at a position midway across
speed contour, but is in the region of fluid that is just slightlythe gap. The coordinate=[(r;+r.)/2]6/d is the azimuthal
faster than the wave speed. distance along the cylindrical surface, so that ©§<7.42
The character of these contours changes substantiallyorresponds to one-quarter of the annulus. The asterisks cor-
with the Reynolds number as indicated in Figc)8 At the  respond to the projections of the positions of the vortex cen-
lower two Reynolds numbefglash-dot and solid curvgeshe  ters, while the open circles correspond to inflow or outflow
leftward (inflow) and rightward(outflow) bulges are similar regions (based on the radial velocjty Curves are least
in size. The outflow is much stronger at the higher Reynoldsquares fits through these positions. The traveling wave is
number(dashed curveresulting in a broadening of the out- moving to the right. Consequently, the inflow region has a
flow bulge and a narrowing of the inflow bulge. In this case,velocity deficit with respect to the traveling wave spéled-
the inflow bulge is only about one-third as wide as the out-ward vectorg and the outflow region has an augmented ve-
flow bulge. The strength of the outflow also results in thislocity (rightward vectors The character of the azimuthal
contour shifting radially outward. The fluid to the left of the velocity changes substantially as the Reynolds number in-
contour is moving faster than the wave speed, while the fluidtreases. At =0.28 and 1.48, the contour of vortex centers
to the right is moving more slowly. At the highest Reynolds corresponds fairly closely to the position of zero azimuthal
number, a very large proportion of the fluid moves fastervelocity in the rotating frame. This means that the vortex
than the wave speed. At the lower Reynolds numbers aboutenter, which is near the middle of the annular gap, is trav-
half the fluid moves faster than the wave speed and haléling azimuthally at about the same velocity as the azimuthal
moves slower. The axial transport between vortices is alswave. However, at the highest Reynolds numler,5.03,
evident in the contour at the highest Reynolds number. Théhe azimuthal velocity is positive along the contour of vortex
narrow bulge to the left is tilted downward because of the netenters. This comes about because the azimuthal velocity is
downward axial flow at this point in the phase. higher than the wave speed through a larger portion of the
In Fig. 9 the azimuthal velocity vectors are shown in aannular gap, as was evident in FigcB Thus, the azimuthal
frame rotating with the speed of the traveling wave, which isvelocity at the center of the annular gap is greater than the
equivalent to ¢ y—vwavd/ri{2, in a cylindrical surface con- wave speed. The axial component of velocity is greatest for
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FIG. 10. Shear stress in a meridional plane overlaid with radigl &nd axial ¢,) vectors.(a) e=0.28,(b) ¢=1.48,(c) ¢ =5.03. In each part, the left plane
is the azimuthal shear stress,d/w«r;Q), and the right plane is the axial shear stresgl/.r;Q). Bold solid contours are zero shear stress. Solid contours are
positive and dashed contours are negative shear stress. The contour spacing is 0.5 for azimuthal sheay)sared9(2 for axial shear stress,f).

¢=1.48, as first noted by Wereley and Luepttit is also  wave speed. Finally, the change in the azimuthal velocity
clear that the axial component of velocity is typically in the from an inflow region to an outflow region is about ©;8)
same direction as the wave amplitude. The flattening of thébased on Fig. 9 whereas the change in the radial velocity
waviness at vortex centers and outflow boundaries compareztross the same distance is less than half as rthaged on
to inflow boundaries is evident at the highest Reynolds numFigs. 6 and Y. These results suggest that the azimuthal wavi-
ber, consistent with previous resulfs. ness is more likely related to an instability in the azimuthal
We can now turn to the question of the origin of the velocity profile as the vortices redistribute the flow into
azimuthal waviness. Two shear layers in the azimuthal vestreams of high and low azimuthal momentum, as suggested
locity are most clearly evident in Figs(#® and 9b) for the by Jones? than to the radial outflow jets.
lower Reynolds numbers, although two shear layers also ap- From the velocity field it is possible to calculate the
pear in Fig. 9c) for the highest Reynolds number. Further components of the shear stress using finite differeoes-
note that at the two lower Reynolds numbers, the inflectiortral differences for the interior and forward/backward differ-
in the azimuthal velocity occurs at the vortex center, whichences at the wall Here we consider only,, andr,, because
happens to be where the azimuthal velocity matches ththey are important in determining the torque for inner cylin-

@) (b) ©)

FIG. 11. Azimuthally averaged shear stress in a meridional plahe.=0.28, (b) ¢ =1.48,(c) £=5.03. In each part, the left plane is the azimuthal shear
stress,r, ,d/ ur;Q, and the right plane is the axial shear stresgl/ur;{). Bold solid contours are zero shear stress. Solid contours are positive and dashed
contours are negative shear stress. The contour spacing is 0.5 for azimuthal sheatrsjres®l(0.2 for axial shear stress,{).
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est azimuthal shear stress,, correspond to regions of ra-
dial inflow impinging on the inner cylinder. In this region
slow fluid from near the outer cylinder is brought inward by
the radial flow resulting in high radial gradients of the azi-
muthal velocity. For the highest Reynolds number, the shear
stress at the inner cylinder for an inflow boundary is twice
that for an outflow boundary. The shear at positions where
radial outflow impinges on the outer cylinder also have high
shear, though not as high as where inflow impinges on the
inner cylinder. At the outer cylinder, the shear at an outflow
boundary is more than three times that for an inflow bound-
ary at the highest Reynolds number. The azimuthal shear
stress is lowest in the middle of the annulus, where the azi-
muthal velocity profile flattens as a result of the transport of
azimuthal momentum by the vortices® The axial shear
g stress,7,,, IS not nearly as strong as the azimuthal shear
stress. It is highest near the walls at axial positions aligned
FIG. 12. Axially and azimuthally averaged azimuthal shear stresg) ( with the vortex centers(Although the gray scale for,, is
normalized by the local shear stress at transitic_)n to Taylor v_ortex flow aldentical to that for Tro the contours are spaced more
e=0; (*) £=0.28; (O) £=1.48; (<) £=5.03. Solid horizontal line repre- . .
sents stable flow. closely) Of course, the axial shear stress changes sign along
the cylinder walls, depending on whether the axial flow at
the wall is upward or downward.
der rotation and are responsible for preventing particles sus- Because of the undulation of the wavy vortices, the axial
pended in a fluid from coming in close contact with the poredocations of highest shear stress along the cylinder walls de-
of the inner cylindrical filter surface in the application of pend on the phase of the vortices. Thus, it is useful to con-
rotating filtration, which we briefly discuss later. The third sider the time-averaged shear stress, shown in Fig. 11. The
component of shear,,, which we do not discuss further averaged azimuthal shear stress is more uniform in the axial
because it is not particularly helpful in understanding thedirection than the instantaneous shear stress. Consequently,
flow, is half the magnitude of,, and an order of magnitude there are no local regions that are exposed to substantially
smaller thanr,,. higher shear stresses than other regions. The averaged axial
The instantaneous dimensionless shear stress compshear stress is not as uniform along the cylinder walls, be-
nentst,,d/ ur;Q andr, ,d/ ur;Q) are shown in Fig. 10 at the cause some axial positions always have a net downward or
time instants shown in Fig. 7, whepe is the dynamic vis- upward flow. This is a consequence of the magnitude of the
cosity. The gray scale is adjusted so that larger values afindulation of the vortices being less than the vortex size.
shear stress are darker, and values of shear stress with opgdewever, the magnitude of the axial shear stress is substan-
site sign are white with dashed contours. The same graially less than that of the azimuthal shear.
scale is used for all three Reynolds numbers to allow easy Although contours of the dimensionless shear stress are
comparison. At all three Reynolds numbers, regions of highinstructive, they do not display the increase in the magnitude
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of the dimensional shear stress with increasing Reynoldthe inflow region and near the inner cylinder in the outflow
number. In Fig. 12, the azimuthally and axially averagedregion. Thus, there is a significant asymmetry in the azi-
azimuthal shear stress is normalized by the local azimuthahuthal flow between the inflow and outflow regions.
shear stress at the transition from nonvortical flaw=Q). Of course, the waviness of the vortices results in sub-
At the inner cylinder the shear stress increases much faststantial variation in the azimuthal velocity in any given lati-
than the rotational speed. For exampleg &5.03, the rota- tudinal plane, particularly near a vortex center. In addition,
tional speed has increased by a factor of 6, but the sheaelatively strong axial flows carry fluid along the length of
stress at the inner cylinder has increased by a factor of 1fhe annulus. This is a very different view of wavy vortex
due to the redistribution of the azimuthal momentum by theflow than the simplistic ideal of independent, wavy, toroidal
vortical flow. The normalized shear stress is nearly as high atortex tubes. Instead, fluid flows in continuous axial streams
the outer cylinder. However, the shear stress in the middle ahat extend axially through the entire stack of wavy vortices
the annulus is actually lower than it is fer=0 at all Rey- along the length of the annulus. These axial streams wind
nolds numbers. This result has significant impact on bio-around the vortices from the inner cylinder to the outer cyl-
medical and biotechnological applications of vortical Cou-inder and also wind azimuthally about one-half wavelength
ette devices, where the cells that are being processed aamd back. The combination of the vortical flow and these
often quite susceptible to damage by high shear—eveaxial streams suggests significantly enhanced mixing via
though the shear is high at the walls of the device, the sheathaotic advection.
in the middle of the annulus is quite small. The azimuthal velocity near the centers of the vortex is
The shear stress and vorticity are closely related, but it igjuite similar to the traveling azimuthal wave velocity. This
still interesting to consider the vorticity, shown in Fig. 13 for suggests that the waviness that is apparent both visually and
e=1.48 where the shading is darkest for the most positivevia spectra of the velocity field is related to the motion of the
vorticity and lightest for negative vorticity. Consider first the vortex centers. This is especially interesting given that no
azimuthal vorticity in Fig. 188). The largest azimuthal vor- clear explanation of the origin of the waviness has been put
ticity coincides with the vortical motion, as would be ex- forth to date. Marcus suggested that the waviness is
pected, with little azimuthal vorticity between vortices. Re-“caused by a local, inviscid, centrifugal instability of the
gions of high radial vorticity extend across the entire annulusutflow boundary.” On the other hand, Jolfégroposed that
with the vorticity changing sign approximately at boundaries‘it is the azimuthal jets which destabilize the axisymmetric
between vortices, as shown in Fig.(hB This boundary cor- flow.” These azimuthal jets are generated by the strong radial
responds to the shear layer between vortices evident in Fidglows at the inflow and outflow boundaries. As a result, “the
9. As expected, the axial vorticity shown in Fig.(&Bis an  onset of wavy vortices occurs close to the onset of axisym-
order of magnitude larger than the other components of vormetric vortices for narrow gaps.” Our results in Fig. 9 show
ticity owing to the strong radial gradient of the azimuthal relatively strong shear layers in the azimuthal velocity com-
velocity at the walls. However, the radial transport of thepared to the radial inflow and outflow shear layers between
axial vorticity due to the vortical flow is clearly evident in the vortices. These results suggest that the azimuthal wavi-
the curved contours at the inflow and outflow boundaries. ness is more likely related to an instability in the azimuthal
velocity profile as proposed by Jones.
Finally, the shear stress distribution reflects the transport
of fluid by the vortices. Near the inner and outer cylinders,
Previous studies of cylindrical Couette flow have beernthe shear stress is quite large, especially at the highest Rey-
incomplete in addressing the velocity field for wavy flow due nolds numbers. In the middle of the annulus, the shear stress
primarily to the difficulty in making such measurements. Weis less than it would be if the flow were not vortical. This
have made extensive PIV measurements in meridional ankgsult is particularly important with regard to rotating filtra-
latitudinal planes that have enabled us to construct a timetion devices used in biological separations in which blood or
resolved, three-dimensional field of all three velocity compo-a biosuspension in the annulus is filtered using a porous in-
nents at three Reynolds numbers for wavy vortical flow.  ner cylinder. The high shear near the inner cylinder probably
The vortices strengthen with increasing Reynolds num-acts to prevent plugging of the pores of the inner cylinder
ber, and the azimuthal velocity profile at a particular axialwith cells, while the cells in the middle of the annulus are
location depends strongly on the fluid transport by the vorti-exposed only to a very low shear. The strong mixing related
ces. This results in an azimuthal velocity deficit at inflow to the vortical motion and transport between vortices results
regions and a velocity surplus at outflow regions. Interestin cells only being exposed to the highest shear for a very
ingly, the azimuthal velocity deficit at inflow regions is short time.
greater than the velocity surplus at outflow regions. How-
ever, it has been shown that the gradient near the outer cyl-
inder is.nqt as steep as that near the inner cyIinQer gnd thalckNOWLEDGMENTS
the deviation of the velocity profile from nonvortical is not
as severe near the outer cylinder as near the inner This work was supported by the National Science Foun-
cylinder®3The consequence is that the azimuthal velocity isdation. We thank Dr. Steven T. Wereley of Purdue University
augmented only near the outer cylinder in outflow regionsfor several useful discussions during the course of this re-
whereas it is diminished in a much larger region includingsearch.

IV. CONCLUSIONS
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