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La Jetée-Technopôle de Château-Gombert, 38 rue Frédéric Joliot-Curie,
13451 Marseille Cedex 20, France
2Department of Mechanical Engineering, Northwestern University, Evanston,
Illinois 60208, USA

(Received 11 March 2014; accepted 29 August 2014; published online 18 September 2014)

Building on the weakly nonlinear amplitude equation of the saturated Taylor vor-
tices developing in a Taylor–Couette cell with a rotating inner cylinder and a fixed
outer one, the physical mechanism underlying the destabilization of these vortices
resulting in azimuthal waviness is addressed using Floquet analysis. For narrow
gap configurations, analysis and direct numerical simulations together with existing
experimental results support the idea that the waviness is generated by the axial
shear in the azimuthal velocity due to the alternate advection by the Taylor vor-
tices of azimuthal momentum between the cylinders. For wide gap configurations,
this mechanism is no longer able to drive the azimuthal waviness and a different
mechanism tends to select a subharmonic instability. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4895400]

I. INTRODUCTION

The transition from purely azimuthal (Couette) flow to counter-rotating toroidal (Taylor) vor-
tices in the annulus between differentially rotating concentric cylinders represents one of the first
successful applications of linear stability theory.1 Focusing hereinafter on cases where the inner
cylinder is rotating within a fixed outer cylinder, the instability, driven by the imbalance between the
radial pressure gradient and the centripetal acceleration, is damped by viscosity at low angular ve-
locities, but at higher angular velocities, the flow becomes unstable, resulting in Taylor vortices. The
threshold is expressed in terms of a critical value of the rotating Reynolds number Re = �rind/ν,
where � is the angular velocity of the inner cylinder, rin its radius, d = rout − rin the gap between the
inner and outer cylinders, the radius of the latter being rout, and ν the kinematic viscosity of the fluid.
The pitchfork nature of the bifurcation and the exact analytical expression for the purely azimuthal
base flow contribute to the excellent agreement of the experimental and numerical results with
theoretical predictions (obtained by the numerical or analytical resolutions of the stability problem
expressed as a one-dimensional differential eigen-problem, the eigen-values of which are the growth
rates and the eigen-vectors of which are the radial shape functions) for the critical Reynolds number
Recrit

p above which this primary instability occurs at an associated critical axial wavenumber kcrit
p ,

which depend on the radius ratio η = rin/rout.2 This agreement between experiments, numerics, and
theory is further improved by taking into account the finite-length L of the system.3

While the mechanism driving the Taylor vortices has long been identified, the nature and
dynamics of the next transition, in which the Taylor vortices acquire a waviness along the azimuthal
direction, are less clear. Experimentally, the ratio of the secondary critical Reynolds number, above
which waviness appears, to that for primary instability, εcrit

s = Recrit
s /Recrit

p , is between 1.12 and 1.31
for radius ratios 0.80 ≤ η ≤ 0.90, depending on experimental conditions such as L, the length of the
apparatus,4–10 and related variations of the axial wavelength of the Taylor vortices.11 In numerical
simulations, to cite but a few, εcrit

s as been reported to range from 1.26 to 1.74 for η = 0.87 and
L = 20d and 10d, respectively,8 and εcrit

s = 1.32 for η = 0.85 and L = 20d.12 The number ns of

1070-6631/2014/26(9)/094102/15/$30.00 C©2014 AIP Publishing LLC26, 094102-1
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azimuthal waves in experiments is typically 2–7,4 depending on the conditions by which the second
transition is approached. Their azimuthal phase speed is, at mid-gap, 25%–50% of the inner cylinder
surface speed for 0.80 ≤ η ≤ 0.90, essentially independent of the observed ns.4, 10, 13–17 This phase
speed is almost equal to the azimuthal velocity at the center of a vortex.18 Small values of the radius
ratio η are more seldom addressed but experiments and theory suggest that there is a sharp increase of
εcrit

s above ∼5 as η is decreased below 0.75.11, 13, 19–22 Moreover, for specific acceleration procedures
of the inner cylinder and η ∼ 0.7 − 0.75, a disappearance of the azimuthal waviness and return to
the axisymmetric Taylor Vortices has been observed as the Reynolds number is further increased
above its critical value Recrit

s .22, 23

One explanation for the transition to waviness relates to variations in the azimuthal flow resulting
from radial transport of azimuthal momentum by Taylor vortices as noted by Davey et al.24 and
Jones.20 Akonur and Lueptow18 demonstrated experimentally that shear layers azimuthal velocity
come about because Taylor vortices carry high azimuthal velocity fluid outward from the vicinity
of the inner cylinder and low azimuthal velocity fluid inward from the vicinity of the outer cylinder.
Taylor vortices hence build up azimuthal streaks of axially alternating high and low azimuthal
velocity. The instability of the inflection points in the azimuthal velocity profile could then cause
the transition to wavy vortex flow. This mechanism is thus akin to the dynamics and instability
of longitudinal streaks observed in transitional shear flows such as boundary layers, plane Couette
or channel flows.25 Finlay et al.,26 however, considering this mechanism in the context of Dean
vortices, argued that this shear instability may not occur in Taylor–Couette flow because the shear
layers are weaker. Marcus16 speculated that an alternate physical mechanism in which a local,
centrifugal instability of the radial outflow jet is responsible for the azimuthal waviness. This
mechanism was based on the conversion of radial kinetic energy to azimuthal and axial kinetic
energy upon the appearance of the traveling wave for η = 0.875. Finally, theoretical approaches of
the second transition based on the competition between axisymmetric and nonaxisymmetric primary
modes of instability implicitly assume that the centrifugal force also drives the dynamics of the
waviness.24, 27–29 Thus, three candidates emerge as the physical mechanism driving the waviness.
One is based on the centrifugal force (referred to as mechanism 1© henceforth). Another is based
on the shear associated with the variations along the axial direction of the radial velocity, or “radial
jets” (mechanism 2©). The last one is based on the shear associated with variations along the
axial direction of the azimuthal velocity, or “azimuthal streaks” (mechanism 3©). Here we provide
theoretical insights on these different mechanisms, supported by results of numerical simulations
and previous experiments.

The theoretical approach adopted here for the case of an inner cylinder rotating within a
fixed outer cylinder involves secondary stability analysis of the base flow composed of the steady
purely azimuthal flow combined with the saturated nonlinear state of the primary instability (Taylor
vortices), obtained by a weakly nonlinear analysis.30 More specifically, it is based on the third
order amplitude equation of the primary instabilities and ignores slow spatial modulations along the
axial direction. These modulations are related by Fourier transform to the band of linearly unstable
axial wavenumbers that develops as the Reynolds number departs from its critical value. It will be
therefore assumed here, for consistency with the amplitude equation, that the axial wavenumber
of the primary instability remains at its critical value kcrit

p whatever the value of the Reynolds
number is. It is nonetheless clear that any change in this wavenumber quantitatively impacts the
critical conditions of Taylor and wavy vortices. Since the primary instability is periodic in the axial
direction, these secondary instabilities are sought as Floquet modes.31 The specific terms associated
with each of the aforementioned mechanisms can be selectively discarded in the operators involved
in the secondary stability analysis. Thus, each mechanism can be removed individually from the
linear dynamics of the secondary instability. The idea here is to isolate the necessary ingredient in
the dynamics of the waviness, i.e., to identify which term triggers the waviness, by comparing the
secondary instabilities obtained from the modified problems to that for the complete problem. This
procedure differs from that used by Jones,20 who compared the energies transferred by the different
terms of the secondary dynamical equations to elucidate which one injects the highest amount of
energy into this secondary instability. Moreover, complete dispersion relations of the Floquet modes
are computed here in the form of the complex frequency ωs as functions of the Reynolds number Re
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and axial and azimuthal secondary wavenumbers ks and ns, respectively. The complex frequencies
of the secondary modes are characterized by their growth rates, i.e., their imaginary parts Im(ωs),
and the azimuthal phase speed at mid-gap vφ = (Re (ωs) (rout + rin)) / (2nsRe). Striking changes in
the graphical representations of the growth rate and phase speed of the most unstable mode can then
be related to a switch between modes of different types, e.g., modes presenting strongly different
shape functions and possibly driven by different mechanisms.

Combined with this analytical approach, previous experimental data have been reexamined and
dedicated numerical simulations have been performed. The analytical method is described in Sec. II
and its results, together with specific numerical and experimental results, pertaining to the secondary
transition for η ranging from 0.97 down to 0.50 are presented and discussed in Sec. III.

II. ANALYTICAL AND NUMERICAL APPROACHES

In a classical fashion, an infinitely long annular cavity filled with a Newtonian fluid is
considered. Using cylindrical coordinates (r, θ , z), the radial, azimuthal, and axial compo-
nents of the velocity field V = (U, V, W )t and the pressure-over-density field Q = P/ρ sat-
isfy the continuity and incompressible, three-dimensional Navier-Stokes equations. Velocities
are made nondimensional by �rin, lengths by the gap d, times by d2/ν, and Q by �2r2

in so
that all quantities are henceforth nondimensional. Surfaces are no-slip, and impermeable bound-
ary conditions are satisfied on the nondimensional inner and outer radii: U

(
rin/out, θ, z

) =
V (rout, θ, z) = W

(
rin/out, θ, z

) = 0 and V (rin, θ, z) = 1. The solution for the purely azimuthal

flow is V l (r ) = vl (r ) = (
0,

(
rinr2

out − rinr2
)
/
(
rr2

out − rr2
in

)
, 0

)t
, together with the associated pres-

sure field. Throughout the paper, capital V (r, θ, z) = (U, V, W )t and X (r, θ, z) = (U, V, W, Q)t

denote the velocity and velocity–pressure fields as functions of r, θ , and z, while smaller case
v (r ) = (u, v, w)t and x (r ) = (u, v, w, q)t refer to the radial shape functions of these fields.

The stability of the purely azimuthal flow with respect to small perturbations is addressed
by linear stability analysis. As the Reynolds number is increased above a critical value Recrit

p the
flow becomes unstable. This primary instability takes the form of a stack of toroidal counter-rotating
(Taylor) vortices, V p (r, z) = Avcrit

p (r ) × exp(ikcrit
p z) + c.c., where the amplitude A remains arbitrary

at this linear stage and is assumed to be small.
The saturated nonlinear states of the primary instabilities are obtained by a weakly nonlinear

analysis, leading to the equation satisfied by amplitude A,30

∂ A

∂t
= ∂σp

∂Re

∣∣∣∣
crit (

Re − Recrit
p

)
A + μA2 A, (1)

where σ p is the growth rate of the primary instability. As the present study does not consider effects
associated with a finite axial extension, the amplitude (Stuart–Landau) equation (1) does not include
the term associated with slow spatial variations of A along the axial direction which would be found
in the corresponding envelope (Ginzburg–Landau) equation. Consequently, A does not introduce any
spatial variations in the form of axial boundary conditions or shifts of the axial wavenumber, which
remains at its value kcrit

p selected at critical conditions. Moreover, the radial shape functions vcrit
p (r )

also conserve their values computed at critical conditions. The weakly nonlinear analysis also yields
an expansion of the velocity field of the perturbation that contains two nonlinear terms: one adding
up to the purely azimuthal flow, the other generating a first harmonic of the primary instability. The
new base flow to be used for the secondary stability analysis then reads

V b (r, z;Re) = v0(r ) +
[
v1 × exp

(
ikcrit

p z
)

+ c.c.
]

+
[
v2 × exp

(
ikcrit

p z
)

+ c.c.
]
, (2)

where v0 = vl (r ) + A2vnl,0(r ) combines the purely azimuthal flow and the non-oscillating nonlinear
correction, v1 = Avcrit

p (r ) is the nonlinearly saturated primary instability, and v2 = A2vnl,2(r ) is the
radial dependence of the first harmonic nonlinear correction. Owing to the stationary nature of the
Taylor vortices, the coefficients ∂Reσp and μ in (1) are real. Together with the radial shape functions
vnl,0(r ) and vnl,2(r ), they are computed as outcomes of the linear stability problem and expansions
of the velocity field and Navier–Stokes equation in powers of (Re − Recrit

p ) in a standard fashion.
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The amplitude at saturation is then obtained from the stationary solution of (1) as a function of Re:

A =
√

∂Reσ crit
p (Re − Recrit

p )/μ. Albeit an approximation, (2) contains the two key ingredients to

drive the dynamics of secondary instabilities: the nonlinear modification of the base flow, vnl,0, is
expected to restabilize the azimuthal velocity profile vl and the primary instability is expected to
result in new mechanisms of secondary instability.

According to Floquet analysis,31 the solution for the secondary instability is sought as

X s =
∞∑

j=−∞
xs, j (r ) × exp

(
i jkcrit

p z
)

× exp (iksz + insφ − iωst) + c.c. (3)

Combining (2) and (3) after truncating the periodic Floquet vectors up to the lth first harmon-
ics, inserting them in the Navier-Stokes and continuity equations, and linearizing the equa-
tions about the base state (2) yields a system of equations, written in a condensed manner as
a generalized eigenproblem leading to the complex eigenvalue ωs associated with eigenvectors
xs = (us,−l , . . . , us,l , vs,−l , . . . , vs,l , ws,−l , . . . , ws,l , qs,−l , . . . , qs,l , )t :

Axs − iωsBxs = 0. (4)

With v0 and v1 in (2), the (4 × (2l + 1)) × (4 × (2l + 1)) operator matrix A is

(5)A ks, ns, Ta; kcrit
p ,v0,v1,v2 =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D+
u dr + D+

dru+

ir−1D+
v ns + iD+

wK
−Re−1 Δ − r−2I

−2r−1D+
v

+2iRe−1r−2Ins

iD−
u kcrit

p drI

D+
drv + r−1D+

v

−2iRe−1r−2Ins

D+
u dr + r−1D+

u +

ir−1D+
v ns + iD+

wK
−Re−1 Δ − r−2I

iD−
v kcrit

p ir−1Ins

D+
drw 0

D+
u dr +

ir−1D+
v ns

+i D+
wK + D−

wkcrit
p

−Re−1Δ

iK

drI + r−1I ir−1Ins iK 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where dr is the derivative with respect to r. In addition to the identity I, (2l + 1) × (2l + 1) operators
applying to each of the four physical components of xs are introduced and their respective (i, j)
coefficients given by:

• D+
υ i, j = υ0δi, j + υ1δi, j+1 + υ1δi, j−1 + υ2δi, j+2 + υ2δi, j−2 and D−

υ i, j = υ1δi, j+1 − υ1δi, j−1 +
υ2δi, j+2 − υ2δi, j−2, where υn stands for one of the components of vn and υn for its complex
conjugate, and δi, j is the Kronecker delta. These operators account for advective terms: the
advection of vs by the base flow (2) for D+

υ and the reciprocal for D−
υ .

• Ki, j = δi, j

(
ks + ( j − l − 1) kcrit

p

)
for the axial wavenumbers of modes (3).

• � = d2
r I + 1/rdrI − 1/r2I2n2

s − K2 for the Laplacian in cylindrical coordinates.

The matrix B is the identity multiplied by Re−1, applied to the components of the velocity.
The radial shape functions are then expanded over n Chebyshev polynomials, and problem (4) is
solved by spectral method, setting n = 14 and l = 7, values for which a satisfying accuracy is
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reached. The solution of (4) and the selection of the most unstable (or least stable) mode leads to the
secondary dispersion relation for this mode in the form ωs (Re, ks, ns), from which the growth rate,
Im(ωs), and the azimuthal phase speed at mid-gap rmid = (rout + rin)/2, vφ = (Re (ωs) rmid) / (nsRe),
are readily obtained (note that, to conform with previous convention, this phase speed is made non-
dimensional by the speed of the inner cylinder). The growth rates Im(ωs) are invariant by the changes
ks → ±ks + mkcrit

p , with m ∈ Z and ns → −ns, so the secondary stability analysis is restricted
to 0 ≤ ks ≤ kcrit

p /2 and ns ≥ 0. Moreover, the critical secondary condition
(
Recrit

s , kcrit
s , ncrit

s

)
,

i.e., the Reynolds number above which a secondary mode (3) with ks = kcrit
s and ns = ncrit

s
first becomes unstable are obtained by a Newton–Raphson method iterating so as to reach
Im

(
ωs

(
Recrit

s , kcrit
s , ncrit

s

)) = 0 and ∂ks Im
(
ωs

(
Recrit

s , kcrit
s , ncrit

s

)) = 0.
Numerical simulations used to provide additional insight into the flow utilize a multi-domain

pseudo-spectral method based on Chebyshev polynomials in the radial and axial directions and
Fourier modes in the azimuthal ones. Time integration is accomplished with a second-order backward
implicit Euler scheme for the linear terms and a second-order explicit Adams-Bashforth scheme
for the nonlinear terms.32 An improved projection algorithm is employed for velocity-pressure
coupling.33 The continuity between the subdomains of the velocity and pressure fields is enforced
using an influence matrix technique.34 Rigid and impermeable conditions are implemented on all
walls. Moreover, the axial end-wall disks rotate at the rate of the inner cylinder. In each subdomain,
the mesh grid is defined by the Gauss–Lobatto–Chebyshev collocation points, with nr = 21 and nz

= 21 points in the radial and axial directions, respectively. For three-dimensional non-axisymmetric
simulations, nφ = 16 equally spaced mesh points are used in the azimuthal direction. The code
has been verified with respect to a manufactured solution (i.e., a synthetic analytical solution
satisfying the Navier–Stokes equation to which an ad hoc body force term has been added),34 and
a mono-domain version has been extensively validated in Taylor–Couette configurations.12, 35 The
simulations use 20 axial subdomains in order to improve the speed of the computations. More
importantly, this also allows us to perform numerical simulations at high values for the aspect ratio
L/d = 50 in order to alleviate the strong damping effect of axial confinement on the azimuthal
waviness.

III. MECHANISMS FOR WAVINESS

In operator (5), the term 1© combined with vs is the linearized centrifugal force, or linearized
centripetal acceleration. The terms 2© combined with vs are the linearized advection terms associated
with the axial shear in the radial velocity. The terms 3© combined with vs are the linearized advection
terms associated with the axial shear in the azimuthal velocity. Terms 2© and 3© are akin to the
advection terms found in the Orr–Sommerfeld equation. The stability analysis of the most unstable
mode resulting from the modified dispersion relations pertaining to cases 1©, 2©, or 3©, where the
two complementary terms among 1©, 2©, or 3© in the A operator (5) are omitted, can be compared
to the analysis using the complete A.

A. Narrow gap (large η) case

The comparison between the solution with the complete operator and the three cases is shown
in Figure 1 for the growth rate and Figure 2 for the azimuthal phase speed (when relevant) for
η = 0.85, where Recrit

p = 108.31 and kcrit
p = 3.13. For the sake of clarity, Im(ωs) and vφ are plotted

for the value of the azimuthal wavenumber ns = nmax
s (Re, ks) with the highest growth rate.

Some obvious features of the natural secondary instability are evident in Figures 1(a) and 2(a),
which include the entire operator A. There is a “harmonic ridge,” centered on ks = 0, the value
for which the secondary modes exhibit the axial periodicity of the primary mode, with increasing
azimuthal wavenumber, ns, as Re increases. This selection of the azimuthal wavenumber is actually
very tenuous, the growth rates along the “harmonic ridge” being only weakly dependent on ns. This
ridge emerges from an “axisymmetric plain,” where secondary modes are axisymmetric (ns = 0)
and stable (Im(ωs) < 0). Moreover, a “subharmonic hill” centered on ks = kcrit

p /2 = 1.56, the value
for which the axial wavelength of the secondary modes double the primary one, also emerges for
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FIG. 1. Growth rate Im(ωs) and azimuthal wavenumber ns (colorscale) of the secondary instability, as a function of the
Floquet axial wavenumber ks and Reynolds number Ta, for η = 0.85. The dashed lines locate the marginal Im(ωs) = 0
conditions. (a) Complete operator A (b) Case 1©, azimuthal and radial shears removed from A. (c) Case 2©, azimuthal shear
and centrifugal force removed from A. (d) Case 3©, radial shear and centrifugal force removed from A.

Re > 150, for nonaxisymmetric and stable modes. The azimuthal phase speed on the “harmonic
ridge” remains close to 0.5 for all ns or Re, while it is substantially smaller on the “subharmonic
hill,” where, moreover, its sign become negative as Re increases. Considering the marginal curves in
Figure 1(a), critical conditions (Im(ωs) = 0) are reached on the “harmonic ridge” for Recrit

s = 121.2,
i.e., εcrit

s = 1.12, and ncrit
s = 3, with vcrit

φ = 0.50. This is consistent with previous theoretical values
of εcrit

s = 1.17, ncrit
s = 3, and vcrit

φ = 0.48 for η = 0.87 and infinitely long cylinders8 and with present
numerical simulations values of 1.11 < εcrit

s < 1.20 and ncrit
s = 3 for η = 0.85 and a length to gap

ratio of L/d = 50. Numerical simulation results for these wavy vortices just above their threshold
are depicted in Figure 3 together with corresponding analytical results. The wavy vortices can be
observed in the numerical simulations in the central region, but the axial end-walls extend their
influence, evident as diminished waviness, over almost one-fourth of the domain at each end.

Comparing these features with the ones in (b), (c), and (d) of Figures 1 and 2, the only case
obviously close to the complete dispersion relation of Figures 1(a) and 2(a) is the one pertaining
to the azimuthal streaks, depicted in Figures 1(d) and 2(d). This comparison is supported by three
specific features: (1) the rise of a harmonic instability associated with the “ridge” at ks = 0; (2) the
fact that this instability selects a secondary mode with ns �= 0; and (3) a similar azimuthal phase
speed. Moreover, the presence of “subharmonic hill” in Figure 1(a) is also retrieved by mechanism
3©. The centrifugal term alone in Figure 1(b) drives an axisymmetric instability. The radial jets

alone in Figure 1(c) do not drive any instability, though the least stable modes are nonaxisymmetric.
Moreover, phase speeds in the two last cases remain very small positive or negative quantities as
shown in Figures 2(b) and 2(c). The “axisymmetric plain” recovers the mechanism driving the Taylor
vortices, amplified by the centrifugal force and damped by viscosity. Without the centrifugal force
term 1©, the “axisymmetric plain” is stable in Figures 1(c) and 1(d). We also extrapolate from the
higher overall growth rate in Figure 1(a) compared to Figure 1(d) that the centrifugal term enhances
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FIG. 2. Phase speed at mid-gap vφ = Re (ωs) rmid/ (nsRe) and azimuthal wavenumber ns (colorscale) of the secondary
instability, as a function of the Floquet axial wavenumber ks and Reynolds number Ta, for η = 0.85. (a)–(d) as in Figure 1.

the instabilities associated with mechanism 3©. Although quantitative results (specific values for
Recrit

s , ncrit
s , and vcrit

φ ) should be considered with caution owing to the weakly nonlinear approach
of the primary instability and the sensitivity of the secondary stability analysis with respect to the
base flow, qualitative similarities between the complete dispersion relation and results for azimuthal
streaks (case 3©) unambiguously show the dominance of a secondary instability mechanism driven
by the axial shear in the azimuthal velocity.

Experimental and numerical results further support this idea. The shear layers related to the
azimuthal streaks are conspicuous in experimental and numerical azimuthal velocity vector plots
(see Figure 9 of Ref. 18 or Figure 4 of Ref. 8), and they stretch around the entire circumference
of the Taylor–Couette cell. The predominance of the azimuthal streaks is confirmed by numerical
simulations. By forcing axisymmetric fields in the numerics, non-wavy Taylor vortices can be
artificially maintained even above the threshold for wavy secondary instabilities. The amplitudes
of the axial shears at mid gap in the radial (radial jets) and azimuthal (azimuthal streaks) velocity
profiles are compared for Re = 110, 120, and 140, corresponding to ε = Re/Recrit

p = 1.02, 1.11,
and 1.29, respectively, in Figure 4. The axial shear of the azimuthal velocity is about three times
larger than that for the radial velocity, regardless of the value for ε, consistent with the azimuthal
streaks, not the radial jets, driving the transition to wavy vortices.

The azimuthal shear layers are expected to sustain Kelvin–Helmholtz-like instabilities. Two
features of such instabilities, inferred from Rayleigh’s stability equation, are of interest. First, this
inviscid stability analysis of plane shear flows indicates that all wavelengths along the direction of
the flow are unstable, so the preferred wavelength of the Kelvin–Helmholtz instabilities, if there is
one, is determined by viscous or geometric effects. It is known that for wavy vortex flow, a variety
of azimuthal wavelengths can occur. Between two and four waves are typical, though sometimes
more appear,4 depending on startup and other conditions. That the number of waves, and hence
the wavelength, can vary depending on experimental details and that the wavelength adjusts so
there are an integer number of waves around the circumference of the annulus are both consistent
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(a () b)

FIG. 3. Isosurfaces V = 0.5 of the azimuthal velocity (V = 1 on the rotating inner cylinder) for radius ratio η = 0.85
at Re = 130. (a) Numerical simulation with aspect ratio L/d = 50. (b) Corresponding analytical isosurface obtained from
expressions (2) and (3) at critical conditions

(
Recrit

s , kcrit
s , ncrit

s

)
, with an arbitrary amplitude for the azimuthal waviness.

with the idea that the mechanism of instability supports all wavelengths. Second, the inviscid
Kelvin–Helmholtz wave travels at a phase speed equal to the average of the two velocities generating
the shear layer, V1 and V2, such that the estimated phase speed is 0.5 (V1 + V2). For wavy vortex flows,
the azimuthal phase speed of the waves can be extracted from previous experimental data. Contours
of the azimuthal velocity profile in Figure 7 of Ref. (18) allow the estimation of the maximum
and minimum azimuthal velocity at mid-gap V1 and V2 for three different values of ε = 1.28,
2.48, and 5.03 for η = 0.81. Obtaining V1 = 0.25, 0.24, and 0.23 and V2 = 0.61, 0.54, and 0.47, it
is then possible to compare 0.5 (V1 + V2) = 0.43, 0.39, and 0.35 to the measured values vφ = 0.44,
0.36, and 0.30. While the match is imperfect, the error is relatively small and could be accounted for
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FIG. 4. Axial variations of the dimensionless axial shears of the radial (a) and azimuthal (b) velocities at mid-gap
rmid = (rout + rin)/2, obtained from numerical simulations for η = 0.85, at Reynolds numbers Re = 110 (dashed lines),
120 (solid lines) and 140 (solid lines with dots). Note that Recrit

p = 108.31. While the full axial extension of the numerical
domain is −25 < z < 25, only the central part −4 < z < 4 is shown.
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FIG. 5. Growth rate Im(ωs) and azimuthal wavenumber ns (colorscale up to ns = 10) of the secondary instability, as a
function of the Floquet axial wavenumber ks and Reynolds number Ta for the complete operator A, (a) η = 0.95, leading
to Recrit

s = 195.5, εcrit
s = 1.06, ns = 4, and vφ = 0.52 (note that azimuthal wavenumbers between ns = 10 and 17 share

the same color and are distinguished by the solid lines only). (b) η = 0.85, leading to Recrit
s = 121.2, εcrit

s = 1.12, ns =
3, and vφ = 0.50. (c) η = 0.75, leading to Recrit

s = 111.8, εcrit
s = 1.30, ns = 3, and vφ = 0.44. (d) η = 0.7, leading to

Recrit
s = 125.0, εcrit

s = 1.57, ns = 4, and vφ = 0.35. The dashed lines locate the marginal Im(ωs) = 0 conditions. Note the
smaller range of Reynolds numbers for η = 0.95 and the larger range for η = 0.7.

by the curvature of the vortex flow and the viscosity. Furthermore, both the estimated phase speed
0.5 (V1 + V2) and measured one vφ decrease as the Reynolds number increases.

Figure 5 shows that the “harmonic ridge” persists in plots of Im(ωs) for 0.7 ≤ η ≤ 0.95, while
the “subharmonic hill” disappears for η = 0.95, at least in the depicted Reynolds number range
Recrit

p ≤ Re ≤ Recrit
p + 30. The azimuthal waviness in these narrow gap cases is thus clearly driven

by the axial shear in the azimuthal velocity. Further note that the height of the “harmonic ridge”
decreases as η decreases from 0.85 to 0.7, a result that persists for smaller values of η, as described in
Sec. III B. Moreover, Figure 5(d) also shows that along the “harmonic ridge” ks = 0, the growth rate
Im(ωs) reaches a maximum in a small “island” of instability around Re ≈ 140 and then decreases
with Re. This feature will also be further addressed in Sec. III B. The azimuthal phase speed at
mid-gap vφ shown in Figure 6 also corroborates Figure 2(a). The phase speed along the “harmonic
ridge” only weakly depends on ns and Re and decreases from vφ ∼ 0.6 for η = 0.95 to vφ ∼ 0.4
for η = 0.7. On the “subharmonic hill,” this phase speed remains smaller and eventually becomes
negative as Re increases for η = 0.7 in Figure 6(d), indicating counter-propagating azimuthal waves
with respect to the rotation of the inner cylinder.

B. Wide gap (small η) case

Results for smaller radius ratios are less clear. Figure 7 depicts the growth rates obtained for
the complete solution and cases 1©, 2©, and 3© for η = 0.55, where Recrit

p = 69.5 and kcrit
p = 3.15.

In this case, the complete secondary stability analysis in Figure 7(a) leads to a critical secondary
instability with ks = kcrit

p /2, ncrit
s = 2, Recrit

s = 127.9, i.e., εcrit
s = 1.84, and vcrit

φ = −0.03. Though
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FIG. 6. Phase speed at mid-gap vφ = Re (ωs) rmid/ (nsRe) and azimuthal wavenumber ns (colorscale) of the secondary
instability, as a function of the Floquet axial wavenumber ks and Reynolds number Ta for the complete operator A, with
(a)–(d) and colorscale as in Figure 5.
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FIG. 7. Same as Figure 1, for η = 0.55. Note that the range of Reynolds numbers is double that in Figure 1.
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FIG. 8. Same as Figure 2, for η = 0.55.

εcrit
s is larger than those for η = 0.85, it is not as large as values found by Jones.20 Along the axial

direction, based on ks, this secondary instability is subharmonic, i.e., its axial wavelength is double
the primary one. Along the azimuthal direction, this secondary instability exhibits a double wave
(ns = 2). Based on vcrit

φ , it is evident in Figure 8(a) that upon the “subharmonic hill,” vφ actually
changes from positive to negative values as the Reynolds number Re increases. So for secondary
critical conditions, the azimuthal waviness is counter-propagating with respect to the rotation of the
inner cylinder. For small values of η, the selection of a subharmonic mode, which has been called a
“jet mode,” has been reported experimentally11 (for η = 0.507) and retrieved analytically20 (for η

= 0.56). Figure 7(a) also shows that the selection of the subharmonic mode is somewhat uncertain
as it results from a competition between harmonic (ks = 0) and subharmonic (ks = kcrit

p /2) modes,
both presenting very similar critical conditions.

Figures 7 and 8 demonstrate that none of the proposed mechanisms can by itself capture the
features of the secondary dispersion relation, whether associated with harmonic or subharmonic
modes. Whereas the complete case in Figures 7(a) and 8(a) obviously extends the evolution with
η observed in Figures 5 and 6, with the presence of a “harmonic ridge” whose azimuthal waviness
propagates at vφ ≈ 0.4 and a “subharmonic hill” whose azimuthal waviness is slowly propagating
or counter-propagating, these two features are no longer retrieved by the action of the azimuthal
streaks (case 3©) in Figures 7(d) and 8(d). The centrifugal force (case 1©) in Figures 7(b) and 8(b)
introduces a strong instability, nearly insensitive to ks and presenting a high number (ns ≥ 8) of
non-propagating azimuthal waves. Although the radial jets (case 2©) in Figures 7(c) and 8(c) sustain
a subharmonic secondary mode, there is only a weak dependence on the axial wavenumber ks, and
the azimuthal phase speed at mid-gap vφ is always negative. Thus, unlike the narrow gap case, there
is no obvious explanation for the dynamics of the subharmonic or harmonic modes in the wide gap
case. In other words, removing a single term among terms 1©, 2©, or 3© in the A operator (5) damps
the instability associated with the “subharmonic hill” and “harmonic ridge.”

Figure 9 depicts the amplitudes of the axial shears at mid gap in the radial and azimuthal velocity
profiles from numerical simulations that are constrained to be axisymmetric for Re = 75, 100, and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.105.215.146 On: Wed, 25 Feb 2015 04:10:44



094102-12 Martinand, Serre, and Lueptow Phys. Fluids 26, 094102 (2014)

(a)

z
-4 -2 0 2 4

∂zU

-1

-0.5

0

0.5

1
(b)

z
-4 -2 0 2 4

∂zV

-1

-0.5

0

0.5

1

FIG. 9. Same as Figure 4, for η = 0.55, at Reynolds number Re = 75 (dashed lines), 100 (solid lines) and 140 (solid lines
with dots). Note that Recrit

p = 69.5.

140, i.e., ε = 1.08, 1.44, and 2.01, respectively, for η = 0.55. It is evident that as the Reynolds
number increases towards its critical value Recrit

s , the magnitude of the axial shear in the radial
velocity ∂zU is comparable to the magnitude of the axial shear in the azimuthal velocity ∂z V , in
contrast with the case η = 0.85 shown in Figure 4. The mechanism driving the waviness in these
wide gap cases hence remains unclear. It is likely a combination of several mechanisms, none of
which can clearly be isolated using this approach.

Figure 10 sheds further light on the competition between harmonic and subharmonic secondary
instabilities as the gap becomes larger, i.e., η decreases. First, it is evident in Figures 5(d) and
10(a) that the “harmonic ridge” actually presents a local maximum for the growth rate as a function
of the Reynolds number, an “island of instability.” As a corollary, the harmonic secondary mode
returns to stability (Im(ωs) < 0) as the Reynolds number increases beyond this maximum (note
that in Figure 10 the Reynolds number extends over a larger range than in Figures 5(b) and 5(c)).
This restabilization of the “harmonic ridge” could account for the disappearance of the azimuthal
waviness and return to the axisymmetric Taylor vortices that has been observed experimentally23 and
numerically22 as the Reynolds number is further increased above its critical value Recrit

s for η ∼ 0.75
− 0.78. Second, in Figures 5(d), 10(a), and 10(b), critical conditions for harmonic and subharmonic
modes are very similar. The selection of the harmonic mode in Figure 5(d) and subharmonic one in
Figures 10(a) and 10(b) is therefore likely to be very sensitive to the assumptions behind the secondary
stability analysis. It should be noted though that the “subharmonic hill” remains a well established
feature associated with a monotonic increase of the growth rate with the Reynolds number, whereas
the variation with Re along the “harmonic ridge” displays an “island” of faint instability. Thus, a
subharmonic instability will always eventually occur as Re is increased, though this is less clear for
a harmonic mode.
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FIG. 10. Same as Figure 5, (a) η = 0.65, leading to Recrit
s = 126.8, εcrit

s = 1.69, ns = 2, and vφ = −0.026. (b) η = 0.55,
leading to Recrit

s = 127.9, εcrit
s = 1.84, ns = 2, and vφ = −0.029.
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IV. MORE DISCUSSION AND CONCLUSIONS

Figure 11 summarizes the critical conditions computed using the Floquet analysis as a func-
tion of the radius ratio, 0.5 ≤ η ≤ 0.97. The primary and secondary critical Reynolds numbers,
Recrit

p and Recrit
s , respectively, and the ratio εcrit

s = Recrit
s /Recrit

p are depicted in Figures 11(a) and
11(b). Basic features of the secondary wavy structures at the secondary threshold are depicted in
Figure 11(c) for the axial and azimuthal wavenumbers and Figure 11(d) for the azimuthal wave
speed. The secondary axial wavenumber is obtained as kcrit

s + jmaxkcrit
p , with jmax the index of the most

energetic j-component of the Floquet vector in expansion (3). The azimuthal wave speed is compared
to the velocity of the purely azimuthal flow vl(rc), evaluated at the centers of the Taylor vortices. The
position (rc, zc) in a meridional plane of such a center is obtained as a point where both the radial and
axial velocities of the Taylor vortices vanish, i.e., up(rc) × exp(ikcrit

p zc) = wp(rc) × exp(ikcrit
p zc) = 0.

The shift from narrow gap (large η) to the wide gap (small η) cases occurs for 0.68 < η < 0.69,
where the secondary instability evolves from harmonic (ks = 0) for the narrow gap (large η) case to
subharmonic (kcrit

s = kcrit
p /2) for the wide gap (small η) case (Figure 11(c)). This change is associated

with a decrease of the azimuthal wavenumber to 2 and eventually 1, and the azimuthal waviness
becomes counter-propagating, i.e., vφ = Re

(
ωcrit

s rmid
)
/ (nsRe) < 0. This shift induces a gradual

increase of the critical secondary Reynolds number Recrit
s and ratio εcrit

s , not a sharp increase as
previously reported.20

Figure 11(b) shows that for η below 0.7, the gap between the primary and secondary critical
conditions becomes fairly large, with εcrit

s ∼ 2. Moreover, the Reynolds numbers covered by the
secondary stability analyses for η = 0.85 in Figures 1 and 2 and for η = 0.55 in Figures 7 and
8 range over 1 < ε < 1.47 and 1 < ε < 2.45, respectively. Of course, this departure affects the
validity of the weakly nonlinear approximation used to compute the saturated nonlinear state of the
primary instability used in the base flow, Eq. (2). Two effects excluded from the present analysis
can impact the secondary stability analysis, particularly for η < 0.7. First, slow modulations along
the axial direction of the Taylor vortices have not been taken into account in their evaluation. The
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FIG. 11. Secondary critical conditions as functions of the radius ratio η, for 0.5 ≤ η ≤ 0.97. (a) Primary and secondary critical
Reynolds numbers, Recrit

p (dashed line) and Recrit
s (solid line) and (b) critical Reynolds number ratio εcrit

s . (c) Primary and
secondary critical axial wavenumber, kcrit

p (dashed line) and kcrit
s (solid line) and secondary critical azimuthal wavenumber

ncrit
s . (d) Azimuthal critical wave speed vφ at mid gap (solid line) and velocity of the purely azimuthal flow at the center of a

Taylor vortex (dashed line).
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axial wavenumber of the saturated primary instability, which is kept fixed here at its critical value
kcrit

p , could be modified in experimental or numerical realizations as an increasingly large band of
wavenumbers becomes unstable as Re is increased above Recrit

p . The selection of a primary axial
wavenumber kp �= kcrit

p , by the finite-length of the system for instance, would modify the dispersion
relations depicted in Figures 5 and 10 and Figure 11 accordingly. Allowing the primary axial
wavenumber kp to vary in the secondary stability problem (4), within the band of linearly unstable
wavenumbers, would assess this modification. Along a similar line, Eckhaus instabilities could occur
before secondary instabilities develop,3 modifying the base flow upon which the secondary stability
analysis is performed. Such features could be addressed by computing the Taylor vortices from an
envelope equation rather than an amplitude equation. Beyond the added complexity of the stability
analysis, it is very unlikely that this change would alter the main conclusions of this work on the
mechanisms driving the waviness of the vortices. Second, the validity of the third order amplitude
Eq. (1) and second order expansion (2) weakens as Re is increased above Recrit

p . The effects on
the secondary stability analysis of higher harmonics in (2) are difficult to assess a priori and require
proceeding to a higher order. Based on these shortcomings of the base flow (2), the dispersion
relations for wide gaps depicted in Figure 10 should be considered with care. Furthermore, we do
not include data for η < 0.5 in Figure 11, even though it is possible to carry out these calculations.
Salient and robust features associated with monotonic increase of the growth rate Im(ωs) with the
Reynolds number Re, such as the “harmonic ridge” for large η and the “subharmonic hill” are
reliable results of the secondary stability analysis in the sense that a modification of the base flow
will quantitatively change the associated critical conditions but will not jeopardize these features.
Fainter features such as the weak unstable “island” observed in Figures 5(d) and 10(a) along the
“harmonic ridge” or the competition between the harmonic and subharmonic modes are likely to be
qualitatively altered by a modification of the base flow.

In the case of large values of η (narrow gaps), the waviness of the vortices is unambiguously
driven by the axial shear in the azimuthal velocity, generated by the alternate radial advection of
high and low azimuthal momentum fluid close to the inner and outer cylinders, respectively. This
mechanism becomes weaker as η is decreased below 0.70. This secondary transition is probably
related to the instability of longitudinal streaks observed in plane shear flows.25 It is important to
note that the different character of the primary (centrifugal) and secondary (shear-driven) insta-
bilities calls into question the approach to wavy vortex flow analysis using systems of amplitude
equations satisfied by axisymmetric and non-axisymmetric perturbations to the purely azimuthal
base flow, that has been used in the past,24 as all these modes, which are driven by centrifugal forces,
cannot capture the relevant physical mechanism. The results of our secondary stability analysis
compare reasonably well with the numerical ones by Marcus16 and theoretical ones by Jones.20 At
η = 0.875 and imposing kp = 2.09, ns = 6, and εs = 2.063, Marcus observed a harmonic sec-
ondary instability with vφ = 0.376. For 0.78 < η < 1 and imposing harmonic instabilities with kp

= 3.13, the secondary critical Reynolds numbers Recrit
s and phase speeds vφ computed by Jones20

are similar to the ones obtained here, though Jones’ most unstable azimuthal wavenumber is ns

= 1. For 0.65 < η < 0.78, Jones also observed some features retrieved in the present analysis
such as the restabilization of the secondary instability as the Reynolds number is increased, the
move to very low azimuthal phase speeds and the appearance of subharmonic modes. Although
both approaches lead to azimuthal waviness related to the “harmonic ridge” for η > 0.8, the
explanations concerning the underlying mechanism differ, as described in the Introduction. The
results presented here clearly favor the explanation provided by Jones20 and previously suggested by
Davey et al.24

In the case of small values of η (wide gaps), no clear mechanism explaining the complete
dispersion relation has been isolated using the approach developed here. To state it differently, all
three mechanisms, i.e., the centrifugal force, the azimuthal streaks, and the radial jets, appear to
be necessary for the harmonic or subharmonic secondary instability to develop. Concerning the
numerical and experimental observations of these modes, their potential subharmonic character
implies that their axial wavelength is the double that of the primary one. As a consequence, axial
confinement in finite-length Taylor–Couette cells is likely to be even more critical to the occurrence
of these modes than it is for harmonic secondary wavy vortices.
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To conclude, whereas the mechanism driving the waviness for large values of η (narrow gaps)
has clearly been identified as the azimuthal shear along the axial direction, a thorough and accurate
analysis in the case of small values of η (wide gaps) is clearly beyond the reliable capability of
the weakly nonlinear approximation adopted here and requires further numerical and experimental
investigation.
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