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Interaction of wavy cylindrical Couette flow with endwalls

Olivier Czarny, Eric Serre, and Patrick Bontoux
LMSNM-GP, UMR 6181, CNRS—Université'Aix-Marseille, IMT, La Jete-Technople
de Chaeau-Gombert, 38 rue Foeric Joliot-Curie, 13451 Marseille Cedex 20, France

Richard M. Lueptow®
Department of Mechanical Engineering, Northwestern University, Evanston, lllinois 60208

(Received 24 July 2003; accepted 12 January 2004; published online 8 March 2004

The finite length of a Taylor—Couette cell introduces endwall effects that interact with the
centrifugal instability and the subsequent wavy vortex flow. We investigate the interaction between
the endwall Ekman boundary layers and the wavy vortices in a finite-length cavity via direct
numerical simulation using a three-dimensional spectral method. To analyze the nature of the
interaction between the vortices and the endwall layers, we consider three endwall boundary
conditions: fixed endwalls, endwalls rotating with the inner cylinder, and stress-free endwalls. Near
the endwalls, the waviness is diminished, primarily due to the effect of the flatness of the endwall
rather than as a result of the no-slip boundary condition at the endwall. However, the waviness is
present just one or two vortices away from the endwalls, indicating that the effect of the endwall on
waviness does not penetrate far from the endwall. The interaction of the waviness with the endwall
Ekman layer does not appear to result in disorder in the flow, either in the endwall vortex or farther
from the endwall. Likewise, the waviness does not significantly alter Ekman layer thickness from
that predicted based on theory. @04 American Institute of Physic§DOI: 10.1063/1.1652671

I. INTRODUCTION tex upsets the sharp pitchfork bifurcation for the transition to

Shear flow between a rotating inner cylinder and a ﬁxedvortmal flow that would occur for infinitely long cylinders

outer cylinder, commonly known as Taylor—Couette flow resulting in a continuous transition from a featureless stable
becomes cent,rifugally unstable when the rotational speed e’)]ZI_ow to a cellular flow_with the rotation of_the vortex adjacent

ceeds a critical value resulting in toroidal Taylor vortices. At'© tthelyﬁgiwilrl] deflnedthby. the rtc_)tat|o;1 of thde I?lkman
higher speeds, a secondary instability results in an azimuthdPiex-— ~ Furtnermore, the imposition ot an enawall pre-
waviness of the vortices, known as wavy vortex flow. Re.Scribes which branch of the bifurcation the flow will prefer—
searchers often consider the flow independent of the confifat consistent with the rotation of the endwall Ekman vor-

ing endwalls: theoretical studies assume that the cyIinderEeX' A flow.con3|stent with a s_econd, disconnected brar)ch
are infinitely long; experimental studies use long Cy"nderscorrespondlng to the vortex adjacent to the endwall rotating
posite that of the Ekman vortex can also occur under cer-

compared to the gap between the cylinders; computation&lP o 9
studies incorporate periodic boundary conditions to avoid@n cqnd|t|pns‘3.' o _
endwall effects. Here we specifically consider the interaction It iS evident that the endwalls play a significant role in
between the boundary-driven flows at the endwalls and thdetermining the nature of the bifurcation from stable to vor-
wavy vortices, extending our previous study of the effect offical flow. The endwalls can play an important role for short
endwalls on the Taylor instability and axisymmetric Taylor cylinders even at higher order transitions, since the vortices
vortices? are never far from the endwalls. For example, the transition
Far from the endwalls, the radial velocity is zero due toffom nonwavy Taylor vortices to wavy vortices occurs at a
the geostrophic force balance for stable Couette flow. Nedpigher rotational speed for short cylinders than for infinitely
the endwalls the no-slip boundary condition upsets the forcéong cylinders' apparently because the endwall vortices re-
balance resulting in a radial velocity boundary layer near théated to the endwall boundary layers impede the transition to
endwalls, known as an Ekman lay&lthough it might be Wwavy vortices. Likewise, the transition from wavy vortex
more appropriately considered a d@wadt flow, since the flow to modulated wavy vortex flow occurs at a higher rota-
endwall is usually fixed and the fluid is rotatinghe thick-  tional speed for shorter cylindets.
ness of this boundary layer scales WiWQ)llZ, wherev is It is the interaction between the endwalls and the wavy
the kinematic viscosity an€l is an angular velocity scafe. Vvortices that is the topic of this paper. We consider wavy
This boundary layer flow drives a vortical cell adjacent to thevortex flow between short cylinders for cylindrical Couette
endwall, often called an Ekman vorté%-°>The Ekman vor-  flow with the inner cylinder rotating and the outer cylinder
fixed, known as the rotor-stator configuration. By using a
variety of endwall conditions including fixed endwalls, end-
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eliminate the effect of viscosity at the endwallve investi- v,=v,=0, v,=1 atr=-1, ze[—1;1],
gate the interaction between the endwall boundary layer and
the wavy vortical structure.

We used a similar approach to study the transition from

nonvortical to vortical flow! In that case, we found that be- . : .
low the critical Taylor number, endwall vortices for rotating Three endwall conditions are considered, depending on the
' rotation of the endwallQ.: (1) stationary endwall Q.

endwalls are more than twice the strength of the vortices for_ | . . . )
. : . . =0); (2) rotation of the endwall with the inner cylinder
fixed endwalls. This trend continues well above the transitio . . _
. . : ; Q.=Q;); and (3) a stress-free boundary condition on the
to vortical flow, consistent with a simple force balance analy- o . .
. L ; endwall, which is equivalent to a flat, free surface with neg-
sis based on the deviation from geostrophic flow at the end- . ; : - . .
; . . “ligible surface tensioridesignated).=F). As described in
walls that can be used to determine the magnitude and direc: . . 4
) our previous study of axisymmetric Taylor—Couette ffow,
tion of the endwall boundary layer flow. Stress-free endwall

result in endwall vortices that are similar in strength to thosz[he singularity in the azimuthal velocity, at the corner

. o where the cylinder has a different rotational speed than the
for rotating endwalls above the critical Taylor number. How- . : .
i ) o ._endwall is handled by forcing the velocity to change expo-
ever, fixed endwall and rotating endwall conditions result in . . . . .
. ) . . o . nentially to that of the adjacent cylinder. The dimensionless
vortices that are distorted in the radial direction and axially

elongated due to the interaction between the endwall bounJE)rm of the boundary conditions for the azimuthal velocity at

ary layer and the Taylor vortices. The bifurcation diagramz_ =1 are
based on the radial velocity near the center of the annulus Car —a
chan_g_es significantly depending on the_: endwall _bound_ary v,=v,=0, v.9=e . : for Q,=0,
condition. For stress-free endwall conditions, the bifurcation e"—e
is quite sharp. Unless the initial conditions are specifically
set to favor the other fork of the bifurcation, the fork related (I-pr+1+n e 3 —e™?
to radial outflow at the endwall results when the simulation ~ vr=vz=0, v,= 27 Ted_e @
is started from a zero velocity initial condition. For rotating
and fixed endwalls, there is a continuous transition from a for Qe=0;, 2
featureless flow to a cellular flow because of the develop-
ment of Ekman vortices well below the critical Reynolds v, v,
number for the transition from nonvortical to vortical flow. v,=0, ——=—--=0 for Q.=F.

The case of wavy vortex flow is considerably more com-

plex than that of axisymmetric vortices, primarily because.l_he region in which the velocity changes from that of the

the computatlons are three_d|men3|onal instead of tW.Ocyllnder to that of the endwall is set to about Od)5consis-
dimensional. In addition, the interpretation of the results is . . .
o tent with the gap between the endwall and the cylinder in an

not as clear because the flow is time-dependent. Neverthe-_ . . -
équivalent experimental system, by adjusting the decay co-

less, considering wavy vortex flow in the rotor-stator 9€OM-chicient a. The distance 0.08 corresponds to about ten

etry allows us to further understand the complex interaction

between the wavy vortex flow due to the centrifugal instab”_computational mesh points to assure a smooth transition.
: y 9 The dimensionless incompressible Navier—Stokes mo-
ity and the endwall boundary layer flow.

mentum equation is

v,=v,=0, v,=0 atr=1, ze[—-1;1]. D

Il. GEOMETRY AND NUMERICAL METHOD IV 1
— +(V-V)V=—Vp+ —AV. ©)

The configuration that is considered is an annular cavity 9t Re
between two concentric cylinders of inner and outer reflii
andr? , with the inner cylinder rotating &®; and the outer The solutions to the Navier—Stokes equations are computed
cylinder fixed. The flow is described by the incompressibleusing a pseudo-spectral Fourier—Chebyshev collocation
three-dimensional Navier—Stokes equations written using cymethod taking advantage of the orthogonality properties of
lindrical coordinates r(*,z*, 6) in an absolute frame of ref- Chebyshev polynomials and providing exponential
erence, according to the velocity—pressure formulation. Paconvergenceé? The time scheme is semi-implicit and second-
rameters characteristic of the physical problem are th@rder accurate. Itis a combination of the second-order back-
Reynolds number Re Q;rid/v, the radius ratiop=r;/r} ward implicit Euler scheme for the time term, an explicit
and the aspect ratib=2h/d, where 4 is the distance be- Adams—Bashforth scheme for the nonlinear terms, and an
tween the endwalls, and=r* —r¥ . The scales for the di- implicit formula for the viscous diffusion ter?. The dis-
mensionless variables of space, time, and velocitgayeh,  cretized form of the momentum equation is
Qi_l, andQ;ri, respectively. The dimensionless radial and
axial coordinates are= (2r* —r* —r*)/d, re[—1;1],and 3VI*l1—-4vi4Vvi-?
z=2z*/h, ze[ —1;1] to allow the use of Chebyshev polyno- 25t
mials.

On the cylindrical boundaries, the dimensionless veloc-
ity (v,, vy, v,) Obeys the no-slip condition

+2(V-V)VI—(Vi"Ly)yi-l
=—-Vp*tli+ iAvi+1 (4
Re '
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TABLE I. Initial conditions for simulations.

Endwall Final number Final
Case condition Initial condition Perturbation of vortices waviness
A 0=0; 6 axisymmetric rolls Kinit=3 6 k=3
B 0e=Q; 6 axisymmetric rolls Kinit="5 6 k=2
C 0.=0 Case B(6 rolls, k=2) 8 k=2
D Q.=F Case C(8 rolls, k=2) 8 k=2
where | is the solution at time;=jét, 6t being the time v(r,6,z)=0.05 sirik;,,8) V(r, 6,2) (6)

step. An improved projection algorithm allows velocity—
pressure coupling The mesh grid is defined by the Gauss—

Lobatto collocation points along (z) and an equidistant dis- . X . N, .
tribution of points in the azimuthal direction, with, M, and six vortices, but case A retained the initial number of azi-

K being the number of radial, axial, and azimuthal points formuthal modes while case B settledks 2. This multiplicity

the spatial mesh. The approximation of flow variabfis of solutions for wavy vortex flow is consistent with experi-
—(Uo.w.p) is giv.en by ments having much larger aspect ratioand the general

nature of Taylor vortex flows. Attempts to simulate a fixed

in order to generate wavy vortices. Two different azimuthal
modes were considerekl,;= 3 andk;,;=5. Both resulted in

Wnmk(r,z,6,t) endwall condition'case C{2.=0) using the same method of
N M K21 perturbing the axisymmetric solution were unsuccessful—the
_ 2 E 2 ‘i’nml&t)Tn(f)Tm(Z)eike, (5) azimuthal perturbations were damped, suggesting that the
n=0 m=0 k=—K/2 critical conditions may be somewhat dependent on the end-

4.472 . _wall conditions. Instead, the final solution for case(#x
where .2,6) €[ ~1:1]°x[0:2x], T, and Ty, are Cheby vortices,k=2) was used as the initial condition for the fixed
endwall condition. The final result maintained two azimuthal
waves K=2) but developed eight vortical rolls, presumably
due to the splitting of the endwall Ekman vortex into two

shev polynomials, anﬁ'nmk are the Fourier coefficients. The
grid mesh isN=61,M=121,K=96 in the radial, axial, and
azimuthal directions, respectively. The high grid resolution

in the axial direction is helpful in avoiding any predisposi- counter-rotating vortices as a result of the different endwall

tlon.to a pa'rt|cular. numbgr .Of vortices appearing due to a(:onditions.(Rotating endwalls result in an outward Ekman
particular grid spacing. This is the same model that was use%

i our previ worke 516 where we have shown that the '2Ye' flow, while fixed endwalls result in an inward Ekman
our previous work, ere we have sho at the layer flow) Perturbing an axisymmetric solution with six

computational results match those for the transition anqoIIS for stress-free endwallgase D= F) resulted in the
shear in the rotor-stator case and are consistent with the ex- °

. ) . . erturbations being damped. Using the final solution for case
pected flow regimes in the counter-rotating cylinders cas g b g

not accounting for the different aspect ratio and radius ratio (six vort|cgs,k:2) as the initial cond|t|op .allso resu_lt'ed n
Thus, we are confident that our computational results faithfﬁj1II perturbgtlons being dampeql. The only initial conqmon for
fully r,eproduce experimental results for geometries similar toWhICh waviness could be_ obtalne_d was that of the fixed end-

wall condition(case C, eight vorticek=2). Of course, us-
those that we study here.

y . . . ing previous solutions as the initial conditions for other end-
The transition from axisymmetric Taylor vortices to 9P

wavy vortices is not firmly established. Experimentally Ob_wall conditions likely influenced the final flow field, but

. i given the multiplicity of solutions for wavy vortex flofv,
served points for the transitibhsuggest that forp=0.75 L
used in this study: =Re/Re ;i>5 should result in wavy this is to be expected. Consequently, the results presented

. . here can only be considered as representative of what are
vortex flow for large aspect ratids, where Rg.=85.8 is y P

- . likely to be several possible results.
the critical Reynolds number for transition to Taylor vortex Great care was taken to assure the convergence of the
flow.*® However, the Taylor instability also depends on the

. computational solution. The evolution of the nine lowest or-
acceleration rat&?-21In fact, the flow can revert to nonwavy P

flow under certain conditions including low aspect rafds der modes was tracked over time to be sure that the solution
Tob re that the flow would be w vgth impl tion W'rconverged to a nontransient result. In all cases, the evolution

0 be sure that e flow would be wavy, Ihe SIMUIations WerGy e modes clearly showed the transition from one primary
performed at = 8. Similar simulations using=6 instead of

. : . o azimuthal or axial mode to another having a distinct transient
e=28 resulted in all perturbations being damped within the, 9

computational times that were considered and no waviness gllowed by a nontransient, time—depend(_ant final result for a
N o . - ) fine at least as half as long as the transient.

all, indicating the difficulty in obtaining wavy vortices for

this small aspect ratio. The aspect ratio ias6.

Different initial conditions were necessary for the com-
putations for the different endwall conditions, as indicated in ~ We consider first the general structure of the flow and
Table I. For rotating endwall§cases A and B the initial  the vortices for all four cases. A surface at a nondimensional
condition was that from axisymmetric simulations having sixazimuthal velocity ofv,=0.5, halfway between the azi-
axisymmetric rolls: It was necessary to perturb this axisym- muthal velocity of the inner cylinder and that of the outer
metric flow with a global perturbation of cylinder, is shown in Fig. 1 for each of the cases. The sharp

Ill. RESULTS
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The endwall Ekman vortices are substantially elongated to
about 1.5, thereby compressing the Taylor vortices, so that
their height is 0.7% to 0.78d, which is substantially less
than the height of 1.00@ expected in the case of infinitely
long cylinderst® A similar effect was evident for nonwavy
vortices, although the endwall vortices were not elongated
quite as much. In that case, the length of the endwall vortex
increased from 1.1@ to 1.33d ase increased from 1.0 to
3.01 Apparently, the endwall vortex continues to lengthen as
e increases to 8.0 in the wavy vortex case studied here.
When the endwall is fixecase @, two extra vortices occur
due to the endwall vortex in the initial conditioicase B
splitting. This comes about because of the Ekman boundary
layer flow at the endwall. For the endwall rotating, the Ek-
man flow is radially outward at the endwall, but for a fixed
endwall, the Ekman flow is radially inward. As a result,
when case B for a rotating endwall was used as an initial
condition for case C of a fixed endwall, the large endwall
vortices evident for case B split into a pair of counter-
rotating vortices resulting in a total of eight vortices. Of
C:2.=0(k=2) D: 2=F(k=2) course, given the aspect ratio, these vortices have a height of
about 0.75. Since case C was used as the initial condition
FIG. 1. Visualization of the structure of the flow based on the isosurfacefgr the stress-free endwall conditions, the same number of

corresponding ta,=0.5. For cases A and B, a portion of the isosurface |/, icas with the same rotational sense occurred for the
near the top of the annulus is removed to show additional structures. Iden-

tical structures are hidden by the isosurface at the lower endwall. stress-free endwall conditioicase D.
In Fig. 1, the waviness is evident in the sharp ridges. The

predominant modek, of the waviness is more clearly shown
ridges correspond to outflow regions between counterin Fig. 3, which is based on contours of radial velocity in a
rotating vortices, where the vortical motion carries high azi-latitudinal plane aligned approximately with the sharp ridges
muthal momentum fluid from near the inner cylinder towardevident in Fig. 1. Mod&=3 predominates for case A, while
the outer cylinder. The vortical structures are more readilymodek=2 is dominant for the other cases. The symmetry of
apparent in Fig. 2, which shows velocity vectors in a meridi-the waves is apparent. This is in sharp contrast to the case of
onal plane and, for reference to Fig. 1, the contour correwavy vortex flow with counter-rotating cylinders, where

sponding tov ;2= 0.5. wavy modes are present, but the waves are much more
When the endwall is rotating with the inner cylinder in disordered*
cases A and BQ.=();), there are a total of six vortices. The wavy modes are damped near the endwalls as

FIG. 2. Velocity vectors in the meridi-

onal plane =0 demonstrating the

vortical structure of the flow. The

single contour on each plot corre-
sponds tow ,2=0.5. The inner cylinder

is the left vertical line; the outer cylin-

der is the right vertical line.

AQ=0k=3) B-0k=2) C2-0k=2 D 2=Fk=2)
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no-slip condition is imposed on the endwalls, the amplitude
of the azimuthal waviness is reduced substantially. In case A,
the k=12 mode dominates near the endwall over kixe3
mode, which is present near the center of the annulus. The
k=12 mode is also evident at the top of annulus in Fig. 1,
where the isosurface is cut away. In case B,kke€2 mode is
barely evident in the contours, clearly showing how the end-
wall minimizes the waviness. When the endwall is fixed
(case @, the k=2 waviness is evident, but greatly dimin-
ished from that near the center of the annulus. However, the
stress-free endwallcase D does not reduce the waviness
nearly as much, as evidenced by the clkar2 structures
shown for this case in Fig. 4.

An important question that arises is if the reduction in
the amplitude of the waviness is related to the endwalls be-
ing flat or if it is related to the viscous dissipation in the
boundary layer at the endwalls. While it may seem obvious
that a flat endwall would suppress the axial amplitude of the
azimuthal waviness, it is possible that the energy from the
axial motion could be transferred to radial or azimuthal mo-
FIG. 3. Contours ob, showing the azimuthal waviness, where the contours tion. Furthermore, it has been shown that the waviness in
range from 0 taw,=0.25 with Av,=0.0357. Case A: three waves are evi- wavy vortex flow has a substantial radial compon?érﬁon-
dent at a position 0.88 above the mid-plane of the axial length; case B: sequently, a flat endwall alone, in the absence of a viscous
two waves at 0.8 above the mid-plane; case C: two waves at @62 ,4nqary layer on the endwall, may not alter the radial wavy
above the mid-plane; case D: two waves at @Gbove the mid-plane. The . . ;
horizontal line represents—0, motion. In Fig. 4, case D for the stress-free endwall condi-

tion indirectly addresses this question. In this case, the am-

plitude of the waviness near the endwall is present even in
shown in Fig. 4, which depicts radial velocity contours the absence of an Ekman layer, although it is somewhat re-
analogous to those in Fig. 3 except in planes within the engduced compared to the waviness farther away from the end-
wall vortex. (Note that for all cases in Fig. 4 except D, the wall (in Fig. 3). This result is amplified when considering a

contour levels are much smaller than in Fig) @hen the ~measure of the total instantaneous spectral enéigypf an
azimuthal modek, defined as

Ex(r.2)=V2(k,r,2)+V2(k,r,z)+V2(k,r,2),

whereV,(k,r,z), Vy(k,r,z), andV,(k,r,z) are the Fourier
coefficients of the respective velocities at meridional position
(r, z) for azimuthal modé. Figure 5 shows contour plots of
Ey in meridional planes. Two modes are shown for case A,
corresponding to the primary azimuthal waviness near the
center of the annulusk& 3) and the higher mode waviness
(k=12) near the endwall, which is visible in Fig. 1. Only the
mode related to the primary azimuthal wavinegs=Q) is
shown for the other cases. In all situations except case D, the
spectral energy for the primary mode is negligible over the
entire region occupied by the endwall vortex and most of the
next adjacent vortex. Likewise, the spectral energy for modes
k=1, 3, and 4(not shown are negligible in the Ekman vor-
tex for no-slip endwallgcases A, B, and C For the higher
mode wavinessk=12) that coincides with the Ekman vor-
tex for case A, the mode is present in the Ekman endwall
vortex, unlike the low order modes, although it dies out at
the endwall.

FIG. 4. Contours of,, showing the azimuthal waviness at 0&rom the However, the key case to consider here is that for a
endwall. Case A: twelve waves are evident; the contours range from 0 tgtress-free endwall conditidicase D, where there is no Ek-
v,=0.04 withAv,=0.0057; case B: two waves of diminished amplitude are ygn layer. In this case, the endwall vortex is driven strictly

barely evident; the contours range from Qute=0.04; case C: two waves of . . - . . .
diminished amplitude are barely evident; the contours range fromQ to by the centrifugal instability with no influence of the viscous

=0.04; case D: Two waves are clearly evident; the contours range from 0 t0-SIip boundary condition at th? endwal_l- From Fig. 51 it is
v,=0.25 with Ay, =0.0357. clear that there is some energy in the primary mkee in
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()

Win 1 s

L

FIG. 5. Contours of a measure of the
spectral energyE,, for key modes.
Contours are equally spaced for all
cases from O to 0.0088 witlAE,
=5.87x10"*, except case Ak=12,
where the range is 0 to 9&10~° with
AE,=6.33x10"6. The maximum
value for each case is noted. The inner
cylinder is the left vertical line; the
outer cylinder is the right vertical line.

&
=
A2 =0 A: 2 =0 B: 2. =4 C.2=0
(k=3) (k=12) (k=2) (k=2) (k=2)

max=0.0064 max=0.000095 max=0.0087 max=0.0067 max=0.0079

the endwall vortex. However, the energy is much less on the  Returning to Fig. 5 and comparing it with Fig. 1, it is
side of the vortex nearest the endwall than on the other sidguite clear that the dominant azimuthal waviness mode is
of the vortex. Furthermore, unlike case C, where there isnost significant just above and below outflow boundaries,
very little energy in the wavy mode in the vortex adjacent towhich coincide with the sharp ridges of the isosurfaces of
the endwall vortex, there is substantial energy in this adjaFig. 1, consistent with experimental results for sniaf®
cent vortex in case D. Previous flow visualization results for long cylinders at high
Given that the flat endwall must necessarily suppres®keynolds numbers sometimes indicate that one of the bound-
axial modes for a stress-free endwéathse D, we would  aries(either inflow or outflow is more wavy than the other
expect that the mode=2 energy at the endwall is primarily boundary>?"?® However, it is not possible to determine
in the radial and azimuthal components of velocity. The in-which boundary is which from the visualization. Measure-
dividual contributions taE, from the radial, axial, and azi- ments of wavy vortices in long cylinders indicate that the
muthal components of velocity are shown in Fig. 6. It isinflow boundaries have a larger amplitude of the waves than
quite clear that the radial and azimuthal contributions tothe outflow boundaries at high Reynolds nunféFhis, of
modek=2 are present near the endwall, but are small, whilecourse, contradicts the results presented here that show a
the axial component is zero. In fact, halfway across the gagreater energy fok=2 wavy mode near outflow boundaries.
at the endwall, the radial and azimuthal contributions to theJnfortunately, the contradiction cannot be resolved, other
k=2 mode are only about 16% of their maximum values thathan to say that the multiplicity of solutions that character-
occur along an axial line halfway across the gap. Anotheizes wavy vortex flow may permit either situation, just as
way of looking at this is that the radial contribution to the different numbers of waves or vortices can occur.
k=2 mode is only 6.6% and the azimuthal contribution is At this point, we consider the Ekman layer in more de-
only 8.2% of the maximum total energy of the mode thattail. Velocity profiles forv,(z) midway between the inner
occurs along an axial line halfway across the gap. Of courseylinder and the outer cylinder are shown in Fig. 7 for all
for the no-slip endwall conditions, both of these contribu-three k=2 cases(Although we do not consider thie=3
tions are reduced to zero at the endwall due to the combinaase for a rotating endwall, the results are quite similar to the
tion of the flat endwall and viscous dissipation. Thus, it isk=2 case for the same endwall condition§hese profiles
clear that while the flatness of the endwall is most importantire analogous to velocity vector profiles for the axisymmet-
to the reduced waviness near the endwall, the viscous dissiic case! except that the waviness for the situation consid-
pation in the Ekman layer also plays a small role. At thisered here requires multiple profiles at different azimuthal po-
point it is necessary to note that we carefully checked thesitions making it quite difficult to clearly show the profile
evolution of the solution for modk=2 near the endwall to using velocity vectors. Instead of using vectors in the meridi-
be sure that it achieved a nontransient condition, so it is cleasnal plane, here we plot the profile of the radial veloaity,
that the flow is fully developed. in the upper half of the annulus. The contours in Fig. 7 for
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N The Ekman layer thickness is related to the Ekman number
as /L~ (EK)Y2=(v/QL?)Y? whereL is a length scale in
the problenf. From the form of the relation, it is clear that
the choice of the length scale is not crucial, so we choose to
use the gap widthl as the length scale. After converting to
Re and %, the estimated value for the Ekman layer thickness
is dg/d~{n/[Re(1—7)}?=0.066. This value compares
quite well to the Ekman layer thickness indicated in Fig. 7
for case B of6g=0.065d, but is substantially less than the
Ekman layer thickness afz=0.147d for case C. Thus, the
Ekman layer is a little over twice as thick for the fixed end-
walls as for the rotating endwal(based on the axial position
of the maximum radial velocity at the endwalThis result is
consistent with the Ekman layer thicknesses for simulations
of axisymmetric Taylor vortex flow with differing endwall
conditions! In that case, the estimated Ekman layer thick-
ness halfway across the annular gap was @.,1@nd the
measured Ekman layer thickness was @Jjast above the
critical Reynolds number for rotating endwalkquivalent to
case B and 0.29 for fixed endwallgequivalent to case )C
Thus, the Ekman layer was just under twice as thick for the
fixed endwall as for the rotating endwalNote that the Ek-
I}rz k=2,r,2) I}(} (k=2,r,2) I}Z2 (k=2,r,2) man layer thickness was measured slightly differently in the
Max = 0.00136 Max = 0.00625 Max = 0.00267 two caseg. The explanation for the difference in thickness
‘ for a rotating endwall and a fixed endwall is probably related
FIG. 6. Contours of,_, for each velocity component for stress-free end- t0 the driving force for the Ekman flow. Using a simple
wall conditiqns. Sixte_en contours are equ_ally ;paced from O to t_he ma_ximunprediction scheme for the Ekman boundary layer flow based
\r/iglrlljte\.l;gg;lr}?neg cylinder is the left vertical line; the outer cylinder is the on the imbalance between the outward centrifugal force and
' the inward pressure gradient fort@ne can show that the
driving force for the Ekman flow averaged over the endwall
cases B and C clearly show the Ekman layer near the ends about 3.6 times greater for rotating endwalls than for fixed
wall (2.9<z*/d<3). Profiles are plotted for several azi- endwalls. The larger force imbalance drives a faster bound-
muthal positiongas evidenced by the multiple curves in the ary layer flow for rotating endwall&as is clear in Fig. 7 for
lower parts of the figune but very near the endwall the pro- case B, which in turn, results a thinner boundary layer.
files overlay one another for all cases except the stress-free Of course, the absence of an Ekman boundary layer for
endwall(case D. the stress-free boundary condition is quite clear for case D in
The overlapping profiles near the endwall indicate thatFig. 7. Furthermore, the variation in radial velocity that con-
the Ekman layer thickness remains essentially constant, irtributes to the modé&=2 energy near the endwakvident
dependent of the waviness of the vortices closer to the centém Fig. 6) is quite apparent from Fig. 7 near the endwall.
of the annulus. Indeed, measurements of the Ekman layer Several other features are evident in Fig. 7. First, for
thicknesség based on the axial position of the maximum cases B and C the curves for the velocity profiles at different
radial velocity near the endwall show that the thickness doeazimuthal locations overlay one another near the endwall,
not vary with 6 to within the resolution of the calculations. but spread out moving away from the endwall. Of course, the

3 7 2: 3~_\

2.5 . 2.5 A

24 2 4 2
z*/d 15 1.5 1.5 - FIG. 7. Radial velocity profiles(,)
for azimuthal position®=0 to 27 at

L L 11 the center of the gap for the upper half
i of the annulus. Outward flow is posi-
0.5 0.5 1 0.5 tive.

o N« N

0.4 0 0.4 0.4 0 0.4 0.4 0 0.4
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TABLE II. Waviness as measured by the variation in the axial position ofthe endwalls simply because the endwalls are flat. The key
vr=0 (centey, maximumo, (outflow boundary, or minimumo, (inflow  regIt here is that even for a stress-free endwall condition,

boundary. where only the flatness of the endwall plays a role without

B: Q.,=Q; C:Qe=0 D:Q.-=F the effect of the no-slip condition at the wall, nearly all of the
Condition (k=2) (k=2) (k=2) energy related to the waviness is suppressed, as shown in

Center of endwall vortex 0.08 0.08d 0.06d Fig. 5. The small amount of energy that remains right at the

Boundary between endwall is divided between radial and azimuthal contribu-
endwall vortex and tions to the primary azimuthal modgig. 6). Thus, a key

adjacent vortex 0.04 0.14d 0.26d . . . . . .

Outflow boundary ¢,>0) 0.23d 0.30d 0.30d result is that the suppression of the waviness is primarily

Inflow boundary ¢,<0) 0.16d 0.16d 0.16d related to the flatness of the endwall and only secondarily

related to the no-slip boundary condition.
Surprisingly, the side of the endwall vortex opposite the

stress-free endwall is largely unaffected by the flatness of the

spread in the axial direction is a result of the waviness of theendwall and has substantial energy related to the waviness,

vortices, which, as was shown earlier, is largely damped O.ués shown in Fig. 5. The situation is quite different for the
by the endwalls. The motion of the boundary between vorti- . i,

- A . no-slip endwall conditions, where nearly all of the energy
ces can be quantified based on the variation in the axial po-

sition of the local maximum/minimum of the radial velocity. related to the azimuthal wavin_ess s suppressgd in not only
Likewise, the axial motion of the center of a vortex can bethed enﬁwgll vorte>:1, bUt, also in thehvortk(]ex a}d]acent LO the
quantified by the variation in the axial position of the local €"9Wa (Fig. 5. Thus, it appears that t € viscous Ekman

zero in the radial velocity profiles. Results are presented iffloW at the endwall suppresses the waviness further away
Table II. from the endwall than a fldstress-fregendwall alone. Nev-

The waviness of the endwall vortex as measured by th&rtheless, the waviness is clearly apparent at the boundary
motion of the center of the endwall vortex is small in all between the vortex adjacent to the endwall vortex and the
cases. The waviness of the boundary between the endwdlEXt vortex, as shown for case B in Fig. 7. Thus, the damping
vortex and the next vortex remains relatively small whereeffect of the endwall on the waviness does not penetrate far
there are no-slip endwalls, cases B and C. For the free-sliffom the endwall, even for the short annulus considered here.
condition, the motion is much larger, reflecting the reduced  One might expect that the interaction of the no-slip con-
impact of the stress-free endwall on reducing the wavinesdlition at the endwall with the waviness might lead to a dis-
The waviness of the boundaries between vortices is mucbrdered, chaotic behavior either near the endwall or in the
larger farther from the endwall for outflow boundaries thanentire short annulus, or perhaps a symmetry-breaking condi-
for inflow boundaries, as noted with regard to Fig. 5. tion such as anomalous modesiowever, this is not the

A final comment regarding the radial velocity profiles in case. The flow remains well-ordered and symmetric with re-
Fig. 7 is that the maximum radial velocity at outflow bound- spect to the dominant azimuthal mode both in the endwall
aries isv,~0.25 and at inflow boundariesis~0.20 for the  yortex and near the center of the length of the cylinders, as
conditions simulated heres(8). This radial velocity is  shown in Figs. 1, 3, and 4. However, in one case a mode that
somewhat larger than that seen for nonwavy flow where thg; 5 multiple of the primary azimuthal mode appears near the
radial veI(_)city incregses linearly from zero just belew 0  ongwall (case A in Figs. 1 and)4 presumably due to the
to a maximum radial outflow velocity of,~0.20 alnd @ interaction of the azimuthal waviness with the viscous end-
maximum radial inflow velocity ofv,~0.12 ate=3." (In |5 boundary layer. There is evidence of higher order modes
Fig. 12 of Ref. 1, the radial velocity is nondimensionalized near the endwalls in previous flow visualization results for

fb}(;r:;(rl]i(’)cr;it ’ngzzlretgi’g"t!i;r felor\,(;tz_irt;]onal_fpei?egt iLa;S;EZn wavy vortex flow. Specifically, Coles classic paper on the
' vorti vort - 1NUS, LIS ' multiplicity of solutions for circular Couette flow includes

strength of the vortical motion continues to grow with in- ) : . . . .
’ . . some figures in which a higher order mode is evident very
creasing Reynolds number into the wavy vortex flow regime.
ear the endwalls for son{but not al) cases of wavy vortex

This, of course, is consistent with previous experimental .
P P low (see Figs. 16, 19, 20, and 2% However, the flow

results?® J R =2 ) .
visualization results indicate a much higher multiple of the
primary azimuthal modéestimated from the photos to be 7

IV. CONCLUSIONS to 10) than the multiple of four evident for case A in Fig. 4 of

Although much of the previous research on wavy vortexOUr simulations, so it is not clear if this is the same phenom-
flow in a cylindrical Couette geometry has avoided the prob-£non.
lem of endwall conditions on the flow, we have directly ad-  Finally, the waviness away from the endwall does not
dressed the effect of the endwalls on the flow by altering theffect the thickness of the Ekman layer on the endwall. In
endwall conditions computationally. The endwall boundaryfact, the predicted layer thickness matches that in the simu-
conditions have a profound effect on the flow for the endwalllations fairly well after accounting for the difference in the
vortices and the vortices immediately adjacent to the endwalllriving force for the endwall flow. The endwall boundary
vortices. Clearly, the azimuthal waviness, which has its larglayer thickness varies negligibly with azimuthal position in
est amplitude in the axial direction, is suppressed very neaspite of the waviness of the vortices a short distance away.
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