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The finite length of a Taylor–Couette cell introduces endwall effects that interact with the
centrifugal instability and the subsequent wavy vortex flow. We investigate the interaction between
the endwall Ekman boundary layers and the wavy vortices in a finite-length cavity via direct
numerical simulation using a three-dimensional spectral method. To analyze the nature of the
interaction between the vortices and the endwall layers, we consider three endwall boundary
conditions: fixed endwalls, endwalls rotating with the inner cylinder, and stress-free endwalls. Near
the endwalls, the waviness is diminished, primarily due to the effect of the flatness of the endwall
rather than as a result of the no-slip boundary condition at the endwall. However, the waviness is
present just one or two vortices away from the endwalls, indicating that the effect of the endwall on
waviness does not penetrate far from the endwall. The interaction of the waviness with the endwall
Ekman layer does not appear to result in disorder in the flow, either in the endwall vortex or farther
from the endwall. Likewise, the waviness does not significantly alter Ekman layer thickness from
that predicted based on theory. ©2004 American Institute of Physics.@DOI: 10.1063/1.1652671#

I. INTRODUCTION

Shear flow between a rotating inner cylinder and a fixed
outer cylinder, commonly known as Taylor–Couette flow,
becomes centrifugally unstable when the rotational speed ex-
ceeds a critical value resulting in toroidal Taylor vortices. At
higher speeds, a secondary instability results in an azimuthal
waviness of the vortices, known as wavy vortex flow. Re-
searchers often consider the flow independent of the confin-
ing endwalls: theoretical studies assume that the cylinders
are infinitely long; experimental studies use long cylinders
compared to the gap between the cylinders; computational
studies incorporate periodic boundary conditions to avoid
endwall effects. Here we specifically consider the interaction
between the boundary-driven flows at the endwalls and the
wavy vortices, extending our previous study of the effect of
endwalls on the Taylor instability and axisymmetric Taylor
vortices.1

Far from the endwalls, the radial velocity is zero due to
the geostrophic force balance for stable Couette flow. Near
the endwalls the no-slip boundary condition upsets the force
balance resulting in a radial velocity boundary layer near the
endwalls, known as an Ekman layer~although it might be
more appropriately considered a Bo¨dewadt flow, since the
endwall is usually fixed and the fluid is rotating!. The thick-
ness of this boundary layer scales with (n/V)1/2, wheren is
the kinematic viscosity andV is an angular velocity scale.2

This boundary layer flow drives a vortical cell adjacent to the
endwall, often called an Ekman vortex.1,3–5The Ekman vor-

tex upsets the sharp pitchfork bifurcation for the transition to
vortical flow that would occur for infinitely long cylinders
resulting in a continuous transition from a featureless stable
flow to a cellular flow with the rotation of the vortex adjacent
to the endwall defined by the rotation of the Ekman
vortex.1,3–7 Furthermore, the imposition of an endwall pre-
scribes which branch of the bifurcation the flow will prefer—
that consistent with the rotation of the endwall Ekman vor-
tex. A flow consistent with a second, disconnected branch
corresponding to the vortex adjacent to the endwall rotating
opposite that of the Ekman vortex can also occur under cer-
tain conditions.8,9

It is evident that the endwalls play a significant role in
determining the nature of the bifurcation from stable to vor-
tical flow. The endwalls can play an important role for short
cylinders even at higher order transitions, since the vortices
are never far from the endwalls. For example, the transition
from nonwavy Taylor vortices to wavy vortices occurs at a
higher rotational speed for short cylinders than for infinitely
long cylinders,10 apparently because the endwall vortices re-
lated to the endwall boundary layers impede the transition to
wavy vortices. Likewise, the transition from wavy vortex
flow to modulated wavy vortex flow occurs at a higher rota-
tional speed for shorter cylinders.11

It is the interaction between the endwalls and the wavy
vortices that is the topic of this paper. We consider wavy
vortex flow between short cylinders for cylindrical Couette
flow with the inner cylinder rotating and the outer cylinder
fixed, known as the rotor-stator configuration. By using a
variety of endwall conditions including fixed endwalls, end-
walls rotating with the inner cylinder, and stress-free end-
walls ~modeling a flat surface without surface tension to
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eliminate the effect of viscosity at the endwall!, we investi-
gate the interaction between the endwall boundary layer and
the wavy vortical structure.

We used a similar approach to study the transition from
nonvortical to vortical flow.1 In that case, we found that be-
low the critical Taylor number, endwall vortices for rotating
endwalls are more than twice the strength of the vortices for
fixed endwalls. This trend continues well above the transition
to vortical flow, consistent with a simple force balance analy-
sis based on the deviation from geostrophic flow at the end-
walls that can be used to determine the magnitude and direc-
tion of the endwall boundary layer flow. Stress-free endwalls
result in endwall vortices that are similar in strength to those
for rotating endwalls above the critical Taylor number. How-
ever, fixed endwall and rotating endwall conditions result in
vortices that are distorted in the radial direction and axially
elongated due to the interaction between the endwall bound-
ary layer and the Taylor vortices. The bifurcation diagram
based on the radial velocity near the center of the annulus
changes significantly depending on the endwall boundary
condition. For stress-free endwall conditions, the bifurcation
is quite sharp. Unless the initial conditions are specifically
set to favor the other fork of the bifurcation, the fork related
to radial outflow at the endwall results when the simulation
is started from a zero velocity initial condition. For rotating
and fixed endwalls, there is a continuous transition from a
featureless flow to a cellular flow because of the develop-
ment of Ekman vortices well below the critical Reynolds
number for the transition from nonvortical to vortical flow.

The case of wavy vortex flow is considerably more com-
plex than that of axisymmetric vortices, primarily because
the computations are three-dimensional instead of two-
dimensional. In addition, the interpretation of the results is
not as clear because the flow is time-dependent. Neverthe-
less, considering wavy vortex flow in the rotor-stator geom-
etry allows us to further understand the complex interaction
between the wavy vortex flow due to the centrifugal instabil-
ity and the endwall boundary layer flow.

II. GEOMETRY AND NUMERICAL METHOD

The configuration that is considered is an annular cavity
between two concentric cylinders of inner and outer radiir i*
and r o* , with the inner cylinder rotating atV i and the outer
cylinder fixed. The flow is described by the incompressible,
three-dimensional Navier–Stokes equations written using cy-
lindrical coordinates (r * ,z* ,u) in an absolute frame of ref-
erence, according to the velocity–pressure formulation. Pa-
rameters characteristic of the physical problem are the
Reynolds number Rei5Viri*d/v, the radius ratioh5r i* /r o* ,
and the aspect ratioG52h/d, where 2h is the distance be-
tween the endwalls, andd5r o* 2r i* . The scales for the di-
mensionless variables of space, time, and velocity ared or h,
V i

21, andV i r i* , respectively. The dimensionless radial and
axial coordinates arer 5(2r * 2r o* 2r i* )/d, r P@21;1#, and
z5z* /h, zP@21;1# to allow the use of Chebyshev polyno-
mials.

On the cylindrical boundaries, the dimensionless veloc-
ity (v r , vu , vz) obeys the no-slip condition

v r5vz50, vu51 at r 521, zP@21;1#,

v r5vz50, vu50 at r 51, zP@21;1#. ~1!

Three endwall conditions are considered, depending on the
rotation of the endwall,Ve : ~1! stationary endwall (Ve

50); ~2! rotation of the endwall with the inner cylinder
(Ve5V i); and ~3! a stress-free boundary condition on the
endwall, which is equivalent to a flat, free surface with neg-
ligible surface tension~designatedVe5F). As described in
our previous study of axisymmetric Taylor–Couette flow,1

the singularity in the azimuthal velocityvu at the corner
where the cylinder has a different rotational speed than the
endwall is handled by forcing the velocity to change expo-
nentially to that of the adjacent cylinder. The dimensionless
form of the boundary conditions for the azimuthal velocity at
z561 are

v r5vz50, vu5
e2ar2e2a

ea2e2a for Ve50,

v r5vz50, vu5
~12h!r 111h

2h
•

e2ar2e2a

ea2e2a

for Ve5V i , ~2!

vz50,
]v r

]z
5

]vu

]z
50 for Ve5F.

The region in which the velocity changes from that of the
cylinder to that of the endwall is set to about 0.05d, consis-
tent with the gap between the endwall and the cylinder in an
equivalent experimental system, by adjusting the decay co-
efficient a. The distance 0.05d corresponds to about ten
computational mesh points to assure a smooth transition.

The dimensionless incompressible Navier–Stokes mo-
mentum equation is

]V

]t
1~V"“ !V52“p1

1

Re
DV. ~3!

The solutions to the Navier–Stokes equations are computed
using a pseudo-spectral Fourier–Chebyshev collocation
method taking advantage of the orthogonality properties of
Chebyshev polynomials and providing exponential
convergence.12 The time scheme is semi-implicit and second-
order accurate. It is a combination of the second-order back-
ward implicit Euler scheme for the time term, an explicit
Adams–Bashforth scheme for the nonlinear terms, and an
implicit formula for the viscous diffusion term.13 The dis-
cretized form of the momentum equation is

3Vj 1124Vj1Vj 21

2dt
12~Vj "“ !Vj2~Vj 21"“ !Vj 21

52“pj 111
1

Re
DVj 11, ~4!
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where j is the solution at timet j5 j dt, dt being the time
step. An improved projection algorithm allows velocity–
pressure coupling.14 The mesh grid is defined by the Gauss–
Lobatto collocation points along (r ,z) and an equidistant dis-
tribution of points in the azimuthal direction, withN, M , and
K being the number of radial, axial, and azimuthal points for
the spatial mesh. The approximation of flow variablesC
5(u,v,w,p) is given by

CNMK~r ,z,u,t !

5 (
n50

N

(
m50

M

(
k52K/2

K/221

Ĉnmk~ t !Tn~r !Tm~z!eiku, ~5!

where (r ,z,u)P@21;1#23@0;2p#, Tn and Tm are Cheby-
shev polynomials, andĈnmk are the Fourier coefficients. The
grid mesh isN561, M5121,K596 in the radial, axial, and
azimuthal directions, respectively. The high grid resolution
in the axial direction is helpful in avoiding any predisposi-
tion to a particular number of vortices appearing due to a
particular grid spacing. This is the same model that was used
in our previous work,1,15,16 where we have shown that the
computational results match those for the transition and
shear in the rotor-stator case and are consistent with the ex-
pected flow regimes in the counter-rotating cylinders case
not accounting for the different aspect ratio and radius ratio.
Thus, we are confident that our computational results faith-
fully reproduce experimental results for geometries similar to
those that we study here.

The transition from axisymmetric Taylor vortices to
wavy vortices is not firmly established. Experimentally ob-
served points for the transition17 suggest that forh50.75
used in this study«5Rei /Rei,crit.5 should result in wavy
vortex flow for large aspect ratiosG, where Rei,crit585.8 is
the critical Reynolds number for transition to Taylor vortex
flow.18 However, the Taylor instability also depends on the
acceleration rate.19–21In fact, the flow can revert to nonwavy
flow under certain conditions including low aspect ratios.22

To be sure that the flow would be wavy, the simulations were
performed at«58. Similar simulations using«56 instead of
«58 resulted in all perturbations being damped within the
computational times that were considered and no waviness at
all, indicating the difficulty in obtaining wavy vortices for
this small aspect ratio. The aspect ratio wasG56.

Different initial conditions were necessary for the com-
putations for the different endwall conditions, as indicated in
Table I. For rotating endwalls~cases A and B!, the initial
condition was that from axisymmetric simulations having six
axisymmetric rolls.1 It was necessary to perturb this axisym-
metric flow with a global perturbation of

v~r ,u,z!50.05 sin~kinitu!V~r ,u,z! ~6!

in order to generate wavy vortices. Two different azimuthal
modes were considered,kinit53 andkinit55. Both resulted in
six vortices, but case A retained the initial number of azi-
muthal modes while case B settled tok52. This multiplicity
of solutions for wavy vortex flow is consistent with experi-
ments having much larger aspect ratios23 and the general
nature of Taylor vortex flows. Attempts to simulate a fixed
endwall condition~case C,Ve50) using the same method of
perturbing the axisymmetric solution were unsuccessful—the
azimuthal perturbations were damped, suggesting that the
critical conditions may be somewhat dependent on the end-
wall conditions. Instead, the final solution for case B~six
vortices,k52) was used as the initial condition for the fixed
endwall condition. The final result maintained two azimuthal
waves (k52) but developed eight vortical rolls, presumably
due to the splitting of the endwall Ekman vortex into two
counter-rotating vortices as a result of the different endwall
conditions.~Rotating endwalls result in an outward Ekman
layer flow, while fixed endwalls result in an inward Ekman
layer flow.! Perturbing an axisymmetric solution with six
rolls for stress-free endwalls~case D,Ve5F! resulted in the
perturbations being damped. Using the final solution for case
B ~six vortices,k52) as the initial condition also resulted in
all perturbations being damped. The only initial condition for
which waviness could be obtained was that of the fixed end-
wall condition~case C, eight vortices,k52). Of course, us-
ing previous solutions as the initial conditions for other end-
wall conditions likely influenced the final flow field, but
given the multiplicity of solutions for wavy vortex flow,23

this is to be expected. Consequently, the results presented
here can only be considered as representative of what are
likely to be several possible results.

Great care was taken to assure the convergence of the
computational solution. The evolution of the nine lowest or-
der modes was tracked over time to be sure that the solution
converged to a nontransient result. In all cases, the evolution
of the modes clearly showed the transition from one primary
azimuthal or axial mode to another having a distinct transient
followed by a nontransient, time-dependent final result for a
time at least as half as long as the transient.

III. RESULTS

We consider first the general structure of the flow and
the vortices for all four cases. A surface at a nondimensional
azimuthal velocity ofvu50.5, halfway between the azi-
muthal velocity of the inner cylinder and that of the outer
cylinder, is shown in Fig. 1 for each of the cases. The sharp

TABLE I. Initial conditions for simulations.

Case
Endwall
condition Initial condition Perturbation

Final number
of vortices

Final
waviness

A Ve5V i 6 axisymmetric rolls kinit53 6 k53
B Ve5V i 6 axisymmetric rolls kinit55 6 k52
C Ve50 Case B~6 rolls, k52) ¯ 8 k52
D Ve5F Case C~8 rolls, k52) ¯ 8 k52
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ridges correspond to outflow regions between counter-
rotating vortices, where the vortical motion carries high azi-
muthal momentum fluid from near the inner cylinder toward
the outer cylinder. The vortical structures are more readily
apparent in Fig. 2, which shows velocity vectors in a meridi-
onal plane and, for reference to Fig. 1, the contour corre-
sponding tovu50.5.

When the endwall is rotating with the inner cylinder in
cases A and B (Ve5V i), there are a total of six vortices.

The endwall Ekman vortices are substantially elongated to
about 1.5d, thereby compressing the Taylor vortices, so that
their height is 0.75d to 0.78d, which is substantially less
than the height of 1.002d expected in the case of infinitely
long cylinders.18 A similar effect was evident for nonwavy
vortices, although the endwall vortices were not elongated
quite as much. In that case, the length of the endwall vortex
increased from 1.17d to 1.33d as « increased from 1.0 to
3.0.1 Apparently, the endwall vortex continues to lengthen as
« increases to 8.0 in the wavy vortex case studied here.
When the endwall is fixed~case C!, two extra vortices occur
due to the endwall vortex in the initial condition~case B!
splitting. This comes about because of the Ekman boundary
layer flow at the endwall. For the endwall rotating, the Ek-
man flow is radially outward at the endwall, but for a fixed
endwall, the Ekman flow is radially inward. As a result,
when case B for a rotating endwall was used as an initial
condition for case C of a fixed endwall, the large endwall
vortices evident for case B split into a pair of counter-
rotating vortices resulting in a total of eight vortices. Of
course, given the aspect ratio, these vortices have a height of
about 0.75d. Since case C was used as the initial condition
for the stress-free endwall conditions, the same number of
vortices with the same rotational sense occurred for the
stress-free endwall condition~case D!.

In Fig. 1, the waviness is evident in the sharp ridges. The
predominant mode,k, of the waviness is more clearly shown
in Fig. 3, which is based on contours of radial velocity in a
latitudinal plane aligned approximately with the sharp ridges
evident in Fig. 1. Modek53 predominates for case A, while
modek52 is dominant for the other cases. The symmetry of
the waves is apparent. This is in sharp contrast to the case of
wavy vortex flow with counter-rotating cylinders, where
wavy modes are present, but the waves are much more
disordered.24

The wavy modes are damped near the endwalls as

FIG. 1. Visualization of the structure of the flow based on the isosurface
corresponding tovu50.5. For cases A and B, a portion of the isosurface
near the top of the annulus is removed to show additional structures. Iden-
tical structures are hidden by the isosurface at the lower endwall.

FIG. 2. Velocity vectors in the meridi-
onal plane u50 demonstrating the
vortical structure of the flow. The
single contour on each plot corre-
sponds tovu50.5. The inner cylinder
is the left vertical line; the outer cylin-
der is the right vertical line.
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shown in Fig. 4, which depicts radial velocity contours
analogous to those in Fig. 3 except in planes within the end-
wall vortex. ~Note that for all cases in Fig. 4 except D, the
contour levels are much smaller than in Fig. 3.! When the

no-slip condition is imposed on the endwalls, the amplitude
of the azimuthal waviness is reduced substantially. In case A,
the k512 mode dominates near the endwall over thek53
mode, which is present near the center of the annulus. The
k512 mode is also evident at the top of annulus in Fig. 1,
where the isosurface is cut away. In case B, thek52 mode is
barely evident in the contours, clearly showing how the end-
wall minimizes the waviness. When the endwall is fixed
~case C!, the k52 waviness is evident, but greatly dimin-
ished from that near the center of the annulus. However, the
stress-free endwall~case D! does not reduce the waviness
nearly as much, as evidenced by the cleark52 structures
shown for this case in Fig. 4.

An important question that arises is if the reduction in
the amplitude of the waviness is related to the endwalls be-
ing flat or if it is related to the viscous dissipation in the
boundary layer at the endwalls. While it may seem obvious
that a flat endwall would suppress the axial amplitude of the
azimuthal waviness, it is possible that the energy from the
axial motion could be transferred to radial or azimuthal mo-
tion. Furthermore, it has been shown that the waviness in
wavy vortex flow has a substantial radial component.25 Con-
sequently, a flat endwall alone, in the absence of a viscous
boundary layer on the endwall, may not alter the radial wavy
motion. In Fig. 4, case D for the stress-free endwall condi-
tion indirectly addresses this question. In this case, the am-
plitude of the waviness near the endwall is present even in
the absence of an Ekman layer, although it is somewhat re-
duced compared to the waviness farther away from the end-
wall ~in Fig. 3!. This result is amplified when considering a
measure of the total instantaneous spectral energy,Ek , of an
azimuthal mode,k, defined as

Ek~r ,z!5V̂r
2~k,r ,z!1V̂u

2~k,r ,z!1V̂z
2~k,r ,z!,

where V̂r(k,r ,z), V̂u(k,r ,z), and V̂z(k,r ,z) are the Fourier
coefficients of the respective velocities at meridional position
(r , z) for azimuthal modek. Figure 5 shows contour plots of
Ek in meridional planes. Two modes are shown for case A,
corresponding to the primary azimuthal waviness near the
center of the annulus (k53) and the higher mode waviness
(k512) near the endwall, which is visible in Fig. 1. Only the
mode related to the primary azimuthal waviness (k52) is
shown for the other cases. In all situations except case D, the
spectral energy for the primary mode is negligible over the
entire region occupied by the endwall vortex and most of the
next adjacent vortex. Likewise, the spectral energy for modes
k51, 3, and 4~not shown! are negligible in the Ekman vor-
tex for no-slip endwalls~cases A, B, and C!. For the higher
mode waviness (k512) that coincides with the Ekman vor-
tex for case A, the mode is present in the Ekman endwall
vortex, unlike the low order modes, although it dies out at
the endwall.

However, the key case to consider here is that for a
stress-free endwall condition~case D!, where there is no Ek-
man layer. In this case, the endwall vortex is driven strictly
by the centrifugal instability with no influence of the viscous
no-slip boundary condition at the endwall. From Fig. 5, it is
clear that there is some energy in the primary modek52 in

FIG. 3. Contours ofv r showing the azimuthal waviness, where the contours
range from 0 tov r50.25 with Dv r50.0357. Case A: three waves are evi-
dent at a position 0.85d above the mid-plane of the axial length; case B:
two waves at 0.85d above the mid-plane; case C: two waves at 0.62d
above the mid-plane; case D: two waves at 0.62d above the mid-plane. The
horizontal line representsu50.

FIG. 4. Contours ofv r showing the azimuthal waviness at 0.57d from the
endwall. Case A: twelve waves are evident; the contours range from 0 to
v r50.04 withDv r50.0057; case B: two waves of diminished amplitude are
barely evident; the contours range from 0 tov r50.04; case C: two waves of
diminished amplitude are barely evident; the contours range from 0 tov r

50.04; case D: Two waves are clearly evident; the contours range from 0 to
v r50.25 withDv r50.0357.
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the endwall vortex. However, the energy is much less on the
side of the vortex nearest the endwall than on the other side
of the vortex. Furthermore, unlike case C, where there is
very little energy in the wavy mode in the vortex adjacent to
the endwall vortex, there is substantial energy in this adja-
cent vortex in case D.

Given that the flat endwall must necessarily suppress
axial modes for a stress-free endwall~case D!, we would
expect that the modek52 energy at the endwall is primarily
in the radial and azimuthal components of velocity. The in-
dividual contributions toEk from the radial, axial, and azi-
muthal components of velocity are shown in Fig. 6. It is
quite clear that the radial and azimuthal contributions to
modek52 are present near the endwall, but are small, while
the axial component is zero. In fact, halfway across the gap
at the endwall, the radial and azimuthal contributions to the
k52 mode are only about 16% of their maximum values that
occur along an axial line halfway across the gap. Another
way of looking at this is that the radial contribution to the
k52 mode is only 6.6% and the azimuthal contribution is
only 8.2% of the maximum total energy of the mode that
occurs along an axial line halfway across the gap. Of course,
for the no-slip endwall conditions, both of these contribu-
tions are reduced to zero at the endwall due to the combina-
tion of the flat endwall and viscous dissipation. Thus, it is
clear that while the flatness of the endwall is most important
to the reduced waviness near the endwall, the viscous dissi-
pation in the Ekman layer also plays a small role. At this
point it is necessary to note that we carefully checked the
evolution of the solution for modek52 near the endwall to
be sure that it achieved a nontransient condition, so it is clear
that the flow is fully developed.

Returning to Fig. 5 and comparing it with Fig. 1, it is
quite clear that the dominant azimuthal waviness mode is
most significant just above and below outflow boundaries,
which coincide with the sharp ridges of the isosurfaces of
Fig. 1, consistent with experimental results for smallG.26

Previous flow visualization results for long cylinders at high
Reynolds numbers sometimes indicate that one of the bound-
aries~either inflow or outflow! is more wavy than the other
boundary.23,27,28 However, it is not possible to determine
which boundary is which from the visualization. Measure-
ments of wavy vortices in long cylinders indicate that the
inflow boundaries have a larger amplitude of the waves than
the outflow boundaries at high Reynolds number.25 This, of
course, contradicts the results presented here that show a
greater energy fork52 wavy mode near outflow boundaries.
Unfortunately, the contradiction cannot be resolved, other
than to say that the multiplicity of solutions that character-
izes wavy vortex flow may permit either situation, just as
different numbers of waves or vortices can occur.23

At this point, we consider the Ekman layer in more de-
tail. Velocity profiles forv r(z) midway between the inner
cylinder and the outer cylinder are shown in Fig. 7 for all
three k52 cases.~Although we do not consider thek53
case for a rotating endwall, the results are quite similar to the
k52 case for the same endwall conditions.! These profiles
are analogous to velocity vector profiles for the axisymmet-
ric case,1 except that the waviness for the situation consid-
ered here requires multiple profiles at different azimuthal po-
sitions making it quite difficult to clearly show the profile
using velocity vectors. Instead of using vectors in the meridi-
onal plane, here we plot the profile of the radial velocity,v r ,
in the upper half of the annulus. The contours in Fig. 7 for

FIG. 5. Contours of a measure of the
spectral energy,Ek , for key modes.
Contours are equally spaced for all
cases from 0 to 0.0088 withDEk

55.8731024, except case A,k512,
where the range is 0 to 9.531025 with
DEk56.3331026. The maximum
value for each case is noted. The inner
cylinder is the left vertical line; the
outer cylinder is the right vertical line.
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cases B and C clearly show the Ekman layer near the end-
wall (2.9<z* /d<3). Profiles are plotted for several azi-
muthal positions~as evidenced by the multiple curves in the
lower parts of the figure!, but very near the endwall the pro-
files overlay one another for all cases except the stress-free
endwall ~case D!.

The overlapping profiles near the endwall indicate that
the Ekman layer thickness remains essentially constant, in-
dependent of the waviness of the vortices closer to the center
of the annulus. Indeed, measurements of the Ekman layer
thicknessdE based on the axial position of the maximum
radial velocity near the endwall show that the thickness does
not vary withu to within the resolution of the calculations.

The Ekman layer thickness is related to the Ekman number
asdE/L;(Ek)1/25(n/VL2)1/2, whereL is a length scale in
the problem.2 From the form of the relation, it is clear that
the choice of the length scale is not crucial, so we choose to
use the gap widthd as the length scale. After converting to
Rei andh, the estimated value for the Ekman layer thickness
is dE/d;$h/@Rei(12h)#%1/250.066. This value compares
quite well to the Ekman layer thickness indicated in Fig. 7
for case B ofdE50.065d, but is substantially less than the
Ekman layer thickness ofdE50.147d for case C. Thus, the
Ekman layer is a little over twice as thick for the fixed end-
walls as for the rotating endwalls~based on the axial position
of the maximum radial velocity at the endwall!. This result is
consistent with the Ekman layer thicknesses for simulations
of axisymmetric Taylor vortex flow with differing endwall
conditions.1 In that case, the estimated Ekman layer thick-
ness halfway across the annular gap was 0.19d, and the
measured Ekman layer thickness was 0.15d just above the
critical Reynolds number for rotating endwalls~equivalent to
case B! and 0.29d for fixed endwalls~equivalent to case C!.
Thus, the Ekman layer was just under twice as thick for the
fixed endwall as for the rotating endwall.~Note that the Ek-
man layer thickness was measured slightly differently in the
two cases.! The explanation for the difference in thickness
for a rotating endwall and a fixed endwall is probably related
to the driving force for the Ekman flow. Using a simple
prediction scheme for the Ekman boundary layer flow based
on the imbalance between the outward centrifugal force and
the inward pressure gradient force,1 one can show that the
driving force for the Ekman flow averaged over the endwall
is about 3.6 times greater for rotating endwalls than for fixed
endwalls. The larger force imbalance drives a faster bound-
ary layer flow for rotating endwalls~as is clear in Fig. 7 for
case B!, which in turn, results a thinner boundary layer.

Of course, the absence of an Ekman boundary layer for
the stress-free boundary condition is quite clear for case D in
Fig. 7. Furthermore, the variation in radial velocity that con-
tributes to the modek52 energy near the endwall~evident
in Fig. 6! is quite apparent from Fig. 7 near the endwall.

Several other features are evident in Fig. 7. First, for
cases B and C the curves for the velocity profiles at different
azimuthal locations overlay one another near the endwall,
but spread out moving away from the endwall. Of course, the

FIG. 6. Contours ofEk52 for each velocity component for stress-free end-
wall conditions. Sixteen contours are equally spaced from 0 to the maximum
value. The inner cylinder is the left vertical line; the outer cylinder is the
right vertical line.

FIG. 7. Radial velocity profiles (v r)
for azimuthal positionsu50 to 2p at
the center of the gap for the upper half
of the annulus. Outward flow is posi-
tive.
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spread in the axial direction is a result of the waviness of the
vortices, which, as was shown earlier, is largely damped out
by the endwalls. The motion of the boundary between vorti-
ces can be quantified based on the variation in the axial po-
sition of the local maximum/minimum of the radial velocity.
Likewise, the axial motion of the center of a vortex can be
quantified by the variation in the axial position of the local
zero in the radial velocity profiles. Results are presented in
Table II.

The waviness of the endwall vortex as measured by the
motion of the center of the endwall vortex is small in all
cases. The waviness of the boundary between the endwall
vortex and the next vortex remains relatively small where
there are no-slip endwalls, cases B and C. For the free-slip
condition, the motion is much larger, reflecting the reduced
impact of the stress-free endwall on reducing the waviness.
The waviness of the boundaries between vortices is much
larger farther from the endwall for outflow boundaries than
for inflow boundaries, as noted with regard to Fig. 5.

A final comment regarding the radial velocity profiles in
Fig. 7 is that the maximum radial velocity at outflow bound-
aries isv r;0.25 and at inflow boundaries isv r;0.20 for the
conditions simulated here («58). This radial velocity is
somewhat larger than that seen for nonwavy flow where the
radial velocity increases linearly from zero just below«50
to a maximum radial outflow velocity ofv r;0.20 and a
maximum radial inflow velocity ofv r;0.12 at «53.1 ~In
Fig. 12 of Ref. 1, the radial velocity is nondimensionalized
by r iV i ,crit , whereV i ,crit is the rotational speed at transition
from nonvortical to vortical flow.! Thus, it is clear that the
strength of the vortical motion continues to grow with in-
creasing Reynolds number into the wavy vortex flow regime.
This, of course, is consistent with previous experimental
results.25

IV. CONCLUSIONS

Although much of the previous research on wavy vortex
flow in a cylindrical Couette geometry has avoided the prob-
lem of endwall conditions on the flow, we have directly ad-
dressed the effect of the endwalls on the flow by altering the
endwall conditions computationally. The endwall boundary
conditions have a profound effect on the flow for the endwall
vortices and the vortices immediately adjacent to the endwall
vortices. Clearly, the azimuthal waviness, which has its larg-
est amplitude in the axial direction, is suppressed very near

the endwalls simply because the endwalls are flat. The key
result here is that even for a stress-free endwall condition,
where only the flatness of the endwall plays a role without
the effect of the no-slip condition at the wall, nearly all of the
energy related to the waviness is suppressed, as shown in
Fig. 5. The small amount of energy that remains right at the
endwall is divided between radial and azimuthal contribu-
tions to the primary azimuthal mode~Fig. 6!. Thus, a key
result is that the suppression of the waviness is primarily
related to the flatness of the endwall and only secondarily
related to the no-slip boundary condition.

Surprisingly, the side of the endwall vortex opposite the
stress-free endwall is largely unaffected by the flatness of the
endwall and has substantial energy related to the waviness,
as shown in Fig. 5. The situation is quite different for the
no-slip endwall conditions, where nearly all of the energy
related to the azimuthal waviness is suppressed in not only
the endwall vortex, but also in the vortex adjacent to the
endwall ~Fig. 5!. Thus, it appears that the viscous Ekman
flow at the endwall suppresses the waviness further away
from the endwall than a flat~stress-free! endwall alone. Nev-
ertheless, the waviness is clearly apparent at the boundary
between the vortex adjacent to the endwall vortex and the
next vortex, as shown for case B in Fig. 7. Thus, the damping
effect of the endwall on the waviness does not penetrate far
from the endwall, even for the short annulus considered here.

One might expect that the interaction of the no-slip con-
dition at the endwall with the waviness might lead to a dis-
ordered, chaotic behavior either near the endwall or in the
entire short annulus, or perhaps a symmetry-breaking condi-
tion such as anomalous modes.9 However, this is not the
case. The flow remains well-ordered and symmetric with re-
spect to the dominant azimuthal mode both in the endwall
vortex and near the center of the length of the cylinders, as
shown in Figs. 1, 3, and 4. However, in one case a mode that
is a multiple of the primary azimuthal mode appears near the
endwall ~case A in Figs. 1 and 4!, presumably due to the
interaction of the azimuthal waviness with the viscous end-
wall boundary layer. There is evidence of higher order modes
near the endwalls in previous flow visualization results for
wavy vortex flow. Specifically, Coles classic paper on the
multiplicity of solutions for circular Couette flow includes
some figures in which a higher order mode is evident very
near the endwalls for some~but not all! cases of wavy vortex
flow ~see Figs. 16, 19, 20, and 21!.23 However, the flow
visualization results indicate a much higher multiple of the
primary azimuthal mode~estimated from the photos to be 7
to 10! than the multiple of four evident for case A in Fig. 4 of
our simulations, so it is not clear if this is the same phenom-
enon.

Finally, the waviness away from the endwall does not
affect the thickness of the Ekman layer on the endwall. In
fact, the predicted layer thickness matches that in the simu-
lations fairly well after accounting for the difference in the
driving force for the endwall flow. The endwall boundary
layer thickness varies negligibly with azimuthal position in
spite of the waviness of the vortices a short distance away.

TABLE II. Waviness as measured by the variation in the axial position of
v r50 ~center!, maximumv r ~outflow boundary!, or minimum v r ~inflow
boundary!.

Condition
B: Ve5V i

(k52)
C: Ve50

(k52)
D: Ve5F

(k52)

Center of endwall vortex 0.05d 0.08d 0.06d
Boundary between
endwall vortex and

adjacent vortex 0.06d 0.14d 0.26d
Outflow boundary (v r.0) 0.23d 0.30d 0.30d
Inflow boundary (v r,0) 0.16d 0.16d 0.16d
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