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The mean and fluctuating velocities in a turbulent boundary layer on a cylinder have been
experimentally characterized for the case where the boundary layer is thick compared to the
radius of transverse curvature. The mean velocity measurements suggest a mixed scaling for the
“log law of the wall”’ using the wall coordinate yU, /v and the ratio of the local boundary layer
thickness to the radius of the cylinder §/a. A relation for the slope and intercept of the log law of
the wall as functions of §/a based on empirical results and simple analysis is presented.
Measurements of the Reynolds stress for §/a of order 10 show that the Reynolds stress drops off
much more quickly with distance from the wall than for a turbulent boundary layer on a flat plate.

Both the Reynolds stress data and the turbulent intensity in the mean flow direction data are
functions of the inverse radial distance from the center of the cylinder.

I. INTRODUCTION

This paper reports measurements of the mean velocity
and Reynolds stress associated with the turbulent boundary
layer that develops on the wall of a circular cylinder in axial
flow. The measurements of the mean velocity profile report-
ed in this paper are used along with results from other studies
to propose an empirical model for the mean velocity profile
in the turbulent boundary layer on a cylinder. This empirical
model can be justified using a simple wake-like eddy viscos-
ity closure. In addition, the present measurements include
extensive results on the fluctuating velocities in the axisym-
metric boundary layer for the case where the boundary layer
is thick compared to the radius of the cylinder. Measure-
ments of these fluctuating components of velocity have been
largely neglected in previous studies. The present results for
the fluctuation velocities provide insight into the distribu-
tion of turbulent quantities such as the Reynolds stress in an
axisymmetric, turbulent boundary layer.

A number of serious attempts have been made toward a
detailed experimental study of the mean properties of the
axisymmetric, turbulent boundary layer. Several workers'™
have made measurements of the mean velocity profile on a
cylinder with a small transverse curvature. The transverse
curvature of the wall of the cylinder is usually characterized
by the ratio of the boundary layer thickness § to the radius of
the cylinder a. For these studies, §/a = O(1). However, as
will be shown later in this paper, the effect of the transverse
curvature is not significant unless 6/a > 1.

Measurements of the mean velocity profile for §/a > 1
have been performed in four experimental studies. Will-
marth et al.® made all measurements at a single axial station.
Richmond,' Rao and Keshavan,” and Luxton et a/.® made
measurements at a limited number of axial stations. Patel ez
al® have characterized the mean velocity profile on a body of
revolution. In this case, §/a > 1 only very close to the tail of
the body of revolution.

A number of proposals for similarity laws have been
suggested for the mean velocity profile in the turbulent
boundary layer on a cylinder as a result of these experimen-
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tal studies. These proposed laws are summarized in Table I.
The fundamental difficulty in developing the similarity laws
for the axisymmetric, turbulent boundary layer is the intro-
duction of an additional length scale related to the transverse
curvature of the cylinder, which is not present in the planar
case. The logical choice for this transverse length scale is the
radius of the cylinder a. Yet all the proposals for similarity
laws outlined in Table I hinge on two fundamental ques-
tions.

First, what is the scaling parameter that results from the

introduction of the transverse curvature a? The alternatives
that have been proposed are a, =aU,/v,8/a,and R,
=qU_ /v. The first scaling parameter is an inner scaling
based on the friction velocity U, and the kinematic viscosity
v. The second scaling parameter is a curvature ratio based on
the boundary layer thickness §. The third scaling parameter,
a Reynolds number based on the free-stream velocity U_,
mixes the inner transverse curvature with the outer free-
stream velocity.

The second question centers on the effect of the trans-
verse curvature on the fundamental character of the bound-
ary layer. As the boundary layer thickness becomes small in
comparison to the radius of curvature of the wall (perhaps 6/
a<l), the boundary layer should become much like the
boundary layer on a flat plate. Denli and Landweber!® assert
that as §/a increases, the outer flow would likely be indepen-
dent of the wall. This suggests a flow that is similar to a wake
flow with a modified inner boundary condition.

Only one similarity law has been proposed for the sub-
layer, as shown in Table I. Rao'' demonstrated that very
close to the wall, where the viscous effects dominate, an in-
ner scaling that preserves the linear form of the law of the
wall is appropriate. Rao showed that in the viscous sublayer
U, =U/U, =a, In(r/a), where r = y + a is the distance
from the center of the cylinder and U is the mean velocity.

The law of the wall and the velocity defect law are less
obvious, as suggested by the number of proposals enumerat-
ed in Table I. All of the authors preserve the logarithmic
form of the law of the wall. Yu® and Chin et al.’ simply
modified the coefficients of the flat plate law of the wall to
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TABLE 1. Proposals for similarity laws for the axisymmetric, turbulent boundary layer.

Author(s) Sublayer Law of wall Outer law
Planar law U=y, U,=AIn(y,)+ B (U, —UYU,=Cln(y/8)+ D
A,B,C,D universal
Richmond' U,=AIn{y,[1+(y/24)]} + B
A,B universal
Yu? U,=Aln{y,)+B U, -UWYU,=Cin(y/L)+ D
A,C universal; B,D functions of R, ;

L based on U, and v
Rao'’; U, =a, In(r/a) U, =Aln[a, In(r/a)] + B
Rao and Keshavan’ A,B functions of R, ,a,

Bradshaw and Patel'?

U, =An{4y, /{1 + (r/a® P} + B

A universal; B function of a

Denli and Landweber!®

U, =Aln[a(r/a)°® In(r/a)] + B

(U, —UVU, =f(x/aR,,y/6)

A universal; B function of @

account for the wall curvature. Chin ez al.® also left the flat
plate defect law intact except for changing the coefficients.
Yu® modified the argument of the logarithm in the outer law
from y/8 to y/L, where L is a length scale of the boundary
layer based on the friction velocity and the kinematic viscos-
ity.

Richmond! proposed replacing y, in the flat plate law
of the wall with y_ (1 + y/2a), based on Coles’ streamline
hypothesis.'? Richmond did not alter the coefficients in the
log law from those of the flat plate law, nor did he propose an
outer law.

Rao'! chose to preserve the form that comes about in the
viscous sublayer by replacing the planar y , witha_ In(r/a).
Later Rao and Keshavan’ suggested that the coefficients for
the law of the wall are functions of R, and 4, . In the outer
region they could not find any similarity based on y/Sorr,.

Other modifications of the argument of the logarithm of
the law of the wall have been based on mixing length argu-
ments. Bradshaw and Patel'® suggested changing the argu-
ment of the logarithm from y, to {4y /[l + (r/a)>*]*}
based on a mixing length argument. Denli and Landweber'®
proposed substituting @ _, (/a)®® In(r/a) for y_, in the argu-
ment of the logarithm based on a logarithmic mixing length
model. They went on to propose a complicated defect law for
the outer portion of the boundary layer based on its similar-
ity to an axisymmetric wake for large 6/a.

In this paper we present a different law of the wall for an
axisymmetric, turbulent boundary layer based on empirical
results and simple analysis. The relation is somewhat
simpler than the relations outlined above and appears to
hold over a wide range of experimental conditions. As will be
shown later in this paper, this law incorporates a mixed scal-
ing dependent on the curvature ratio §/a and the usual wall
coordinates.

While the mean velocity profile has been experimentally
characterized over a wide range of experimental conditions,
far fewer experimental results have been presented for the
fluctuating velocity components, which describe the funda-
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mental turbulent nature of the axisymmetric boundary lay-
er. For instance, the Reynolds stress has been measured for a
cylinder with §/a = O(1) by Afzal and Singh* and Chin et
al.® and on a body of revolution by Patel e al.° No measure-
ments of the Reynolds stress have been published for the case
where the boundary layer thickness is much greater than the
radius of transverse curvature. Other measurements of fluc-
tuating components in the axisymmetric boundary layer in-
clude measurements of the turbulent intensity® and the fluc-
tuating wall pressure® for 6/a > 1.

In this paper we present experimental results related to
the character of the fluctuating components of velocity in the
axisymmetric boundary layer. In particular, measurements
of the Reynolds stress for a curvature ratio of §/a >4 are
presented. These measurements provide some elementary
understanding of the distribution of the turbulence in the
axisymmetric boundary layer for large §/a.

Il. EXPERIMENTAL FACILITIES AND PROCEDURE

A. Wind tunnel and cylindrical model

The experiments described here were carried out in the
Acoustics and Vibration Laboratory wind tunnel at the
Massachusetts Institute of Technology. This open-circuit
wind tunnel is shown in Fig. 1. It has a flow-straightening
honeycomb at the inlet and a 20:1 contraction into the test
section. The test section is 38 cm square and 3.7 m long. All
experiments were performed at free-stream velocities
between 12 and 40 m/sec. The level of free-stream turbu-
lence in the wind tunnel was measured at less than 0.10% at
these velocities.

The cylindrical model was suspended along the center
line of the wind-tunnel test section. To prevent excessive sag
of the cylinder in the horizontal wind tunnel, the cylinder
was mounted in tension. It was anchored at the downstream
end of the test section to a steel cross-shaped support at-
tached to the wind tunnel superstructure. The cylinder
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FIG. 1. Sketch of wind tunnel showing tensioning device, cylinder, and hot-
wire traverse mechanism.

passed upstream along the tunnel axis and out through the
honeycomb at the wind tunnel inlet. Here a cable attached to
the cylinder passed over a pulley and was attached to a lever-
arm tensioning device.

Two series of experiments, henceforth denoted series A
and series B, were performed. In series A the cylindrical
model was made from 0.15 cm (0.059 in.) diam spring steel
music wire. The wire was placed under 1600 N (360 Ib) ten-
sion, giving an estimated sag at the inlet of the test section
(midpoint of the span of the wire) of 0.25 diam. In series B the
cylindrical model was made from stainless steel tube 0.475
cm o.d. X0.076 cm wall (0.187 in. o0.d. X 0.030 in. wall). The
tubing was placed under 1950 N (440 Ib) tension. The sag,
measured using a water level, was about 0.6 diam at the mid-
point of the cylinder.

In series B, a0.16 cm (1/16 in.) diam O-ring around the
cylinder at the upstream end of the test section was used to
trip the boundary layer. No boundary layer tripping mecha-
nism was used in series A. In series A a portion of the inlet of
the wind tunnel was partially blocked off using an open cell
foam pad to correct for a slight transverse velocity gradient
in the test section, which wiped the boundary layer off the
cylinder. No modifications to the inlet were necessary for
series B,

A slight favorable pressure gradient was measured in
series B. This was caused by the acceleration of the flow as
the boundary layers developed on the walls of the test section
and the cylinder. The gradient was uniform along the length
of the test section and the cylinder. The gradient was uni-
form along the length of the test section and was measured to
be — 10Pa/m ( — 0.00043 psi/ft) at a free-stream velocity of
20 m/sec. In terms of the pressure coefficient, C,

=2AP/pU,? the gradient was dC,/dx = — 0.0004/cm.
It is unlikely that this very small favorable pressure gradient
had a significant effect on the measurements reported here.

B. Instrumentation

Mean and fluctuating velocities were measured using U
and X probes mounted in an airfoil that could be traversed
along the length of the wind tunnel test section as shown in
Fig. 1. Two streamwise traverse mechanisms were used. In
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series A a manual traverse on the bottom wall of the test
section allowed the positioning of a hot-wire probe at any
distance from the bottom of the cylinder at any location
along the length of the test section. In series B a remotely
controlled traverse on the top wall of the test section allowed
the positioning of a hot-wire probe at any distance from the
top of the cylinder at any location along the length of the test
section.

Mean velocity profiles were measured in series A using a
Thermo-Systems, Inc. 1261-10A hot-film probe with a sen-
sor diameter of 0.0025 cm(0.001 in.) and a span of 0.025 cm
(0.01 in.) The hot-film probe was used in conjunction with a
Disa 55D05 constant temperature anemometer and a Disa
55D15 linearizer. The mean voltage output was measured on
Disa 55D30 and Hewlett Packard HP40SCR digital volt-
meters.

A modified Thermo-Systems, Inc. 1261 hot-wire probe
was used to measure the mean velocity profiles in series B.
The hot-wire probe was modified to reduce its sensing length
and increase its spatial resolution. The sensing length was
reduced to 0.07 cm (0.028 in.) by bending the prongs of the
probe together and using a 2.5 gm (0.0001 in.) diam plati-
num-rhodium wire. This corresponds to //d = 280 and
1, =50 at a free-stream velocity of 20 m/sec. According to
an analysis presented in Ref. 14, the modification of the hot-
wire probe should not have resulted in any excessive flow
interference by the prongs. The modified hot-wire probe was
used in conjunction with a Disa 55D05 constant tempera-
ture anemometer and a home-built linearizer. The mean vol-
tage was measured with a Data Precision 1455 voltmeter.
The rms fluctuating voltage was measured on a Bruel and
Kjaer model 2607 measuring amplifier. In both series A and
B the probes were calibrated against a pitot-static tube and a
Betz micromanometer with a resolution of 0.1 mm H,0.

The Reynolds stress was measured only in series B. A
Thermo-Systems, Inc. 1249-T 1.5 X probe was used in con-
Jjunction with two Disa 55D0S constant temperature anemo-
meters. The output from the anemometers was low-pass fil-
tered at 5 kHz using Ithaco 4213 filters and then was
sampled using a Hewlett Packard 2250 measurement and
control unit. Since the HP2250 did not allow simultaneous
sampling of the two channels, the signal was sampled at 20.8
kHz per channel. This minimized the delay time between
corresponding samples on the two channels.

The X probe calibration scheme was based on directly
measuring the voltage output of the X probe at different
combinations of U and ¥V velocities. To expose the X probe to
different velocity components, the probe was situated at five
different angles with respect to the mean flow in the wind
tunnel. The voltage from each wire of the probe was mea-
sured at six different velocities for each angle. The velocity
components were determined from the free-stream velocity
and the angle of the X probe with respect to the free stream.
The voltage readings and velocity components were used to
generate a calibration grid using a method similar to that
used by Willmarth and Bogar.'> A Hewlett Packard 1000-
A900 computer was then used to convert the raw voltages to
velocity data from which the Reynolds stress was calculated.
Because of the size of the X probe, the spatial resolution of
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the X probe perpendicular to the surface of the cylinder was
limited to 0.27 cylinder diam or about 90 viscous units at 20
m/sec.

For all boundary layer measurements the hot-wire
probe was brought to within about 0.005 cm (0.002 in.) of the
wall of the cylinder. The distance between the wall and the
probe was measured with a microscope using a calibrated
scale in the eyepiece. The hot-wire probe was moved away
from the wall in steps of 0.0025 cm (0.001 in.) while record-
ing the output of the hot-wire probe at each step. Further out
in the boundary layer the steps were increased in size to a
maximum of about 0.2 cm (0:078 in.). Typically, a mean ve-
locity profile was determined from about 40 measurements.

Although attempts were made to minimize the error in
the hot-wire measurements, some problems occurred. First,
because of the time necessary to traverse the entire boundary
layer thickness, the calibration drifted as much as 3%. A
linear correction based on the calibration at the beginning
and end of each test was applied to the data to account for
this drift. Second, the linearizer used in mean velocity mea-
surements allowed an accuracy only within 1%. No correc-
tion was applied for this error. Third, measurements near the
wall of the cylinder were susceptible to misalignment of the
center of the hot-wire probe with the center of the cylinder.
Typically, this misalignment was obvious during an experi-
ment and was corrected before recording any data.

C. Cylinder alignment and sag

Preliminary experiments and the experience of other re-
searchers have suggested that the axisymmetric, turbulent
boundary layer is susceptible to minor changes in the direc-
tion of the mean flow. This brings about two problems ex-
perimentally. First, misalignment of the axis of the cylinder
with the mean flow may change the axial symmetry of the
boundary layer. Second, the sag of the cylinder may locally
change the axial symmetry of the boundary layer. Unfortu-
nately, elimination of these experimental problems was im-
possible short of building a vertical wind tunnel. However,
these effects were quantified in two different ways. In the
first method, the axial symmetry was measured directly us-
ing a total head tube. In the second method, the cylinder was
intentionally misaligned with the flow and the changes in the
boundary layer profile were measured. These two methods
are described in more detail below.

To directly measure the axial symmetry of the boundary
layer on the cylinder, a 0.064 cm (0.025 in.) diam total head
tube was mounted about 0.3 cm (1/8 in.) from the wall of the
cylinder. The tube was mounted so it could slide and rotate
on the cylinder. Before recording data, the upstream end of
the cylinder was positioned so that the velocities measured
using the total head tube were typically within 2% or 3% of
one another at eight different circumferential positions. Al-
though these variations in velocity are small, the change in
the character of the boundary layer may be substantially
larger. If a simple 1/7 power law is used to approximate the
boundary layer profile, the effect of these small variations in
velocity is estimated to produce a change in the boundary
layer thickness on the order of 20%. The maximum mea-
sured circumferential difference in velocities was 5%, indi-
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cating even larger differences in the boundary layer thick-
ness.

The overall alignment of the cylinder to the flow deter-
mines the axial symmetry of the boundary layer. To quantify
the effect of flow alignment on the axisymmetric boundary
layer, the cylinder was mounted at a slight angle with respect
to the top and bottom walls of the wind tunnel test section
while keeping it parallel to the side walls of the test section.
The angle of attack of the cylinder with respect to the free-
stream velocity is defined in Fig. 2(a) and represents the an-
gle formed by the cylinder with respect to the top and bottom
walls of the test section measured from the inlet of the test
section to the downstream end of the cylinder. The angle of
attack ¢ was estimated using a water level to measure the
difference in height at these two locations. The angle of at-
tack does not account for the slight sag of the cylinder
between the inlet of the test section and the downstream end
of the cylinder.

The thickness of the boundary layer as it develops along
the length of the cylinder from the O-ring trip is shown in
Fig. 2(a) for a free-stream velocity of 20 m/sec and three
angles of attack. The data suffer from scatter attributable to
errors mentioned in the previous section and the usual un-
certainty encountered with the definition of the boundary

10 T T T "
@ “
8t b 4
° b 04
8 /a ° . °
99 oo
| ° ° i
(3 ... .
S
a ., » -
- J??Jb:"" o $=+0.12°
2+ U — ‘$ Cylinder . +0.05Y
T e o  -0.10°
O 1 1 | S
o} 400 800 1200 1600
x/a
1.6 T T T
(b) o® .
o a 4
[ ]
1.2+ o o 4
E S
8/a i . ¢ 0 ° ° ]
o8k . ° i
L ]
L < 4
[ ]
¢=+0.12°
al o i
° e  +0.05°
- o -0.10°
o 1 1 i .
0 400 800 1200 1600
x/a

FIG. 2. Boundary layer development as a function of distance from trip x at
20 m/sec. (a) Boundary layer thickness &, 40 ; (b) momentum thickness 6.
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layer thickness. Nevertheless, the expected growth of the
boundary layer is evident. However, the boundary layer
thickness does not grow according to the law §/a = 0.045
(x/a)®™* proposed by Afzal and Singh.* The difference is
likely a consequence of the effect of the transverse curvature.
Afzal and Singh used a large cylinder with /a = O(1). For
the experiments described here §/a is much larger.

Asshown in Fig. 2(a) the boundary layer is thickened for
a positive angle of attack and is thinned for a negative angle
of attack. In other words, the boundary layer thickness mea-
sured on the leeward side of the cylinder with respect to the
cross component of the flow (¢ >0) is greater than the
boundary layer thickness on the windward side of the cylin-
der (¢ <0).

Although the sag of the cylinder and the angle of attack
of the cylinder have been discussed separately up to this
point, it is evident that they are not independent. The sag
results in an effective local angle of attack that varies with
the location along the length of the cylinder. Similarly, the
angle of attack described up to this point is an overall mea-
sure of the misalignment of the cylinder with the flow. The
effective local angle of attack is the sum of the local misalign-
ment of the cylinder caused by the effect of sag and the over-
all misalignment of the cylinder caused by the flow being
nonparallel to the axis of the cylinder.

The angles of attack shown in Fig. 2(a) are of the same
order as the angles induced by the sag of the cylinder. This
suggests that the sag may also be locally modifying the
boundary layer thickness. If this were so, the boundary layer
growth should tend to flatten moving from the midpoint of
the cylinder downstream along the cylinder because of geo-
metric considerations. For ¢ <0, ¢ becomes more negative
with distance along the cylinder because of the curvature
resulting from the sag of the cylinder. This would tend to
thin the boundary layer toward the downstream end of the
cylinder. For ¢ > 0, ¢ decreases with distance along the cyl-
inder because of the sag of the cylinder. This would tend to
minimize the growth of the boundary layer toward the
downstream end of the cylinder. Thus for either positive or
negative ¢ the boundary layer thickness should not increase
as quickly moving from the midpoint of the cylinder down-
stream along the cylinder as it would if there were no sag.
The flattening of the boundary layer is not obvious in Fig.
2(a). However, the momentum thickness 8 does appear to
flatten for both positive and negative angles of attack moving
downstream along the cylinder, as shown in Fig. 2(b). The
displacement thickness (not shown) also flattens moving
downstream along the cylinder.

Unless otherwise stated, ¢ = 0° for the experimental re-
sults described in the remainder of this paper. To minimize
the effect of the sag in series B, the cylinder was mounted so
that the height of the cylinder above the floor of the test
section at the upstream end of the test section was the same
as at the downstream end of the test section. Since the center
of the length of the cylinder (where the sag is greatest) coin-
cided with the upstream end of the test section, this meant
raising the upstream end of the cylinder slightly compared
with the downstream end. No similar correction for the sag
was made in series A.
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Of course, the boundary layer on the cylinder described
here is not axisymmetric in a strict sense. In fact it is quite
difficult to experimentally obtain a truly axisymmetric
boundary layer considering the effects of the combination of
sag and angle of attack. However, it will be shown later in
this paper that these effects can be taken into account for
both the mean and fluctuating components of velocity in a
turbulent boundary layer on a cylinder.

I1. RESULTS AND DISCUSSION

A. Mean velocity profile

Although a number of different similarity laws for the
mean velocity profile in an axisymmetric, turbulent bound-
ary layer have been proposed as shown in Table I, the results
are presented here in terms of the traditional inner coordi-
nates for the planar boundary layer. The reason for this will
become apparent in the next section, where a mixed-scale log
law is proposed.

The inner scaling yU, /v requires the determination of
the friction velocity U,. The most satisfactory method of
finding the friction velocity is by the substitution of the ex-
perimental velocity profile U into the momentum integral
relation for an axially symmetric boundary layer,

2 +68
(@) o[ [-0)@)] e o
U, dx Ja U, U, /\a

However, if the boundary layer is not axisymmetric,
U=U(r,£)and § = 6(£), where £ is the azimuthal coordi-
nate. Thus, substitution of the experimentally determined
velocity profile U and boundary layer thickness § measured
on one side of the cylinder into (1) results in an inaccurate
estimate of the friction velocity. Hence, unless perfect axi-
symmetry is maintained, this method of finding the friction
velocity is inappropriate. In the experiments described here,
the sag of the cylinder was large enough to cause an asymme-
try of the boundary layer so that {1) could not be used for
calculation of the friction velocity.

Instead of using (1), the friction velocity was determined
by fitting the data to the buffer zone of Coles’ law of the
wall'? for a planar boundary layer. The same method was
used by Willmarth ez al.° Of course, by using this method an
implicit assumption has been introduced. The assumption is
that very close to the wall the mean velocity profile of an
axisymmetric boundary layer is no different than that of a
planar boundary layer. Willmarth e al.® verified that this
assumption is reasonable by comparing mean velocity pro-
files for axisymmetric boundary layers obtained by using a
Preston tube to determine the friction velocity with Coles’
law of the wall. For the region within the viscous sublayer
and just above it, the mean velocity profiles matched Coles’
law. However, later in this paper it will be shown that the
friction velocities determined by matching data to Coles’ law
in the buffer region may be too large.

Using the friction velocity determined from matching
Coles’ law, the data were plotted in the usual flat plate wall
coordinates, as shown in Fig. 3 for a free-stream velocity of
30 m/sec (series A). A family of curves results in the log
region, with slopes slightly less than the slope for the planar
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FIG. 3. Mean velocity profile, inner scaling (30 m/sec, series A). Solid line is
Coles’ law.
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x/a 407 1220 2440 3051 3864 4271.

boundary layer. Similar families of curves result for free-
stream velocities of 20 and 40 m/sec for series A and 12, 20,
and 30 m/sec for series B. These results are not shown here
for brevity.

In the family of curves shown in Fig. 3 the boundary
layer thickness 6/a generally grows with streamwise loca-
tion (see caption for Fig. 3). This growth is not without ex-
ception; note, for instance, x/a = 4271 where there is a
slight decrease in the boundary layer thickness. We can only
attribute this decrease to experimental error caused by sag or
misalignment of the cylinder with the flow. Similarly, al-
though not without exception, the slope of the log region of
the velocity profile tends to decrease as the boundary layer
thickens. Willmarth et al.® found a similar family of curves in
which the slope of the log region of the velocity profile de-
creases as 8/a increases. However, unlike the results report-
ed here, where the boundary layer thickness changed and the
cylinder radius remained constant, the Willmarth et al. re-
sults were for different cylinder diameters at a single axial
location. In both cases the slope of the log region of the
boundary layer profile decreases as /a increases. This is the
basis of the mixed-scaling logarithmic law of the wall pro-
posed in the next section.

B. Proposed mixed-scale log law

The logarithmic portion of the velocity profile plotted in
wall coordinates as in Fig. 3 suggests a log law of the form

U,=(1/my, +n, (2)
where
y+ =yUT/v'

Although the form of (2) matches the data in Fig. 3 for
¥, > 50, the coefficients in (2) are not constant and must
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somehow depend on the effect of the transverse curvature on
the mean velocity in the boundary layer. Dimensional analy-
sis suggests two scales based on the wall curvature: an inner
scale @ and a curvature ratio scale §/a. Dependence of m
and n on a_, can be ruled out since a,_is only slightly differ-
ent for all of the different log region slopes shown in Fig. 3.
Hence, m and » must be functions of §/a.

To justify the empirical equation (2), two cases must be
considered. First, for a large cylinder where the effect of
transverse curvature is small, ¢ is large and §/a is small.
Afzal and Narasimha'® have derived an expression similar to
(2) for this case, using the method of matched asymptotic
expansions. For large a, =aU_/v and §/a = O (1), they
showed that m and n are constants.

The second case to be considered is that of a small cylin-
der, where @, is small and 8/a is large. In this case (2) can be
justified using an eddy viscosity closure. In a planar bound-
ary layer a constant stress layer occurs very close to the wall.
In an axisymmetric boundary layer a similar analysis results
in a constant stress moment near the wall, given by

rr=ar,, 3)

where 7, is the shear stress at the wall and 7 is the total shear
stress given by

T au —

—=v—— un.

P or

Using an eddy viscosity closure such that r = € dU /dr,
and noting the definition for U_, (3) can be rewritten as
ya_tedl

r =

pa dr @

For large 8/a the cylinder is so small that it should con-
tribute little to controlling the eddy viscosity. In fact, a large
“eddy” may pass from one side of a small cylinder to the
other without even “seeing” the cylinder. Now a similar situ-
ation occurs in the outer region of a planar boundary layer
where the wall does not control the eddy viscosity. This sug-
gests that the eddy viscosity in an axisymmetric boundary
layer may be like that for the outer region of a planar bound-
ary layer. Further, Denli and Landweber'® suggest that the
axisymmetric boundary layer is much like an axisymmetric
wake with a modified inner boundary layer for large §/a.
Now if the axisymmetric boundary layer has a wake-like
character similar to the outer region of a planar boundary
layer, then Clauser’s estimate'” for a constant eddy viscosity
in the wake-like outer region of a planar boundary layer can
be used. Thus € = (c pdU, ), where cis some coefficient that is
not yet known. Substituting into (4) results in

U . =rm ig,
ar
where m = ¢5/a. Now assuming c is independent of 7, this

can be integrated to yield

U,=(/m)nr, +n, (5)
where r,. =rU,/v. Now for small a_, Inr__ is nearly the
same as In y _, reducing (5) to the form of (2), where m is the
inverse of the slope of the log region and » is the intercept of
the log region in Fig. 3.
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Although this analysis requires several assumptions, it
provides a crude analytical basis for the empirical log law (2).
In addition, a functional dependence of the slope of the log
law m on 8/a falls out of the analysis.

To test the dependence of the coefficients m and n on 6/
a, m and n were obtained from a least-squares fit to the mean
velocity profiles of series A and series B data as well as to the
data of Richmond,! Chin et al.,’ and Willmarth ez al.'® Of
course some subjectivity is involved in deciding what consti-
tutes a logarithmic region. In particular, the data of Will-
marth et al. show a slight curvature of the logarithmic re-
gion, although the data are too sparse to justify anything
other than a straight-line fit in the log region. However, this
slight curvature of the log region suggests that the outer
wake may be modifying the log region profile. The outer
wake region may absorb the inner log region in a manner
similar to the action of an adverse pressure gradient in a
planar turbulent boundary layer.

The coefficients m and n calculated from the least-
squares fit are shown in Fig. 4 as a function of 5/a. The
scatter in the data, although substantial, is not surprising
considering the subjectivity of the determination of m and n
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FIG. 4. Coeflicients of the logarithmic portion of mean velocity profiles. (a)
Inverse of slope m; (b) additive term n (Note the scale change at §/a = 50.)
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as well as the variety of wind tunnels, cylinder sizes, experi-
mental methods, and free-stream velocities represented in
Fig. 4.

Figure 4(a) shows that the inverse of the slope of the log
region m is directly proportional to 8/a for 6/a < 40, as pre-
dicted from the definition of m based on Clauser’s estimate
for a constant eddy viscosity. As the boundary layer thick-
ness & approaches the order of the transverse curvature a the
inverse of the slope m nears the planar value of 0.4. The data
for series B include m for several angles of attack
(¢ = —0.10°, § = 0.05", and ¢ = 0.12°). Data for all angles
of attack fall on the same line. Thus, m and n depend only on
the local ratio 6/a independent of the asymmetry of the
boundary layer because of sag or angle of attack.

For 6/a > 40 the only data available are given by Rich-
mond.! These data deviate substantially from the linear rela-
tionship for m as a function of §/a. The deviation may be a
result of experimental difficulties encountered by Richmond
such as sag or alignment. These errors may have been par-
ticularly troublesome, since the data in question are for a
cylinder of radius 0.03 cm (0.012 in.}). On the other hand, the
Richmond data may indicate a different turbulent flow re-
gime for §/a > 40. Further experimental work on very small
cylinders in axial flow will be necessary to clarify the situa-
tion for large 6/a.

The intercept n is large for large §/a and decreases to the
planar limit of 5.5 for 8/a = O(1) as shown in Fig. 4(b). In
this case, though, the Richmond data fit in well.

From Figs. 4(a) and 4(b) the question of when the trans-
verse curvature of the surface plays a role in determining the
boundary layer profile can be answered. When the trans-
verse radius of curvature of the cylinder is approximately the
same as the boundary layer thickness, m and » approach
their planar values, and the mean velocity profile is much
like that of a flat plate. Thus, when 6/a = O(1) the effect of
the transverse curvature is minimal with respect to the mean
velocity profile. Afzal and Narasimha'® also found that the
boundary layer is effectively planar for §/a< 1. '

Afzal and Narasimha'® have used an asymptotic analy-
sis to determine the functional dependence of m and n. They
suggest that m and n are functions of 1/a_.. However, the
data they used to justify this dependence have no indepen-
dent variation of a , , as do the data presented here. The data
shown in Fig. 4(a) do not collapse as well when plotted as a
function of 1/a as when plotted as a function of §/a. Thus,
m and n seem to be functions of /a and not 1/a, .

C. Reynolds stress

The Reynolds stress v in the turbulent boundary layer
on a circular cylinder shows a distinctive departure from the
planar Reynolds stress profile measured by Klebanoff,?® as is
shown in Figs. 5(a) and 5(b), when plotted in the usual planar
outer coordinates. Here u and v are the fluctuating velocities
in the streamwise and radial directions, respectively. Near
the wall the axisymmetric Reynolds stress approaches the
Reynolds stress for a flat plate. The Reynolds stress exceeds
the planar value for a free-stream velocity of 20 m/sec [see
Fig. 5(a)], possibly confirming the higher skin friction coeffi-
cient for an axisymmetric boundary layer predicted by Yu,>
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{a) 20 m/sec; (b) 30 m/sec.

Eckert,”! and White.?? This is not evident for a mean velocity
of 30 m/sec [see Fig. 5(b)]. This may be caused by an inability
to make Reynolds stress measurements very close to the wall
at the higher free-stream velocity.

The overall shape of the Reynolds stress profile in the
axisymmetric boundary layer is quite different from that for
a flat plate. Moving away from the wall, the Reynolds stress
drops off very quickly for the axisymmetric case compared
to the planar case.

Before making any conclusions about the comparative
shapes of the Reynolds stress profiles for the cylindrical and
planar cases, the consequences of the equations of motion
must be considered. In the planar case a constant shear re-
gion occurs near the wall. However, in the cylindrical case, a
constant shear moment, Eq. (3), results from the equations of
motion. Except for right at the wall, where viscous effects are
important, the turbulent shear stress uv dominates the total
shear stress. Thus, (3) can be written as

—p uv =1, (a/n. (6)

Equation (6) indicates that the Reynolds stress should be
a function of a/r near the wall. Such a representation is
shown in Figs. 6(a) and 6(b). Except for the regions at the
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extreme values of a/r, the data collapse reasonably well onto
aline throughout the boundary layer. Near the wall {large a/
r) the failure of the data to collapse can be blamed on errors
in the X-probe measurements near the wall. These errors
include misalignment of the X probe over the cylinder and
spatial averaging of the fluctuating velocities over the length
of the hot wires.

At the outer edge of the boundary layer (small a/7), the
data do not collapse because of the differences in the bound-
ary layer thicknesses of the data sets represented in Figs. 6(a)
and 6(b). However, there seems to be a trend of an increased
Reynolds stress with increasing §/a. If the Reynolds stress is
plotted against the inverse radius scaled by the radius of the
outer edge of the boundary layer, r; = 8 + a, the data col-
lapse quite well in the outer region of the boundary layer, as
shown in Fig. 7. However, this scaling for r spreads the data
in the region closer to the wall.

Figures 6 and 7 suggest how the Reynolds stress de-
pends on distance from the cylinder for a turbulent bound-
ary layer on a cylinder for §/a = O (10). Near the wall the
Reynolds stress is a function of an inner scale a/r. Away
from the wall the Reynolds stress is a function of an outer
scale 75 /7.

The data shown in Figs. 6(a) and 6(b) can be used to show
that the method of determining the friction velocities pre-
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sented earlier in this paper yields values that may be too
large. Substituting 7,,/p = U, ? into (6) and dividing by the
square of the free-stream velocity results in

(—2u/U, %) =2U>/U, a/r).

Thus the slope of the data in Figs. 6{a) and 6(b) is related
to the friction velocity U, . Table II shows the friction veloc-
ity calculated from the slope of the data in Fig. 6 for (a/7)
> 0.25 (to omit the effects at the edge of the boundary layer).
Table II also includes the friction velocity determined from
matching the mean velocity profile to Coles’ law. Note that
in all cases the friction velocity calculated from Fig. 6 is less
than that determined by fitting Coles’ law. Since the analysis
leading to the form of Fig. 6 omits inertial effects, the friction
velocity calculated from the slopes may have some error.
However, unlike matching to Coles’ law to find the friction
velocity, the slope method requires no assumption that the
axisymmetric boundary layer is similar to the planar bound-
ary layer.

The coefficients of the axisymmetric log law determined
in the previous section were based on the determination of
the friction velocity from fitting the data to the planar buffer
region. Since the friction velocities calculated fitting to
Coles’ law may be too high, these results may be in question.
However, a check of the effect of changes in the friction
velocity of the magnitude suggested by determination of the

TABLE IL Friction velocity calculated from slopes of Figs. 6(a) and 6(b)
and from matching Coles’ law (series B).

U./U_
U_ (m/sec) 8/a x/a U./U_ (slope) (Coles’ law)
20 4.69 192 0.044 0.053
6.40 576 0.040 0.051
7.57 960 0.043 0.049
8.11 1280 0.038 0.049
30 4.59 192 0.037 0.048
6.08 576 0.039 0.046
7.36 960 0.034 0.048
8.53 1280 0.035 0.047
3503 Phys. Fluids, Vol. 28, No. 12, December 1985

friction velocity from the Reynolds stress data shows that
changes in the coefficients m(8/a) and n(6/a) are within the
scatter of the data.

The Reynolds stress shown in Fig. 8 is nondimensiona-

lized by the product of u.,, =+/(uu)andv_, =+(w).
Like the planar boundary layer®® and turbulent channel

flow,? the value of uv/u,_ v, is between 0.4 and 0.5 ex-
cept near the wall and the outer edge of the boundary layer.
Afzal and Singh* presented a similar result for an axisym-
metric boundary layer with §/a = O (1).

D. Streamwise turbulent intensity

The mean kinetic energy of the fluctuating motions in
turbulence is given by

E =jpuu, =ip(uu+ w+ ww).
The largest contributor to E, in shear turbulence is the

streamwise turbulent fluctuation wu. Although this quanti-
ty does not completely describe the mean kinetic energy of
the fluctuating motions, it offers a reasonable approximation
of the distribution of E, in a boundary layer.

The scaling used for the distance from the wall for the
Reynolds stress in the previous section is used in Fig. 9 to
present the streamwise turbulent intensity u,,, for a free-
stream velocity of 20 m/sec (series B). Plotting u,,,, as a
function of a/r collapses the data near the wall as shown in
Fig. 9(a). At the outer edge of the boundary layer, #,,,, is a
function of 75 /r as shown in Fig. 9(b).

Assuming that E, acts in much the same way as its lar-
gest component, the fluctuating velocity in the direction of
flow, it can be concluded that the total mean kinetic energy
of the turbulent motions is a function of the same variables as
the Reynolds stress. Near the wall the mean kinetic energy of
turbulence is a function of a/r. Near the edge of the bound-
ary layer it is a function of r5 /. Note that in Fig. 9 the data
for 5.05 <6/a <9.53 all collapse to the same curve. So it
appears that the functional dependence shown in Fig. 9 is
independent of the transverse curvature for small changes in
&/a. Although it was not possible to show in Fig. 9 the data
for various angles of attack ¢, all collapse on the same curves.
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FIG. 8. Profile of Reynolds stress nondimensionalized by u, v, as a func-
tion of scaling a/r at 20 m/sec (series B).
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Although near the wall the data appear to collapse based
on a dependence on a/r, the location of the maximum
differs depending on the free-stream velocity. This is shown
in Fig. 9(a), which includes curves faired through data for
free-stream velocities of 12 and 20 m/sec. Each curve shows
a different radial location of the maximum u,,,,. However,
the maximum u,,,, for all velocities occurs at a distance from
the wall in viscous units of y_, ~16. Thus, the maximum
mean kinetic energy of the fluctuating motions in axisym-
metric wall turbulence appears to be related to the distance
from the wall measured in wall coordinates. This is nearly
the same location of the maximum u_, for the flat plate,
which occurs at y, =15 as estimated from Klebanoff’s
data.?®

The magnitude of u,,,, varies in Fig. 9(a) as a result of
averaging the velocity fluctuations over the length of the hot
wire. This is a result of different effective sensor lengths mea-
sured in viscous units because of different friction velocities.
Willmarth and Sharma?* found that, for a hot-wire length of
1, =10, about 10% of the rms velocity fluctuations could
not be resolved. This effect may be even greater for the data
in Figs. 9(a) and 9(b), since the hot-wire length ranged from
{, =30for a free-stream velocity of 12 m/secto/, =~70fora
free-stream velocity of 30 m/sec.
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IV. CONCLUSIONS

The data presented in this paper show that a simple log
law describes the mean velocity profile for a boundary layer
on a cylinder. The relation (2) for the mean velocity profile is
a log law based on mixed scales. It scales the distance from
the wall of the cylinder with the traditional planar inner
variable y,_ = yU_/v. Unlike the planar boundary layer,
though, the coefficients of the log law are not constants. In-
stead, these coefficients m and n depend on 8/a, a scale of the
transverse curvature ratio. In fact, m is a linear function of
6/a for 8/a < 40. Equation (2) accounts for local changes in
the boundary layer thickness such as those resulting from a
slight angle of attack of the cylinder with respect to the free-
stream flow. As §/a approaches, 1, the effect of the trans-
verse curvature on the mean velocity profile is negligible,
and the coefficients of the log law revert to their planar val-
ues.

Like other wall shear flows, the Reynolds stress nondi-
mensionalized by u__, v, has a value between 0.4 and 0.5
except for near the wall and at the outer edge of the boundary
layer. The Reynolds stress in the turbulent boundary layer
on a cylinder nondimensionalized by the free-stream veloc-
ity is a function of the inverse radius measured from the
center of the cylinder. Near the wall the radius is scaled by
the radius of the cylinder. This functional dependence, pre-
dicted by assuming a constant stress moment near the wall,
also holds for the streamwise turbulent intensity u,,,,. In the
outer region of the boundary layer, the inverse radius is bet-
ter scaled by the radius of the outside edge of the boundary
layer for both the Reynolds stress and the streamwise turbu-
lent intensity.

The fundamental differences in the functional depen-
dence of the turbulent quantities measured on a cylinder and
a flat plate suggest that further work is necessary to under-
stand the underlying mechanisms of turbulence. Work is
currently under way in our facility to measure the details of
the structure of the turbulence in a boundary layer on a cyl-
inder. These measurements may yield information that will
be helpful in further interpretation of the results presented in
this paper.
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