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A linear stability analysis was carried out for axial flow between a rotating porous inner cylinder and
a concentric, stationary, porous outer cylinder when radial flow is present for several radius ratios.
The radial Reynolds number, based on the radial velocity at the inner cylinder and the inner radius,
was varied from215 to 15, and the axial Reynolds number based on the mean axial velocity and
the annular gap was varied from 0 to 10. Linear stability analysis for axisymmetric perturbations
results in an eigenvalue problem that was solved using a numerical technique based on the Runge–
Kutta method combined with a shooting procedure. At a given radius ratio, the critical Taylor
number at which Taylor vortices first appear for radial outflow decreases slightly for small positive
radial Reynolds numbers and then increases as the radial Reynolds number becomes more positive.
For radial inflow, the critical Taylor number increases as the radial Reynolds number becomes more
negative. For a given radial Reynolds number, increasing the axial Reynolds number increases the
critical Taylor number for transition very slightly. The critical wave velocity decreases slightly for
small positive radial Reynolds numbers, but increases for larger positive and all negative radial
Reynolds numbers. The perturbed velocities are very similar to those for no axial flow. ©1997
American Institute of Physics.@S1070-6631~97!03812-9#
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I. INTRODUCTION

The linear stability of circular Couette flow in the ann
lus between a rotating inner cylinder and a concentric, fix
outer cylinder has been studied from both theoretical
experimental standpoints. The instability appears as pair
counter-rotating, toroidal vortices stacked in the annu
Taylor1 conducted a simple flow visualization experiment
confirm his analytic prediction for the onset of the instabili
Chandrasekhar,2 DiPrima and Swinney,3 Kataoka,4 and
Koschmeider5 provide extensive summaries of the abund
research on this topic since Taylor’s pioneering work.

The stability of Taylor vortex flow is altered when a
additional flow is superimposed on the circular Couette flo
An axial flow in the annulus stabilizes the circular Coue
flow so that the transition to supercritical Taylor vortex flo
occurs at a higher Taylor number.6–13 When the vortices ap
pear, they translate in the same direction as the bulk a
flow in the annulus.12,14–16The axial flow can also alter th
character of the flow instability, resulting in helical vortice
and wavy helical vortices.15–19 Recently, circular Couette
flow with an axial flow has been used as a model for
study of the distinction between absolutely unstable flo
where a localized perturbation grows in both the upstre
and downstream direction, and convectively unstable fl
where a localized perturbation is advected dow
stream.13,20–22In this case, the type inflow boundary cond
tion at the end of the finite length annulus can modify t
vortex structure near the ends of the vortex system.22

A radial flow in the annulus between differentially rota
ing porous cylinders also affects the stability of the Tay
vortex flow. Radially inward flow and strong radially ou
ward flow have a stabilizing effect. On the other hand
weak radially outward flow destabilizes the flow.23–28 Min
and Lueptow27,28 suggest an explanation that is based on
Phys. Fluids 9 (12), December 1997 1070-6631/97/9(12)/3687
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incipient vortical motion related to supercritical flow firs
appearing near the inner cylinder.10,11A radially inward flow
washes the incipient vortical motion out of the annul
through the porous inner cylinder. Likewise a strong rad
outflow washes the incipient vortical motion across the
nulus and out through the outer porous cylinder. Both sit
tions stabilize the flow. However, weak radially outwa
flow carries the incipient supercritical motion into the ann
lus, resulting in transition at a lower Taylor number.

A combination of radial flow and axial flow superim
posed on circular Couette flow occurs during dynamic filt
tion using a rotating filter.29–37In these devices an axial flow
introduces a suspension into the annulus between a rota
porous inner cylinder and a stationary nonporous outer
inder. Filtrate passes radially through the porous wall of
rotating inner cylinder, while the concentrate is retained
the annulus. The Taylor vortices appearing in the device
believed to wash the filter surface of the inner cylinder cle
of particles, thus preventing the plugging of pores of t
filter medium.38 Centrifugal forces acting on the particles
suspension and the shear resulting from the rotation of
inner cylinder, are also thought to inhibit particles from plu
ging the pores of the filter.39

In this study we apply a linear hydrodynamic stabili
analysis to determine the critical Taylor number along w
the associated wave number and wave velocity for the tr
sition from stable circular Couette flow to vortical flow whe
there is a radial flow between two concentric, infinitely lon
porous cylinders as well as an axial flow in the annulus
sketch of the flow configuration is shown in Fig. 1. Litt
research has been done on the stability of circular Cou
flow for the case of both radial flow~inflow or outflow! and
axial flow. The narrow gap case for a similar problem i
volving corotating porous cylinders with an axial flow wa
studied by Bahl and Kapur,40 but they made several problem
3687/10/$10.00 © 1997 American Institute of Physics
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atic simplifying assumptions in their analysis. They used
average axial velocity, which has been shown to ca
errors.14,20 In addition, they prescribed arbitrary values f
the axial wave number and amplification factor based
analyses for no radial flow and the problematic average a
velocity. Unlike Bahl and Kapur we use the full linear di
turbance equations and do not make the simplifying assu
tion of flow in a narrow gap, nor do we make any appro
mations regarding the axial velocity. Furthermore w
directly calculate the axial wavenumber and amplificat
factor rather than specifying arbitrary values. Finally, w
study the case where the outer cylinder is fixed, rather t
rotating, because of the practical significance of this ca
Quite recently, Kolyshkin and Vaillancourt41 considered
both axisymmetric and nonaxisymmetric convective ins
bilities for the inner cylinder and both cylinders rotatin
They found that radially inward and strong radially outwa
flow stabilizes, whereas weak radially outward flow desta
lizes the Couette flow, much like the situation when there
no axial flow. Their stability predictions match experimen
reasonably well at low axial Reynolds numbers. Our wo
differs from Kolyshkin and Vaillancourt in that we consid
a broader range of radial Reynolds numbers and addres
dependence of the instability on the radius ratio. We a
investigate the mode shapes of the velocity disturbances
the dependence of the wave velocity on the radial Reyno
number, neither of which were addressed previously.

The analysis that we use provides the stability bound
below which the flow is absolutely stable. We do not co
sider the convective instability. The flow configuratio
shown in Fig. 1 is obviously not identical to that in a rotatin
filter separator because the outer cylinder is porous. The
in a rotating filter, however, is not easily amenable to ana
sis, although there has recently been work in that directio42

Nevertheless, analysis of the flow configuration in Fig. 1 c
provide insight into the stability of flow in rotating filte
separators because of the simultaneous existence of
flow, radial flow, and circular Couette flow.

II. ANALYTICAL FORMULATION

The Navier–Stokes and continuity equations in cylind
cal coordinates (r ,u,z) for steady, incompressible flow in th
absence of a body force are used to find the stable solu

FIG. 1. Sketch of the flow configuration. The radial flow can be inwa
(a,0) as shown or outward (a.0).
3688 Phys. Fluids, Vol. 9, No. 12, December 1997
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for axial and radial flow between an infinitely long rotatin
inner cylinder and a fixed concentric outer cylinder. The v
locity field (U,V,W) is

U~r !5
u1r 1

r
5

an

r
, ~1a!

V~r !5Ara111
B

r
, ~1b!

W0~r !5b
n

d
C0F S r

dD 2

1D0 lnS r

dD1E0G , for a50,

~1c!

W1~r !5b
n

d
C1F S r

dD 2

1D1S r

dD a

1E1G , for aÞ0.

~1d!

Here a5u1r 1 /n is the radial Reynolds number andb
5w̄d/n is the axial Reynolds number, whereu1 is the radial
velocity through the wall of the inner porous cylinder with
positive value when outward from the axis of rotation,w̄ is
the average axial velocity,d5r 22r 1 is the gap between the
cylinders, andn is the kinematic viscosity. The coefficient
A, B, C0 , D0 , E0 , C1 , D1 , and E1 are functions of the
radius ratioh5r 1 /r 2 based on the boundary conditions
the walls and are given in Appendix A. It can be show
~using MATHEMATICA 43! that W1 is equivalent toW0 in the
limit as a approaches zero. For no radial or axial flow,a
5b50, the equations revert to the solution for circular Co
ette flow between impermeable cylinders.2 When there is no
axial flow, b50, the equations are identical to those for c
cular Couette flow between porous cylinders.25,27And for no
radial flow, a50, the equations are the same, though in
slightly different form, as those used by Recktenwaldet al.20

for axial flow superimposed on circular Couette flow.
Low axial Reynolds numbers are associated with the a

symmetric supercritical instability for experiments of circ
lar Couette flow with an axial flow13,15–19,44 and circular
Couette flow with an axial flow and a radial flow at the inn
cylinder.28,41 Since we consider relatively small axial Re
nolds numbers, the stability problem is based on small a
symmetric perturbationsur , uu , anduz of the velocity field
andp8 the pressure field. The perturbations are expresse
normal modes of the form

ur5eqtu~r !eikz,

uu5eqtv~r !eikz,
~2!

uz5eqtw~r !eikz,

p85eqtv~r !eikz,

wherek is the axial wave number of the disturbance,q is an
amplification factor, andu(r ), v(r ), w(r ), andv(r ) are the
amplitudes of the perturbations. The axial dependence of
perturbations in~2! is consistent with infinitely long cylin-
ders. For circular Couette flow with an axial flow betwe
finite length cylinders, Bu¨chel et al.22 have shown that the
vortex structure near the ends of the annulus is strongly
fected by the end boundary conditions, but the vortex str
ture in the bulk of the flow is unaffected. We expect a simi
E. C. Johnson and R. M. Lueptow
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effect when a radial flow is added, but ignore it since it do
not significantly affect the vortex structure away from t
ends of the annulus.

Substitution of ~2! into the unsteady, incompressibl
axisymmetric Navier–Stokes and continuity equations f
lowed by linearization by discarding higher-order terms,
sults in the following equations for the amplitudes of t
perturbed quantities

nS DD* 2k22
q

n
2

ikW

n Du1
2V

r
v2u DU2U Du5Dv,

~3!

nS DD* 2k22
q

n
2

ikW

n D v2uD* V2U D* v50, ~4!

nS D* D2k22
q

n
2

ikW

n Dw2U Dw2u DW5 ikv, ~5!

D* u52 ikw, ~6!

where i is the square root of21, W is either W0 or W1

depending on the value ofa, and the following notation is
established to simplify the equations:

D5
d

dr
, D* 5

d

dr
1

1

r
. ~7!

Substituting the expression forw from ~6! into ~5! and
then substituting the resulting expression forv into ~3!, re-
sults in
Phys. Fluids, Vol. 9, No. 12, December 1997
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k2 S D* D2k22
q

n D ~DD* 2k2!u2
1

k2 ~DU !DD* u

2
1

k2 UD2~D* u!1D~uU!2
i

k S W~DD* 2k2!u

1
u

r
DW2uD2WD5

2V

r
v. ~8!

Rearrangement of~4! results in

nS DD* 2k22
q

n
2

ikW

n D v5u D* V1U D* v. ~9!

When there is no axial flow,W50, these expressions ar
identical to those of Min and Lueptow27 for circular Couette
flow with radial flow only.

We now introduce the following dimensionless leng
scaler 8, wave numbera, amplification factors, and veloc-
ity perturbationsu8, v8, andw8:

r 85
r

d
, a5kd, s5

q

n
d2, u85

u

r 1V1
,

~10!

v85
v

r 1V1
, w85

w

r 1V1
.

At this point the derivation for the zero radial flow cas
corresponding to Eq.~1c! differs from that for the nonzero
radial flow case corresponding to Eq.~1d!. The more genera
nonzero radial flow case is derived here. The derivation
the zero radial flow case is very similar and the results
included in Appendix B. Substituting~1a!, ~1b!, ~1d!, and
~10! into ~9!, and solving for the radial velocity perturbatio
u(r ) results in
he
u5u8r 1V15
nr 1V1

A~a12!da12
S S D8D

*
8 2a22s2 iabC1~r 821D1r 8a1E1!2

a

r 8
D

*
8 D v8

r 8a
D . ~11!

From ~6! and ~11! axial velocity perturbationw(r ) can be expressed as

w5w8r 1V15
i

a

nr 1V1

A~a12!da12 D
*
8 S S D8D

*
8 2a22s2 iabC1~r 821D1r 8a1E1!2

a

r 8
D

*
8 D v8

r 8a
D . ~12!

Note that bothu andw are expressed as functions of the azimuthal velocity perturbationv85v/r 1V1 . All that is left is to find
an expression forv8. Substituting~1a!, ~1b!, ~1d!, and~10! into ~8! results in

~D8D
*
8 2a22s!~D8D

*
8 2a2!u1

a

r 82 D8D
*
8 u2

a

r 8
D82~D

*
8 u!1S aa2

r 8
D8u2

aa2

r 82 uD2 iabC1@~r 821D1r 8a1E1!

3~D8D
*
8 2a2!1~2a2a2!D1r 8a22]u52

a2d2

n S Ar8ada1
B

r 82d2D v8r 1V1 . ~13!

Letting u* represent the quantity in the outer parentheses in~11! and ~12!, dropping the prime notation, and rearranging t
right-hand side of the equation yields

~DD* 2a22s!~DD* 2a2!u* 1
a

r 2 DD* u* 2
a

r
D2~D* u* !1

aa2

r
Du* 2

aa2

r 2 u* 2 iabC1@~r 21D1r a1E1!~DD* 2a2!

1~2a2a2!D1r a22]u* 52TraS ~12h!a12

r a12 2~12h!2a14Da2v, ~14!
3689E. C. Johnson and R. M. Lueptow

AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



te

oi
ob
r

e
be
gt

ve
f

et
(

e

al

-

,
ni-
er
-
ow

he
f

ne

or

dary
rd

-
the

ry
r
f
ral

ed
f

rder
ated

a’s
e-

tical

n

–

ate
m-

cy
er,
the

al

a-
ve
where

T5
2~a12!V1

2

n2

r 1
2r 2

2h2

~12ha12!2 5Ta2
2~a12!h2

~12ha12!2~12h!2 .

~15!

T is a special form of the Taylor number that can be rela
to the Taylor number, Ta5V1r 1d/n. ~We refer to the rotat-
ing Reynolds number, Ta, as the Taylor number to av
confusion with the other two Reynolds numbers in the pr
lem.! Note that~14! is an ordinary differential equation fo
the nondimensional azimuthal velocity perturbationv8(r ).
For the case of no axial flow (b50), ~14! reduces to an
equation nearly identical to Eq.~14! of Min and Lueptow27

for pure radial flow between a rotating porous inner cylind
and a stationary porous outer cylinder. The difference
tween the two equations arises from the different len
scales used for nondimensionalization.

The perturbation velocity amplitudesu8, v8, and w8
must vanish on the boundaries at the inner cylinder,r 18
5h/(12h), and the outer cylinder,r 2851/(12h). Using
~11! and ~12! and the boundary condition thatv850 on the
walls, the boundary conditions on the three perturbation
locity amplitudes,u8, v8, andw8, can be written in terms o
v8 as

d2v
dr2 1

~12a!

r

dv
dr

50, ~16a!

v50, ~16b!

d3v
dr32S ~12a!212

r 2 1a21s

1 iabC1~r 21D1r a1E1! D dv
dr

50, ~16c!

where the prime notation has been dropped. This compl
the derivation for the case when radial flow is presenta
Þ0). Equation ~14! incorporating ~15! along with the
boundary conditions~16! provide equations that can b
solved for the azimuthal velocity perturbationv. Equations
~11! and ~12! permit the calculation of the radial and axi
velocity perturbations fromv.

Equation~14! is a sixth-order ordinary differential equa
tion for which the real part of the amplification factors is
zero at the onset of the instability. Subjecting Eq.~14! to
boundary conditions~16! leads to an eigenvalue problem
with the ultimate goal being the determination of the mi
mum Taylor number Ta and the associated wave numba
and amplification factors that satisfy the ordinary differen
tial equation and the boundary conditions for specified fl
conditionsa andb at the specified geometryh.

To solve the problem a shooting method similar to t
one used by Sparrowet al.45 was used. First, a trial value o
Ta was selected. Then three trial solutions,v I , v II , andv III ,
were constructed that satisfy Eq.~14! for prescribed values
of a, b, andh, along with trial values fora ands. All three
trial solutions satisfied the boundary conditions at the in
wall ~16! for v, d2v/dr2, andd3v/dr3. But each trial solu-
3690 Phys. Fluids, Vol. 9, No. 12, December 1997
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tion satisfied a different set of boundary conditions f
dv/dr, d4v/dr4, and d5v/dr5 at the inner wall, accom-
plished by, in each case, setting one of these three boun
conditions to unity and the remaining two to zero. A forwa
integration scheme~Runge–Kutta! was used to compute
each trial solution using the six initial conditions atr 18
5h/(12h) for each of the trial solutions. In general, a lin
ear combination of the trial solutions satisfies each of
boundary conditions~16! at r 2851/(12h). This can be writ-
ten as

c1f I1c2f II1c3f III 50,

c1gI1c2gII1c3gIII 50, ~17!

c1hI1c2hII1c3hIII 50,

where f i , gi , and hi are the left-hand sides of bounda
conditions~16a!, ~16b!, and~16c!, respectively, evaluated fo
the trial solutionv i at r 28 . The Runge–Kutta integration o
Eq. ~14! for the three trial solutions was repeated for seve
values of Ta until one was found, denoted Ta* , that yielded
a determinant of zero for the three by three matrix form
from f i , gi , andhi . Though this Ta* indicates the onset o
instability for the chosen values ofa and s, these are not
necessarily the values that a system would achieve. In o
to find the proper values, the above procedure was repe
varying botha ands. For an arbitrarily chosens, Ta* may
be complex. Since the imaginary part of Ta* must be zero
for physical situations,s was varied until a real Ta* was
found. In practice, this was achieved by using real trial T
and varyings until the real and imaginary parts of the d
terminant vanished. Then the wave numbera was varied and
the process described above was repeated until the cri
wave number for which Ta* is a minimum was found. This
minimum Taylor number is the critical Taylor number, Tac .
Using the values off i , gi , andhi evaluated for the critical
Taylor number and the correspondinga and s in Eq. ~17!
permits the calculation of the scaling factorsc2 and c3 in
terms ofc1 . The perturbed velocity is the linear combinatio
of the trial solutions,

v85c1v I1c2v III 1c3v III . ~18!

Thus, the azimuthal velocity perturbationv8 was calculated
to within a multiplicative factorc1 .

Equation~14! was solved numerically using the Runge
Kutta solver built intoMATHEMATICA .43 This solver uses a
variable step size, making adjustments to best approxim
the actual solution. Because of the time required for the co
putations, typically only two decimal places of accura
were used for the calculation of the critical wave numb
and three decimal places of accuracy were possible for
calculation of the critical Taylor number and the critic
wave speed, which is related to the amplification factors, as
described shortly. A limitation of theMATHEMATICA solver
is the difficulty in controlling the accuracy of the comput
tions, which becomes evident in small errors in the wa
number calculations, as discussed shortly.
E. C. Johnson and R. M. Lueptow
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TABLE I. Critical values for Ta,a, andc.

~a! No radial flow (a50) and no axial flow (b50).

Radius ratio Roberts~Ref. 46! Chung and Astill~Ref. 9! Min and Lueptow~Ref. 27!
Recktenwald,

et al. ~Ref. 20! Present
h a Tac a Tac a Tac a Tac a Tac

0.95 3.13 184.98 3.13 184.99 3.13 184.99 ••• ••• 3.13 184.99
0.85 3.13 108.31 ••• ••• 3.13 108.32 ••• ••• 3.13 108.31
0.75 3.14 85.78 3.14 85.78 3.14 85.78 3.1354 85.78 3.14 85
0.65 3.14 74.96 ••• ••• ••• ••• ••• ••• 3.14 74.96

~b! Radial flow with no axial flow (b50).

Radius ratio Radial Reynolds # Min and Lueptow~Ref. 27! Present
h a a Tac a Tac

0.95 15 ••• 176.48 3.13 176.48
0 3.13 184.99 3.13 184.99

215 ••• 201.64 3.16 201.57
0.85 15 ••• 108.54 3.24 108.57

0 3.13 108.32 3.13 108.31
215 ••• 155.76 3.34 155.79

0.75 15 ••• 107.74 3.49 107.76
0 3.14 85.78 3.14 85.78

215 ••• 184.51 3.76 184.50

~c! Axial flow with no radial flow (a50).

Radius
ratio

Axial
Reynolds #

Chung and
Astill ~Ref. 9!

DiPrima and
Pridor ~Ref. 14!

Ng and
Turner ~Ref. 12!

Babcock,
et al. ~Ref. 13!

Recktenwald,
et al. ~Ref. 20! Present

h b a c Tac a c Tac a c Tac a Tac a c Tac a c Tac

0.95 0.01 ••• ••• ••• 3.13 1.170 184.99 3.127 1.170 184.99••• ••• ••• ••• ••• 3.13 1.170 184.99
0.90 0.01 ••• ••• ••• 3.13 1.170 131.61 ••• ••• ••• ••• ••• 3.129 1.170 131.61 3.13 1.170 131.6

10 ••• ••• ••• 3.14 1.169 136.63 ••• ••• ••• ••• ••• 3.139 1.169 136.63 3.08 1.168 136.6
0.75 2 3.148 1.172 85.99 ••• ••• ••• ••• ••• ••• 3.136 85.91a 3.136 1.172 85.91 3.13 1.17 85.9

5 3.163 1.172 86.60 ••• ••• ••• ••• ••• ••• 3.139 86.60a 3.138 1.172 86.59 3.12 1.171 86.6
10 3.165 1.172 89.02 ••• ••• ••• ••• ••• ••• 3.145 89.02a 3.146 1.171 89.02 3.08 1.169 89.0

aValues were calculated based on an expression for the reduced Taylor ath50.74 using Tac at a5b50 from the present study.
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The radial Reynolds numbera was varied from215 to
15 in increments of 1 neara50 and increments of 5 fo
uau>5, avoiding a singularity ata522. The axial Reynolds
numberb was varied over the range for which axisymmet
disturbances are expected,9,15–17from 0 to 10, in increments
of 1 to 5. The problem was solved for three radius ratiosh of
0.65, 0.75, and 0.85. Calculations were also made foh
50.90 andh50.95, but because of the extremely long r
times associated the large radius ratios and large axial R
nolds numbers, only a few calculations were made.

To assure the validity of our procedure we compared
results to previously published results for three cases:~1! no
radial flow (a50) and no axial flow (b50);9,20,27,46 ~2!
pure radial flow with no axial flow (b50);27 ~3! no radial
flow (a50) with pure axial flow.9,12–14,20The similarity of
the values for the critical Taylor numbers Tac , critical wave
numbersa, and critical wave velocitiesc ~to be defined
shortly!, shown in Table I, confirm that our procedure
valid. There is, however, a problem with the wave numb
calculations at high axial Reynolds numbers, as indicate
Table 1~c!. Other calculations indicate that the wave numb
increases slightly with the axial Reynolds number. Our c
culations indicate a very slight drop in the critical wave nu
ber as the axial Reynolds number increases from 0 to 5. T
there is a somewhat larger decrease in the critical wave n
Phys. Fluids, Vol. 9, No. 12, December 1997
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ber as the axial Reynolds number increases from 5 to 10.
reason for this contradiction is probably related to our co
putational accuracy. In the computations, it is necessar
determine the wave number for which the Taylor numbe
smallest. But relatively large changes in the wave num
result in very small variations in the Taylor number. F
instance, changing the wave number from the critical va
of 3.122 to 3.130~about 0.26%! results in a change in the
Taylor number from 86.598 73 to 86.599 18, only 0.0005
for a typical case ofa50, b55, andh50.75. This makes
identifying the exact wave number corresponding to
minimum Taylor number quite difficult. Nevertheless, th
critical Taylor number and wave speed are not strongly
pendent on the wave number, so the results for these q
tities match other calculations quite well.

III. RESULTS AND DISCUSSION

The critical Taylor number for transition from stable ci
cular Couette flow to supercritical Taylor vortex flow
shown in Fig. 2 as a function of the radial Reynolds numb
a for two representative axial Reynolds numbers~b50 and
b510!. The curves for the other axial Reynolds numbe
that were calculated (b51,2,5) lie between those plotted i
Fig. 2 and are omitted for clarity. Radial inflow, correspon
3691E. C. Johnson and R. M. Lueptow
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ing to negative radial Reynolds numbers, increases the c
cal Taylor number for the onset of instability, indicating
stabilizing effect. Similarly, strong radial outflow, corre
sponding to large positive radial Reynolds numbers, also
bilizes the flow. However, weak radial outflow, correspon
ing to small positive radial Reynolds numbers, destabili
the flow by slightly decreasing the critical Taylor numbe
These results are consistent with those of Kolyshkin a
Vaillancourt41 and Bahl and Kapur40 for nonzerob, although
they considered much smaller ranges ofa at different radius
ratios.

The effect of the radius ratio on the critical Taylor num
ber is also evident in Fig. 2. For radial Reynolds numb
near zero, the transition to supercritical Taylor vortex flo
occurs at a higher Taylor number as the annular gap narro
or, in other words, as the radius ratioh increases. For large
negative or positive radial flows the opposite situation
curs. The transition to supercritical flow occurs at a high
Taylor number as the annular gap widens as a result of
stronger stabilizing effect of the radial flow for small radi
ratios. In other words, the degree to which varying the rad
Reynolds number affects the critical Taylor number less
with narrowing gap. It is also evident that the upturn of t
curve related to the stabilizing effect of strong radial outflo
occurs at a smaller positive radial Reynolds number as
radius ratio decreases.

Min and Lueptow27,28 offer a physical explanation fo
the effect of the radial flow on the stability based on t
location of the first appearance of incipient vortical motio
Although stability theory indicates that the flow becom
universally unstable once the critical Taylor number is e
ceeded, the incipient vortical motion first appears near
rotating inner cylinder and then propagates radially outw
as the Taylor number increases when no radial flow
present and the outer cylinder is stationary.10,11 In the pres-
ence of radial inflow, the fluid where the incipient vortic
motion begins is washed out of the annulus through the

FIG. 2. The effect of the radial Reynolds numbera on the critical Taylor
number Tac . Here b50 ~no axial flow!, dashed curves;b510, solid
curves;h50.65,s; h50.75,3; h50.85,1. Curves are cubic spline fits to
the data.
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rous inner cylinder. Thus, the critical Taylor number for t
onset of instability increases. Weak radial outflow, on t
other hand, washes the incipient vortical motion away fro
the inner cylinder and outward across the annulus, resul
in a lower Taylor number for transition to supercritical flow
Strong radial outflow delays the onset of supercritical vo
ces by washing the incipient motion across the annulus
through the outer porous cylinder.

Increasing the axial Reynolds number increases the
bility of the flow, although the effect is small over the rang
of axial Reynolds numbers considered. The curves forb
50 andb510 are very close to one another, and the cur
for the other axial Reynolds numbers~b51, 2, and 5! are
between these curves, but are omitted for clarity. The ph
cal explanation for the stabilizing effect that an axial flo
has on circular Couette flow is not clear. Perhaps the sh
due to the axial flow somehow disrupts the incipient vortic
motion near the inner cylinder, thus leading to the stabiliz
effect.

The radial flow also affects the value of the critical wa
number, shown in Fig. 3, keeping in mind that computatio
difficulties have resulted in slightly low values of the wav
number. The critical wave number for the narrower gap
less affected by variations in the radial Reynolds numb
while the effect in the wider gap is more pronounced. Bo
radial inflow and large radial outflow increase the critic
wave number, although inflow has a greater effect than o
flow for the same magnitude of the radial Reynolds numb
Min and Lueptow27 and Kolyshkin and Vaillancourt41 found
a similar result for the case ofb50, even noting a very
slight decrease in wave number for small positivea. Our
data showed the same tendency as indicated by the
steeply sloped curves for radial outflow than for radial
flow, but we were unable to resolve the third decimal pla
of the wave number where this slight decrease would
evident because of unreasonably long computation times

The supercritical vortices translate axially in the annu
when an axial flow is present. At the onset of the instabili

FIG. 3. The effect of the radial Reynolds numbera on the critical wave
number a forb510; h50.65, s; h50.75, 3; h50.85, 1. Curves are
cubic spline fits to the data.
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the real part of the amplification factorq is zero, while the
imaginary part ofq is the dimensional frequency of the in
stability. As a result,iq divided by the dimensional axia
wave numberk of the instability represents the axial wav
velocity of the instability. It is convenient to represent t
critical wave speed as a fraction of the average axial velo
in the annulusw̄, so thatc5( iq/k)/w̄5 is/ab. The depen-
dence of the critical wave velocity on the radial Reyno
number is shown in Fig. 4 for an axial Reynolds number
b510. With the exception of the no-axial flow case whe
c50 ~since the vortices are of a stationary cellular natur!,
the wave velocity is essentially insensitive to the axial R
nolds number over the range of consideration. As a res
the data for other axial Reynolds numbers (b51,2,5) over-
lay the data shown in Fig. 4. A very small decrease in
wave velocity was detected with increasing axial Reyno
number consistent with the results of Chung and Asti9

DiPrima and Pridor,14 and Recktenwaldet al.,20 as indicated
in Table 1~c!.

Like the critical Taylor number and critical wave num
ber, the critical wave velocity is more sensitive to the rad
Reynolds number for a wider gap. The critical wave veloc
also increases with radial inflow and strong radial outflo
and decreases slightly for weak radial outflow. This is b
seen for the wider gaps, where the sensitivity to the ra
flow is more pronounced. The critical wave velocity match
the results of previous researchers ata50 as indicated in
Table 1~c!. It also corresponds with the experimental resu
of Snyder17 and Lueptowet al.16 that vortices travel at a
velocity of 1.0–1.4 times the bulk axial velocity.

The effect of the radial flow on the relative amplitude
the perturbed velocities is shown in Fig. 5 forb50 andb
510 at three radial Reynolds numbers for a radius ratio
h50.85. The perturbed azimuthal velocity was found
within a multiplicative factorc1 using Eq.~18!. Then the
radial and axial velocity perturbations were calculated us
Eqs.~11! and~12!. Since the scaling of the amplitudes of th
perturbed velocity components can only be determined

FIG. 4. The effect of radial Reynolds numbera on the critical wave velocity
c for b510; h50.65,s; h50.75,3; h50.85,1. Curves are cubic spline
fits to the data.
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within a multiplicative factor, the amplitudes of the pe
turbed velocities are normalized by the maximum amplitu
of the perturbed azimuthal velocity component,vmax, for
that particular Taylor number. In keeping with the prop

FIG. 5. The relative amplitude of the perturbation velocity from the inn
cylinder at r /r 250.85 to the outer cylinder atr /r 251 for h50.85. Here
b50 ~no axial flow!, dashed curves;b510, solid curves.~a! Relative am-
plitude of azimuthal perturbation velocityv/vmax. ~b! Relative amplitude of
radial perturbation velocityu/vmax. ~c! Relative amplitude of axial pertur-
bation velocityw/vmax.
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boundary conditions at the wall, the amplitudes of the p
turbed velocities are zero at the inner wall,r 1 /r 25h, and at
the outer wall,r 2 /r 251.

The effect of the radial flow on the perturbed velociti
is the same as that found by Min and Lueptow:27 the radial
flow shifts the radial position of the maximum value of th
relative amplitude of both the perturbed azimuthal velocityv
and the perturbed radial velocityu in the direction of the
radial flow, as shown in Figs. 5~a! and 5~b!; radially inward
flow suppresses the amplitude of the perturbed radial ve
ity u and the perturbed axial velocityw, while radial outflow
amplifies these velocities, as shown in Figs. 5~b! and 5~c!;
and the zero crossing, minimum, and maximum of the p
turbed axial velocity are shifted in the direction of the rad
flow, as shown in Fig. 5~c!.

Our key interest here is the effect of the axial flow on t
perturbed velocities. The axial flow has very little effect
the perturbed azimuthal velocity, as is evident from the si
larity between the dashed curves forb50 and the solid
curves forb510 in Fig. 5~a!. On the other hand, the axia
flow results in a small increase in the amplitude of the rad
and axial velocity perturbations for zero and positive rad
flow (a50,10), as shown in Figs. 5~b! and 5~c!. But it has
very little effect on the radial and axial velocity perturbatio
for a radial inflow (a5210). Based on the results in Fig. 5
it is clear that the radial inflow has a substantial effect on
structure of the vortex flow, shifting the vortices radial
inward or outward, depending on the direction of the rad
flow. By comparison, the axial flow has only a minor effe
on the relative amplitudes of the velocity perturbations.

IV. SUMMARY

The results of this analysis of flow between differentia
rotating porous cylinders with an axial and radial flow ind
cate that radially inward flow stabilizes the flow, where
weak radially outward flow slightly destabilizes the flow
This result is true, regardless of radius ratio and strength
the axial flow, although the effect is greater when the rad
ratio is decreased. Although a weak radial outflow desta
lizes the flow, a strong outflow stabilizes the flow. The cr
cal wave number and critical wave velocity increase w
radially inward flow and strong radially outward flow, a
though weak radially outward flow results in a small d
crease in these quantities.

Axial flow always stabilizes the flow slightly for the
range of axial Reynolds numbers considered, independe
the radial flow and radius ratio. Over the range of radial a
axial flows considered, there is very little influence by t
radial flow on the how much the axial flow increases t
stability. The wave velocities have almost no dependence
the axial Reynolds number over the range considered.

The original motivation for this work was the flow in
rotating filter device. In such a device, only the inner cyl
der is porous, while the outer cylinder is nonporous. T
axial flow in the annulus provides the source of the fluid t
flows radially inward through the inner porous cylinder. T
case of a rotating filter is not easily amenable to analy
because no analytic stable solution exists for the flow
because the flow through the porous inner cylinder va
3694 Phys. Fluids, Vol. 9, No. 12, December 1997
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with axial position. However, the results presented here p
vide several insights with regard to the rotating filter app
cation. Typically in such devices,210,a,20.1 at the in-
ner cylinder and 1,b,50.31,33–35,47,48The results presente
here suggest that a slightly higher rotational speed is nee
to assure the appearance of Taylor vortices in the ann
than if there were no radial flow. An axial flow also stabiliz
the flow requiring a higher rotational speed for supercriti
vortices to appear, although the effect of the axial flow
quite small.
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APPENDIX A: VELOCITY FIELD COEFFICIENTS

The constants in Eq.~1! were found by applying the
no-slip boundary condition at the walls of the inner and ou
cylinder and by using the definition for the average ax
velocity w̄,

A5
2V1h2

r 2
a~12ha12!

, ~A1!

B5
r 1

2V1

12ha12 , ~A2!

C05
22

F11
1

12h S 2h

12h
1

11h

ln h D G , ~A3!

D05
11h

12h

1

ln h
, ~A4!

E05
11h

12h

ln~12h!

ln h
2

1

~12h!2 , ~A5!

C15
2~21a!~ha21!~12h!2

~22a!~12ha12!1~21a!~h22ha!
, ~A6!

D15
~12h2!~12h!a22

ha21
, ~A7!

E15
h22ha

~ha21!~12h!2 . ~A8!

APPENDIX B: EQUATIONS FOR ZERO RADIAL FLOW

The derivation for the case of no radial flow (a50) is
very similar to that where radial flow is nonzero, except f
the expression for the stable axial flow,W. Thus, substituting
~1a!, ~1b!, ~10!, and~1c! rather than~1d! into ~9!, and solving
for the radial velocity perturbationu(r ), results in
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u5u8r 1V15
nr 1V1

2Ad2 @D8D
*
8 2a22s

2 iabC0~r 821D0 ln r 81E0!#v8. ~B1!

From ~6! and ~B1!, axial velocity perturbationw(r ) is

w5w8r 1V15
i

a

nr 1V1

2Ad2 D
*
8 $@D8D

*
8 2a22s

2 iabC0~r 821D0 ln r 81E0!#v8%. ~B2!

Letting u* represent the quantity in the outermost brackets
~B1! and~B2!, substituting~1a!, ~1b!, ~1c!, and~10! into ~8!,
and dropping the prime notation yields, after manipulatio

~DD* 2a22s!~DD* 2a2!u* 2 iabC0

3S ~r 21D0 ln r 1E0!~DD* 2a2!1
2D0

r 2 Du*

52TS ~12h!2

r 2 2~12h!4Da2v. ~B3!

Equation~B3! for a50 corresponds to Eq.~14! for aÞ0.
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