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A linear stability analysis was carried out for axial flow between a rotating porous inner cylinder and

a concentric, stationary, porous outer cylinder when radial flow is present for several radius ratios.
The radial Reynolds number, based on the radial velocity at the inner cylinder and the inner radius,
was varied from—15 to 15, and the axial Reynolds number based on the mean axial velocity and
the annular gap was varied from 0 to 10. Linear stability analysis for axisymmetric perturbations
results in an eigenvalue problem that was solved using a numerical technique based on the Runge—
Kutta method combined with a shooting procedure. At a given radius ratio, the critical Taylor
number at which Taylor vortices first appear for radial outflow decreases slightly for small positive
radial Reynolds numbers and then increases as the radial Reynolds number becomes more positive.
For radial inflow, the critical Taylor number increases as the radial Reynolds number becomes more
negative. For a given radial Reynolds number, increasing the axial Reynolds number increases the
critical Taylor number for transition very slightly. The critical wave velocity decreases slightly for
small positive radial Reynolds numbers, but increases for larger positive and all negative radial
Reynolds numbers. The perturbed velocities are very similar to those for no axial flo#99®
American Institute of Physic§S1070-663(97)03812-9

I. INTRODUCTION incipient vortical motion related to supercritical flow first
appearing near the inner cylind€r'! A radially inward flow

The linear stability of circular Couette flow in the annu- washes the incipient vortical motion out of the annulus
lus between a rotating inner cylinder and a concentric, fixedhrough the porous inner cylinder. Likewise a strong radial
outer cylinder has been studied from both theoretical an@utflow washes the incipient vortical motion across the an-
experimental standpoints. The instability appears as pairs afulus and out through the outer porous cylinder. Both situa-
counter-rotating, toroidal vortices stacked in the annulustions stabilize the flow. However, weak radially outward
Taylor' conducted a simple flow visualization experiment toflow carries the incipient supercritical motion into the annu-
confirm his analytic prediction for the onset of the instability. lus, resulting in transition at a lower Taylor number.

Chandrasekhar, DiPrima and Swinney, Kataoka! and A combination of radial flow and axial flow superim-
Koschmeidet provide extensive summaries of the abundantposed on circular Couette flow occurs during dynamic filtra-
research on this topic since Taylor's pioneering work. tion using a rotating filtef>=3"In these devices an axial flow

The stability of Taylor vortex flow is altered when an introduces a suspension into the annulus between a rotating
additional flow is superimposed on the circular Couette flowporous inner cylinder and a stationary nonporous outer cyl-
An axial flow in the annulus stabilizes the circular Couetteinder. Filtrate passes radially through the porous wall of the
flow so that the transition to supercritical Taylor vortex flow rotating inner cylinder, while the concentrate is retained in
occurs at a higher Taylor numb®r3 When the vortices ap- the annulus. The Taylor vortices appearing in the device are
pear, they translate in the same direction as the bulk axidbelieved to wash the filter surface of the inner cylinder clean
flow in the annulug?14-1%The axial flow can also alter the of particles, thus preventing the plugging of pores of the
character of the flow instability, resulting in helical vortices filter medium?® Centrifugal forces acting on the particles in
and wavy helical vortice$™° Recently, circular Couette suspension and the shear resulting from the rotation of the
flow with an axial flow has been used as a model for theinner cylinder, are also thought to inhibit particles from plug-
study of the distinction between absolutely unstable flowging the pores of the filtet’
where a localized perturbation grows in both the upstream In this study we apply a linear hydrodynamic stability
and downstream direction, and convectively unstable flonanalysis to determine the critical Taylor number along with
where a localized perturbation is advected down-the associated wave number and wave velocity for the tran-
stream>29-22|n this case, the type inflow boundary condi- sition from stable circular Couette flow to vortical flow when
tion at the end of the finite length annulus can modify thethere is a radial flow between two concentric, infinitely long,
vortex structure near the ends of the vortex system. porous cylinders as well as an axial flow in the annulus. A

A radial flow in the annulus between differentially rotat- sketch of the flow configuration is shown in Fig. 1. Little
ing porous cylinders also affects the stability of the Taylorresearch has been done on the stability of circular Couette
vortex flow. Radially inward flow and strong radially out- flow for the case of both radial floéinflow or outflow) and
ward flow have a stabilizing effect. On the other hand, aaxial flow. The narrow gap case for a similar problem in-
weak radially outward flow destabilizes the fléW:2® Min volving corotating porous cylinders with an axial flow was
and Lueptoy’?8suggest an explanation that is based on thestudied by Bahl and Kapdf,but they made several problem-
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for axial and radial flow between an infinitely long rotating

inner cylinder and a fixed concentric outer cylinder. The ve-
_d locity field (U,V,W) is
—n Ulrl av
. u(r)= - - (1a)
—»
B
— V(r)=Areti+ — (1b)
s r
FIG. 1. Sketch of the flow configuration. The radial flow can be inward WO(r)_B a CO a +Do In a +Eol, for a=0,
(a<0) as shown or outwarda(>0). (10
v r\? r\®
atic simplifying assumptions in their analysis. They used the (1d)

average axial velocity, which has been shown to cause
errors*?° In addition, they prescribed arbitrary values for Here a=u,r /v is the radial Reynolds number and
the axial wave number and amplification factor based or=wd/v is the axial Reynolds number, wheug is the radial
analyses for no radial flow and the problematic average axiatelocity through the wall of the inner porous cylinder with a
velocity. Unlike Bahl and Kapur we use the full linear dis- positive value when outward from the axis of rotationjs
turbance equations and do not make the simplifying assumghe average axial velocitgl=r,—r is the gap between the
tion of flow in a narrow gap, nor do we make any approxi- cylinders, andv is the kinematic viscosity. The coefficients
mations regarding the axial velocity. Furthermore weA, B, Co, Do, Eg, C;1, D;, andE; are functions of the
directly calculate the axial wavenumber and amplificationradius ration=r,/r, based on the boundary conditions at
factor rather than specifying arbitrary values. Finally, wethe walls and are given in Appendix A. It can be shown
study the case where the outer cylinder is fixed, rather thafusing MATHEMATICA*®) that W, is equivalent toW, in the
rotating, because of the practical significance of this casdimit as a approaches zero. For no radial or axial flow,
Quite recently, Kolyshkin and Vaillancodtt considered = 8=0, the equations revert to the solution for circular Cou-
both axisymmetric and nonaxisymmetric convective insta-ette flow between impermeable cylindéré/hen there is no
bilities for the inner cylinder and both cylinders rotating. axial flow, =0, the equations are identical to those for cir-
They found that radially inward and strong radially outward cular Couette flow between porous cylind&t$! And for no
flow stabilizes, whereas weak radially outward flow destabiradial flow, a=0, the equations are the same, though in a
lizes the Couette flow, much like the situation when there isslightly different form, as those used by Recktenweaiicl *°
no axial flow. Their stability predictions match experimentsfor axial flow superimposed on circular Couette flow.
reasonably well at low axial Reynolds numbers. Our work ~ Low axial Reynolds numbers are associated with the axi-
differs from Kolyshkin and Vaillancourt in that we consider Symmetric supercritical instability for experiments of circu-
a broader range of radial Reynolds numbers and address th&f Couette flow with an axial flow*>~***and circular
dependence of the instability on the radius ratio. We alsécouette flow with an axial flow and a radial flow at the inner
investigate the mode shapes of the velocity disturbances arylinder?*** Since we consider relatively small axial Rey-
the dependence of the wave velocity on the radial Reynoldgolds numbers, the stability problem is based on small axi-
number, neither of which were addressed previously. symmetric perturbations, , u,, andu, of the velocity field

The analysis that we use provides the stability boundar@ndp’ the pressure field. The perturbations are expressed as
below which the flow is absolutely stable. We do not con-normal modes of the form
sider the convective instability. The flow configuration u, =edtu(r)ek
shown in Fig. 1 is obviously not identical to that in a rotating ' '
filter separator because the outer cylinder is porous. The flow u,=e%%(r)e'¥?,
in a rotating filter, however, is not easily amenable to analy-
sis, although there has recently been work in that direé¢fion.
Nevc_erthgles_s, ar)alysis of the _fl_ow configur_ation in_ Fig._l can 1= glty(r)ek?
provide insight into the stability of flow in rotating filter
separators because of the simultaneous existence of axi@herek is the axial wave number of the disturbanqes an

flow, radial flow, and circular Couette flow. amplification factor, andi(r), v(r), w(r), andw(r) are the
amplitudes of the perturbations. The axial dependence of the

perturbations in(2) is consistent with infinitely long cylin-
Il. ANALYTICAL FORMULATION ders. For circular Couette flow with an axial flow between
finite length cylinders, Behel et al?2 have shown that the
The Navier—Stokes and continuity equations in cylindri-vortex structure near the ends of the annulus is strongly af-
cal coordinatest(, 8,z) for steady, incompressible flow in the fected by the end boundary conditions, but the vortex struc-
absence of a body force are used to find the stable solutioture in the bulk of the flow is unaffected. We expect a similar

v
u,=edw(r)e'k?,
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effect when a radial flow is added, but ignore it since it doesy, , ) 1
not significantly affect the vortex structure away from thejz (D*D—k - ;)(DD*—k Ju— iz (DU)DD,u
ends of the annulus.

Substitution of (2) into the unsteady, incompressible, 1 ) i )
axisymmetric Navier—Stokes and continuity equations fol- 2 YD (Pxu)+D(ul)— | W(DD, —k“u
lowed by linearization by discarding higher-order terms, re-
sults in the following equations for the amplitudes of the
perturbed quantities

u 2V
+FDW—uD2W =—v. 8

Rearrangement d#) results in

g ikw pAY .
v DD*—kz————)u+—v—u DU-U Du=Duw, , q ikwW
vov r v| DD, —k*—————|v=u D,V+U D,v. 9)
(3) 14 14
When there is no axial flon\WW=0, these expressions are
, q ikwW identical to those of Min and Luept&Wfor circular Couette
1| DDy —k*~ = ——|v—uD,V-U D,v=0, @ flow with radial flow only.
We now introduce the following dimensionless length
q ikw scaler’, wave numbesr, amplification factoro, and veloc-
v( D,D—k?- o T)W_U Dw—u DW=ikw, (5 ity perturbationsu’, v', andw’:
r_— r _ — q 2 r_ u
D,u=—ikw, (6) =g @ kd, o vd U ryQ,’ (10
wherei is the square root of-1, W is either W, or W, v =Y
depending on the value af, and the following notation is riQy’ ri€dy
established to simplify the equations: At this point the derivation for the zero radial flow case
corresponding to Eqilco) differs from that for the nonzero
D= i D :i+ 1 @ radial flow case corresponding to E4d). The more general
dr’ *odroor nonzero radial flow case is derived here. The derivation for

the zero radial flow case is very similar and the results are
Substituting the expression fov from (6) into (5) and  included in Appendix B. Substitutingla), (1b), (1d), and
then substituting the resulting expression &into (3), re-  (10) into (9), and solving for the radial velocity perturbation
sults in u(r) results in

(64
(D'D;—az—a—ia,ecl(r’2+Dlr'a+El)——,D;)u’
u=u'r;Q,= ! r (11
1841 A(a+2)da+2 r!a .

From (6) and(11) axial velocity perturbationv(r) can be expressed as

o
) "N a2 /2+ rey _ ’ ’
i o0, D'D, —a“—o—iaBCy(r Dqr E,) o D*)v

W=W'rlﬂl=a A(a+2)da+2 D:\, r,a . (12)

Note that bothu andw are expressed as functions of the azimuthal velocity perturbatierv/r Q4. All that is left is to find
an expression fop’. Substituting(1a), (1b), (1d), and(10) into (8) results in

aa? aa’
—— D'u-—7u
r r

a o
(D’D;—az—a)(D’D;—az)UerTz D'Dju-— D'?(DLu)+

—iaBCy[(r'2+Dyr'*+E;)

) ) 5 a%d? B
X(D'D, —a%)+(2a—a®)Dyr'* ]u=27 Ar’ed*+ 22 v'riQy. (13
Letting u, represent the quantity in the outer parenthesgd 1h and (12), dropping the prime notation, and rearranging the
right-hand side of the equation yields
a o aa? aa’ _
(DD, —a?—o)(DD, —a?)u, + 2 DD, U, — — D?(D,u, )+ —— Du,——7u, —iaBCy[(r?+D,r*+E;)(DD, —a?)

(1_ 7])&+2

+(2a—a2)D1f”‘_2]U*=—Tf”‘(ra—+z—(1—77)2”+4 a‘v, (14)
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where tion satisfied a different set of boundary conditions for
dv/dr, d*/dr# andd°v/dr® at the inner wall, accom-
plished by, in each case, setting one of these three boundary
(1= 7" 2)%(1-9)* conditions to unity and the remaining two to zero. A forward
(15 integration schemgRunge—Kutta was used to compute
T is a special form of the Taylor number that can be relatecach trial solution using the six initial conditions af
to the Taylor number, TaQ,r,d/v. (We refer to the rotat- = 7/(1— 1) for each of the trial solutions. In general, a lin-
ing Reyno|ds number, Ta, as the Tay|or number to avoicear combination of the trial solutions satisfies each of the
confusion with the other two Reynolds numbers in the probboundary condition$l6) atr,=1/(1— 7). This can be writ-
lem.) Note that(14) is an ordinary differential equation for ten as
the nondimensional azimuthal velocity perturbatof(r).
For the case of no axial flowd=0), (14) reduces to an
equation nearly identical to Eq14) of Min and Lueptov§’
for pure radial flow between a rotating porous inner cylinder
and a stationary porous outer cylinder. The difference be-
tween the two equations arises from the different length
scales used for nondimensionalization. where f;, g;, andh; are the left-hand sides of boundary
The perturbation velocity amplitudes’, v’, andw’  conditions(16a), (16b), and(160), respectively, evaluated for
must vanish on the boundaries at the inner cylindgr, the trial solutionv; atr}. The Runge—Kutta integration of
=n/(1—n), and the outer cylindem;=1/(1—»). Using  Eq.(14) for the three trial solutions was repeated for several
(11) and(12) and the boundary condition that =0 on the  values of Ta until one was found, denoted*T#hat yielded
walls, the boundary conditions on the three perturbation vea determinant of zero for the three by three matrix formed
locity amplitudesp’, v', andw’, can be written in terms of  from f;, g;, andh;. Though this T4 indicates the onset of

2(a+2)Q3  ririg? 2(a+2)5?
= V2 (l_ ,'70(-%-2)2 :Taz

C1f|+ C2f|| + C3f||| = 0,

€10+ CoQy + €39y =0, (17)

Clh| + C2h|| + C3h||| = 0,

v’ as instability for the chosen values @af and o, these are not
2 necessarily the values that a system would achieve. In order
dv (1—a)dv .
d_2+ - d_:O’ (169 to find the proper values, the above procedure was repeated
r r r varying botha and o. For an arbitrarily chosem, Ta* may
v=0 (16b) be complex. Since the imaginary part of*Tenust be zero

for physical situationsg was varied until a real Tawas

d*v [(1—a)?+2 found. In practice, this was achieved by using real trial Ta's

2

ars 2 tatto and varyingo until the real and imaginary parts of the de-
terminant vanished. Then the wave numbevas varied and
dv the process described above was repeated until the critical
+i r2+Dr+E;) | —= 1 : : > .
3BCA( ! V) g =0 (169 wave number for which Tais a minimum was found. This

minimum Taylor number is the critical Taylor number,.Ta
(%jsing the values of;, g;, andh; evaluated for the critical
Taylor number and the correspondiagand o in Eg. (17)
permits the calculation of the scaling factarg and c; in
terms ofc,. The perturbed velocity is the linear combination
of the trial solutions,

where the prime notation has been dropped. This complet
the derivation for the case when radial flow is presemt (
#0). Equation (14) incorporating (15) along with the
boundary conditions(16) provide equations that can be
solved for the azimuthal velocity perturbation Equations
(11) and (12) permit the calculation of the radial and axial
velocity perturbations fromo . _ _ _ v/ =Cq0+ Covyy + Calyy - (18)
Equation(14) is a sixth-order ordinary differential equa-
tion for which the real part of the amplification facteris = Thus, the azimuthal velocity perturbatieri was calculated
zero at the onset of the instability. Subjecting Efi44) to  to within a multiplicative factorc, .
boundary conditiong16) leads to an eigenvalue problem, Equation(14) was solved numerically using the Runge—
with the ultimate goal being the determination of the mini- Kutta solver built intoMATHEMATICA .*3 This solver uses a
mum Taylor number Ta and the associated wave nuraber variable step size, making adjustments to best approximate
and amplification factor that satisfy the ordinary differen- the actual solution. Because of the time required for the com-
tial equation and the boundary conditions for specified flowputations, typically only two decimal places of accuracy
conditionsa and B at the specified geometry. were used for the calculation of the critical wave number,
To solve the problem a shooting method similar to theand three decimal places of accuracy were possible for the
one used by Sparroet al*® was used. First, a trial value of calculation of the critical Taylor number and the critical
Ta was selected. Then three trial solutions, v, , andv, , wave speed, which is related to the amplification faetpas
were constructed that satisfy E@.4) for prescribed values described shortly. A limitation of th®ATHEMATICA solver
of a, B, and », along with trial values foa ando. All three is the difficulty in controlling the accuracy of the computa-
trial solutions satisfied the boundary conditions at the innetions, which becomes evident in small errors in the wave
wall (16) for v, d?v/dr?, andd®v/dr3. But each trial solu- number calculations, as discussed shortly.
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TABLE |I. Critical values for Taa, andc.

(a) No radial flow (@=0) and no axial flow g=0).

Recktenwald,
Radius ratio Robert&Ref. 46 Chung and Astill(Ref. 9 Min and Lueptow(Ref. 27 et al. (Ref. 20 Present
7 a Ta, a Ta, a Ta, a Ta, a Ta,
0.95 3.13 184.98 3.13 184.99 3.13 184.99 3.13 184.99
0.85 3.13 108.31 3.13 108.32 - 3.13 108.31
0.75 3.14 85.78 3.14 85.78 3.14 85.78 3.1354 85.78 3.14 85.78
0.65 3.14 74.96 3.14 74.96
(b) Radial flow with no axial flow $=0).
Radius ratio Radial Reynolds # Min and LueptéRef. 27 Present
n a a Ta, a Ta,
0.95 15 176.48 3.13 176.48
0 3.13 184.99 3.13 184.99
—15 201.64 3.16 201.57
0.85 15 108.54 3.24 108.57
0 3.13 108.32 3.13 108.31
—15 155.76 3.34 155.79
0.75 15 107.74 3.49 107.76
0 3.14 85.78 3.14 85.78
—-15 184.51 3.76 184.50
(c) Axial flow with no radial flow (@=0).
Radius  Axial Chung and DiPrima and Ng and Babcock, Recktenwald,
ratio Reynolds #  Astill (Ref. 9 Pridor (Ref. 19 Turner(Ref. 12 et al. (Ref. 13 et al. (Ref. 20 Present
n B a c Ta, a c Ta, a [ Ta, a Ta, a c Ta, a [ Ta,
0.95 0.01 -+ 313 1.170 184.99 3.127 1.170 184.99--- 3.13 1.170 184.99
0.90 0.01 -+ 313 1170 131.61 3.129 1.170 131.61 3.13 1.170 131.61
10 3.14 1.169 136.63 -+ 3139 1.169 136.63 3.08 1.168 136.64
0.75 2 3.148 1.172 85.99 --- 3.136 85.91 3.136 1.172 8591 3.13 1.17 85.91
5 3.163 1.172 86.60 --- 3.139 86.60 3.138 1.172 86.59 3.12 1.171 86.61
10 3.165 1.172 89.02 --- 3.145 89.02 3.146 1.171 89.02 3.08 1.169 89.07

a/alues were calculated based on an expression for the reduced Tayjer@4 using Taat «=8=0 from the present study.

The radial Reynolds number was varied from—15to  ber as the axial Reynolds number increases from 5 to 10. The
15 in increments of 1 neatt=0 and increments of 5 for reason for this contradiction is probably related to our com-
|@|=5, avoiding a singularity at=— 2. The axial Reynolds putational accuracy. In the computations, it is necessary to
numberB was varied over the range for which axisymmetric determine the wave number for which the Taylor number is
disturbances are expectgtf1"from 0 to 10, in increments smallest. But relatively large changes in the wave number
of 1 to 5. The problem was solved for three radius ragjadf  result in very small variations in the Taylor number. For
0.65, 0.75, and 0.85. Calculations were also made 7for instance, changing the wave number from the critical value
=0.90 andn=0.95, but because of the extremely long runof 3.122 to 3.130(about 0.26% results in a change in the
times associated the large radius ratios and large axial Rey-aylor number from 86.598 73 to 86.599 18, only 0.0005%,
nolds numbers, only a few calculations were made. for a typical case olv=0, 8=5, and»=0.75. This makes

To assure the validity of our procedure we compared ouidentifying the exact wave number corresponding to the
results to previously published results for three caéBsno  minimum Taylor number quite difficult. Nevertheless, the
radial flow (@=0) and no axial flow B=0);>20?746(2)  critical Taylor number and wave speed are not strongly de-
pure radial flow with no axial flow g=0);%’ (3) no radial pendent on the wave number, so the results for these quan-
flow (a=0) with pure axial flow?!?-1429The similarity of tities match other calculations quite well.
the values for the critical Taylor numbers Tecritical wave
numbersa, and_crltlcal wave vglomtles: (to be deflned_ Il RESULTS AND DISCUSSION
shortly), shown in Table I, confirm that our procedure is
valid. There is, however, a problem with the wave number  The critical Taylor number for transition from stable cir-
calculations at high axial Reynolds numbers, as indicated icular Couette flow to supercritical Taylor vortex flow is
Table Xc). Other calculations indicate that the wave numbershown in Fig. 2 as a function of the radial Reynolds number
increases slightly with the axial Reynolds number. Our cal-« for two representative axial Reynolds numbéss=0 and
culations indicate a very slight drop in the critical wave num-B8=10). The curves for the other axial Reynolds numbers
ber as the axial Reynolds number increases from 0 to 5. Thethat were calculatedd=1,2,5) lie between those plotted in
there is a somewhat larger decrease in the critical wave nunkig. 2 and are omitted for clarity. Radial inflow, correspond-
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FIG. 2. The effect of the radial Reynolds numheon the critical Taylor ~ FIG. 3. The effect of the radial Reynolds numheron the critical wave
number Ta. Here =0 (no axial flow), dashed curvesg=10, solid ~ number a for=10; »=0.65, O; #=0.75, X; #=0.85, +. Curves are
curves;=0.65,0; 7=0.75,X; 7=0.85,+. Curves are cubic spline fits to cubic spline fits to the data.

the data.

rous inner cylinder. Thus, the critical Taylor number for the

ing to negative radial Reynolds numbers, increases the critbnset of instability increases. Weak radial outflow, on the
cal Taylor number for the onset of instability, indicating a other hand, washes the incipient vortical motion away from
stabilizing effect. Similarly, strong radial outflow, corre- the inner cylinder and outward across the annulus, resulting
sponding to large positive radial Reynolds numbers, also stan a lower Taylor number for transition to supercritical flow.
bilizes the flow. However, weak radial outflow, correspond-Strong radial outflow delays the onset of supercritical vorti-
ing to small positive radial Reynolds numbers, destabilizexes by washing the incipient motion across the annulus and
the flow by slightly decreasing the critical Taylor numbers.through the outer porous cylinder.
These results are consistent with those of Kolyshkin and Increasing the axial Reynolds number increases the sta-
Vaillancourf! and Bahl and Kapdf for nonzerog, although  bility of the flow, although the effect is small over the range
they considered much smaller rangeswadt different radius  of axial Reynolds numbers considered. The curves gor
ratios. =0 andB=10 are very close to one another, and the curves

The effect of the radius ratio on the critical Taylor num- for the other axial Reynolds numbe{g=1, 2, and % are
ber is also evident in Fig. 2. For radial Reynolds numbersbetween these curves, but are omitted for clarity. The physi-
near zero, the transition to supercritical Taylor vortex flowcal explanation for the stabilizing effect that an axial flow
occurs at a higher Taylor number as the annular gap narrowblas on circular Couette flow is not clear. Perhaps the shear
or, in other words, as the radius ratipincreases. For larger due to the axial flow somehow disrupts the incipient vortical
negative or positive radial flows the opposite situation oc-motion near the inner cylinder, thus leading to the stabilizing
curs. The transition to supercritical flow occurs at a highereffect.
Taylor number as the annular gap widens as a result of the The radial flow also affects the value of the critical wave
stronger stabilizing effect of the radial flow for small radius number, shown in Fig. 3, keeping in mind that computational
ratios. In other words, the degree to which varying the radiabifficulties have resulted in slightly low values of the wave
Reynolds number affects the critical Taylor number lessensumber. The critical wave number for the narrower gap is
with narrowing gap. It is also evident that the upturn of theless affected by variations in the radial Reynolds number,
curve related to the stabilizing effect of strong radial outflowwhile the effect in the wider gap is more pronounced. Both
occurs at a smaller positive radial Reynolds number as theadial inflow and large radial outflow increase the critical
radius ratio decreases. wave number, although inflow has a greater effect than out-

Min and Lueptovf’?® offer a physical explanation for flow for the same magnitude of the radial Reynolds number.
the effect of the radial flow on the stability based on theMin and Lueptové’ and Kolyshkin and Vaillancoutt found
location of the first appearance of incipient vortical motion.a similar result for the case g8=0, even noting a very
Although stability theory indicates that the flow becomesslight decrease in wave number for small positive Our
universally unstable once the critical Taylor number is ex-data showed the same tendency as indicated by the less
ceeded, the incipient vortical motion first appears near theteeply sloped curves for radial outflow than for radial in-
rotating inner cylinder and then propagates radially outwardlow, but we were unable to resolve the third decimal place
as the Taylor number increases when no radial flow iof the wave number where this slight decrease would be
present and the outer cylinder is stationHh* In the pres-  evident because of unreasonably long computation times.
ence of radial inflow, the fluid where the incipient vortical The supercritical vortices translate axially in the annulus
motion begins is washed out of the annulus through the powhen an axial flow is present. At the onset of the instability,
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FIG. 4. The effect of radial Reynolds numhepon the critical wave velocity
c for B=10; »=0.65,0; »=0.75,X; =0.85,+. Curves are cubic spline
fits to the data.

0.25r e = 1
0.2 Al 0 "N\ N 1
the real part of the amplification factar is zero, while the
imaginary part ofg is the dimensional frequency of the in- / \
stability. As a resultiq divided by the dimensional axial 0151 0=-10 A\ N
wave numbelk of the instability represents the axial wave A\
velocity of the instability. It is convenient to represent the 0.1 4
critical wave speed as a fraction of the average axial velocity
in the annulusv, so thatc=(iq/k)/w=io/aB. The depen- 0.051 ]
dence of the critical wave velocity on the radial Reynolds
number is shown in Fig. 4 for an axial Reynolds number of ) )
B=10. With the exception of the no-axial flow case where (b) 0.85 0.9 oty 0.95 1
c=0 (since the vortices are of a stationary cellular ngture
the wave velocity is essentially insensitive to the axial Rey-
nolds number over the range of consideration. As a resull
the data for other axial Reynolds numbefs<1,2,5) over- 0.2r
lay the data shown in Fig. 4. A very small decrease in the o.1s}
wave velocity was detected with increasing axial Reynolds g1}
number consistent with the results of Chung and AStill, 0.05
DiPrima and Pridot* and Recktenwaleét al.?® as indicated ¥
in Table Xc). 3
Like the critical Taylor number and critical wave num-
ber, the critical wave velocity is more sensitive to the radial !
Reynolds number for a wider gap. The critical wave velocity — -0-15
also increases with radial inflow and strong radial outflow,  -0.2
and decreases slightly for weak radial outflow. This is best  .4.25
seen for the wider gaps, where the sensitivity to the radia
flow is more pronounced. The critical wave velocity matches (c)
the results of previous researchersaat 0 as indicated in
Table Xc). It also corresponds with the experimental resultsFIG. 5. The relative amplitude of the perturbation velocity from the inner

of Snydei” and Lueptowet all® that vortices travel at a CYlinder atr/r,=0.85 to the outer cylinder at'r,=1 for »=0.85. Here

. _ . . . B=0 (no axial flow), dashed curves3= 10, solid curves(a) Relative am-
VelOCIty of 1.0-1.4 tlme§ the bulk axial veI(_)C|ty. . plitude of azimuthal perturbation velocity' v .. (b) Relative amplitude of
The effect of the radial flow on the relative amplitude of (agial perturbation velocity/v .. (c) Relative amplitude of axial pertur-

the perturbed velocities is shown in Fig. 5 f6=0 and g bation veloCityw/v max.

=10 at three radial Reynolds numbers for a radius ratio of

7=0.85. The perturbed azimuthal velocity was found to

within a multiplicative factorc, using Eq.(18). Then the within a multiplicative factor, the amplitudes of the per-
radial and axial velocity perturbations were calculated usingurbed velocities are normalized by the maximum amplitude
Egs.(11) and(12). Since the scaling of the amplitudes of the of the perturbed azimuthal velocity component,,y, for
perturbed velocity components can only be determined tehat particular Taylor number. In keeping with the proper

u"l max
N
P
Py
P
P

0.25|-

0
-0.05F
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boundary conditions at the wall, the amplitudes of the perwith axial position. However, the results presented here pro-
turbed velocities are zero at the inner wall/r,= 7, and at  vide several insights with regard to the rotating filter appli-
the outer wallr,/r,=1. cation. Typically in such devices; 10<a<—0.1 at the in-

The effect of the radial flow on the perturbed velocities ner cylinder and ¥ 8<503133-3%4748The results presented
is the same as that found by Min and Luepttvthe radial  here suggest that a slightly higher rotational speed is needed
flow shifts the radial position of the maximum value of the to assure the appearance of Taylor vortices in the annulus
relative amplitude of both the perturbed azimuthal velogity than if there were no radial flow. An axial flow also stabilizes
and the perturbed radial velocity in the direction of the the flow requiring a higher rotational speed for supercritical
radial flow, as shown in Figs.(8 and 3b); radially inward  vortices to appear, although the effect of the axial flow is
flow suppresses the amplitude of the perturbed radial velogjuite small.
ity u and the perturbed axial velocity, while radial outflow
amplifies these velocities, as shown in Fig&)5and Sc);
and the zero crossing, minimum, and maximum of the per-
turbed axial velocity are shifted in the direction of the radial ACKNOWLEDGMENTS

flow, as shown in Fig. &). Support by Northwestern University and in part by the

Our key interest here is the effect of the axial flow on theNational Science Foundation are gratefully acknowledged.
perturbed velocities. The axial flow has very little effect on

the perturbed azimuthal velocity, as is evident from the simi-
larity between the dashed curves f8=0 and the solid
curves for8=10 in Fig. 5a). On the other hand, the axial APPENDIX A: VELOCITY FIELD COEFFICIENTS
flow results in a small increase in the amplitude of the radial
and axial velocity perturbations for zero and positive radial
flow («=0,10), as shown in Figs.(B) and Sc). But it has
very little effect on the radial and axial velocity perturbations
for a radial inflow (@= —10). Based on the results in Fig. 5,
it is clear that the radial inflow has a substantial effect on the
structure of the vortex flow, shifting the vortices radially

The constants in Eql) were found by applying the
no-slip boundary condition at the walls of the inner and outer
cylinder and by using the definition for the average axial
velocity w,

— Q.7
17 (A1)

inward or outward, depending on the direction of the radial
flow. By comparison, the axial flow has only a minor effect
on the relative amplitudes of the velocity perturbations.

IV. SUMMARY

The results of this analysis of flow between differentially
rotating porous cylinders with an axial and radial flow indi-
cate that radially inward flow stabilizes the flow, whereas
weak radially outward flow slightly destabilizes the flow.
This result is true, regardless of radius ratio and strength of
the axial flow, although the effect is greater when the radius
ratio is decreased. Although a weak radial outflow destabi-
lizes the flow, a strong outflow stabilizes the flow. The criti-
cal wave number and critical wave velocity increase with
radially inward flow and strong radially outward flow, al-
though weak radially outward flow results in a small de-
crease in these quantities.

Axial flow always stabilizes the flow slightly for the
range of axial Reynolds numbers considered, independent of
the radial flow and radius ratio. Over the range of radial and
axial flows considered, there is very little influence by the
radial flow on the how much the axial flow increases the
stability. The wave velocities have almost no dependence on
the axial Reynolds number over the range considered.

The original motivation for this work was the flow in a
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(A4)

(A5)

(A6)

(A7)
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rotating filter device. In such a device, only the inner cylin- \ppENDIX B: EQUATIONS FOR ZERO RADIAL FLOW

der is porous, while the outer cylinder is nonporous. The
axial flow in the annulus provides the source of the fluid that

The derivation for the case of no radial flow£€0) is

flows radially inward through the inner porous cylinder. Thevery similar to that where radial flow is nonzero, except for
case of a rotating filter is not easily amenable to analysishe expression for the stable axial flow, Thus, substituting
because no analytic stable solution exists for the flow andla), (1b), (10), and(1c) rather thar(1d) into (9), and solving
because the flow through the porous inner cylinder varie$or the radial velocity perturbation(r), results in
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Vr]_Ql

Sag [D'Di-a*~c

U=U'rlﬂl=

—iaBCy(r'2+ Dy Inr'+EyJv’. (B1)
From (6) and (B1), axial velocity perturbationv(r) is
, | VrlQ]_ , , , 2
wW=w rl\Ql:aW D*{[D D*—a -
—iaBCy(r'?+ Dy Inr'+Ep)Jv'}. (B2)
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