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A linear stability analysis has been carried out for flow between porous concentric cylinders 
when radial flow is present. Several radius ratios with corotating and counter-rotating cylinders 
were considered. The radial Reynolds number, based on the radial velocity at the inner cylinder 
and the inner radius, was varied from -30 to 30. The stability equations form an eigenvalue 
problem that was solved using a numerical technique based on the Runge-Kutta method 
combined with a shooting procedure. The results reveal that the’critical Taylor number at which 
Taylor vortices first appear decreases and then increases as the radial Reynolds number becomes 
more positive. The critical Taylor number increases as the radial Reynolds number becomes 
more negative. Thus, radially inward flow and strong outward flow have a stabilizing effect, 
while weak outward flow has a destabilizing effect on the Taylor vortex instability. Profiles of the 
relative amplitude of the perturbed velocities show that radially inward flow shifts the Taylor 
vortices toward the inner cylinder, while radially outward flow shifts the Taylor vortices toward 
the outer cylinder. The shift increases with the magnitude of the radial Reynolds number and as 
the annular gap widens. 

1. INTRODUCTION 

The stability of flow in the annulus between concentric, 
differentially rotating cylinders has been studied for many 
years from both theoretical and experimental points of 
view. Taylor’ analytically predicted the onset of the insta- 
bility of circular Couette flow and conducted a simple flow 
visualization experiment to confirm his prediction. The in- 
stability appears as counter-rotating, toroidal vortices 
stacked in the annulus. Chandrasekhar’ and DiPrima and 
Swinney3 provide extensive summaries of the abundant re- 
search on this subject since Taylor’s pioneering work. 

The stability of Taylor vortex flow is altered when an 
additional flow is superimposed on the circular Couette 
flow. For instance, an axial tlow in the annulus stabilizes 
the circular Colette flow, so that the transition to Taylor 
vortex 880~ occurs at a higher Taylor number.“7 The axial 
flow can also alter the character of the flow instability.8 
However, little information is available about how radial 
flow in the annulus affects the stability of the Taylor vortex 
t-low. This type of flow occurs during dynamic filtration 
using a rotating filter.“” In these filtration devices a sus- 
pension is contained between a rotating porous inner cyl- 
inder and a stationary nonporous outer cylinder. Filtrate 
passes radially through the porous wall of the rotating in- 
ner cylinder, while the concentrate is retained in the annu- 
lus. The Taylor vortices appearing in the device are be- 
lieved to wash the filter surface of the inner cylinder clean 
of particles, preventing the plugging of pores of the filter 
medium with particles.” 

The purpose of this study is to determine the effect of 
a radial flow on the stability of the flow and relative am- 
plitude of the perturbed velocities. In particular, we use 
linear stability analysis to determine the critical Taylor 
number and associated wave number for the transition 
from stable circular Couette flow to Taylor vortex flow 

when there is a radial flow between two concentric, porous, 
differentially rotating cylinders. The results of the stability 
analysis are used to determine the relative amplitude of the 
perturbed velocities. 

The velocity field for stable radial flow between differ- 
entially rotating porous cylinders has been 
investigated. 12-14 Chang and Sartory” considered the hy- 
dromagnetic stability of an electrically conducting fluid be- 
tween porous concentric cylinders with a wide gap between 
the cylinders. Although they were primarily concerned 
with the asymptotic behavior of the flow at large radial 
Reynolds numbers, they predicted that radially inward 
flow through the porous cylinders stabilizes the flow. Ra- 
dially outward flow destabilizes the flow for weak radial 
Row, but stabilizes the flow for strong radial flows. Bahl16 
considered the linear hydrodynamic stability for the case 
where the gap between the cylinders is small compared to 
the radius of the cylinders, the axial wave number is fixed, 
and the cylinders co- or counter-rotate. His stability anal- 
ysis indicated that an inward radial velocity stabilizes the 
flow, while an outward radial velocity destabilizes the flow. 
Reddy and Reddy17 and Reddy et al. l8 extended Bahl’s 
linear stability analysis to non-Newtonian fluidsI In con- 
trast to Bahl, as well as Chang a.nd,Sartory, they concluded 
that for Newtonian fluids radial inflow destabilizes the 
flow, and radial outflow stabilizes the flow. But several 
ambiguities in their analysis hint that their results may be 
unreliable. 

In this paper we present a linear hydrodynamic stabil- 
ity analysis of circular Couette flow with an imposed radial 
flow, as shown in Fig. 1. We consider the case of infinitely 
long concentric cylinders with both radial inflow and radial 
outflow. Unlike Bahl, we use the full linear disturbance 
equations and do not make the simplifying assumption of 
flow in a narrow gap or a specified axial wave number. 
While Chang and Sartory were interested in the asymptotic 
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FIG. 1. Sketch of the flow configuration. The radial flow can be inward 
(a<O), as shown, or outward (a>O). 

behavior of the critical Taylor number with radial Rey- 
nolds number, we consider the behavior for small radial 
Reynolds numbers. We also analyze corotating and 
counter-rotating cylinders in addition to the case of a sta- 
tionary outer cylinder. Finally, in addition to the stability 
analysis itself, we present profiles of the relative amplitudes 
of the perturbed velocity for different radial flow Reynolds 
numbers to determine the effect of the radial flow on the 
position of the Taylor vortices. 

II., ANALYTICAL FORMULATION 

The analytical formulation of the problem was given in 
detail by Bahl,t6 and only the highlights are repeated here. 
The Navier-Stokes equation and continuity equation in 
cylindrical coordinates (r,B,z) for steady, incompressible 
flow in the absence of a body force are used to find the 
stable solution for radial tlow between concentric cylin- 
ders. The velocity field (U, V, W) is 

U(r) =y, V(r) =AP+‘+$ , w=o. 

Here (r= U~Y~/V is the radial Reynolds number, where ut is 
the radial velocity through the wall of the inner porous 
cylinder with a positive value when outward from the axis 
of rotation, and Y is the kinematic viscosity. The constants 
A and B are 

--ln&1-/L/7j2) 
x4 =---<c 1 +x+2) 

1 -w 
’ B=& l-q+Z J (21 

where v=r,/r, is the radius ratio, and ~=Qn,/@ is the 
angular velocity ratio. For cx=O, the equations revert to 
the solution for circular Couette flow between impermeable 
cylinders.2 

The stability problem is based on small perturbations 
of the velocity field ur, ue, and u, and the pressure field w. 
The perturbations are- expressed as normal modes of the 
form 

ur= 8% ( r) cos kz, uo=e%(r)cos k& 

u,= e@w ( Y) sin kz, w = e@w (r) cos kz, 
(3) 

where k is the axial wave number of the disturbance, q is an 
amplification factor, and u(r), U(Y), w(r), and w(r) are 
amplitudes of the perturbation. Substitution of these quan- 
tities into the cylindrical Navier-Stokes and continuity 
equations followed by discarding higher-order terms, re- 
sults in the following equations for the amplitudes of the 
perturbed quantities: 

d2u 1 du u 
v p+;d,-;i--k2+ 

d2v 1 dv v 
v z+, ;i;-T-k2v-;v) 

(5) 

v (6) 

du u 
dy+;= -ikw, (7) 

where i is the square root of - 1. 
Equations (6) and (7) are combined to express w in 

terms of u. The resulting expression for w is used in Eq. 
(4) to obtain 

(DO,-k2)u-;(DU)D(D.& 

where 

De=;+;, D=f. 

Equation (5) can be rewritten as 

v 

(8) 

(9) 

Here Bahl16 used the narrow gap assumption and a 
fixed wave number to simplify the equations, whereas we 
retain all terms and do not fix the wave number. The fol- 
lowing dimensionless length scale, wave number, amplifi- 
cation factor, and velocity are introduced, 

r 
r’=-) a = r,k, *=4g v’=.L. 

r2 v 2’ r&b 

Using these values along with Eq. (1) in Eq. (10) results 
in an expression for the amplitude of the perturbed radial 
velocity, 
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vrl4 
=(a+2)ArT+2r’” 

D’D’ --a’-c-;D; 
* (12) 

1 
XD; ,la i ( D’D;-a”--a--‘D; r’ )I v’ . (13) 

The amplitude of the axial perturbation velocity w can be Using Eqs. (l), (ll), and (12) in Eq. (8) results in an 
found in terms of v’ from Eqs. (7) and ( 12), expression with v’ as the only dependent variable, 

(D’D&-a2--o)(D’D;-a’) 
[ D’D:, -a2-cT- (a/r’) D&Iv’ [DID;--a2--cT-- (a/r’) Dk]v’ 

r ,CZ r ,U. 

DZ 
[D’D’,-a’-o-(a/r’)Di]v’ 

+a2a 
[D’Dk-a’--a-(a/r’)D;]v’ 

r fCf 

‘Ia 

D’ f 
0 

2 

+yDt 
[D’D;S-a2-a-(a/r’)Dk]v’ 

r ,CZ ) = - Tr’.( &-,)a2v’, 

where K is a parameter related to the radius ratio and 
angular velocity ratio, such that 

(1 -p/q21 
K= (l-p+) ’ (15) 

and T is a special form of the Taylor number specific to 
this problem, 

(16) 

The dimensionless parameter T is expressed in terms of a 
simple form of the Taylor number, sometimes referred to 
as the rotating Reynolds number, Ta=Cllrl(r2-rl)/Y. 

The perturbation velocity amplitudes u’, v’, and w’ 
must vanish on the boundaries at r’ = 77 and r’ = 1. Using 
Eqs. ( 12) and ( 13) the boundary conditions on the three 
perturbation velocity amplitudes can be written in terms of 
v’ as 

(17b) 

D’D;--a2--cr-$D; ) I v’ =O. (17c) 

Equation (14) is a sixth-order ordinary differential 
equation for which the amplification factor cr is set to zero 
at the onset of the instability. Equation (14) subject to 
boundary conditions ( 17) leads to an eigenvalue problem. 
To solve the problem we used a shooting method similar to 
the one used by Sparrow et aL2c First, a trial value of Ta 
was selected. Then three trial solutions, vr, vn, and vnI, 
were constructed that satisfy Eq. ( 14) for prescribed val- 
ues of a, a, v, and p. All three trial solutions satisfied the 
boundary condition at the inner wall ( 17) for v’, d2v’/df2, 
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I 

and d3v’/df3 . But each trial solution satisfied a different 
set of boundary conditions for dv’/dr’, d%‘/drf4, and 
d%‘/d@ at the inner wall, accomplished by setting one of 
these three boundary conditions to unity and the remaining 
two to zero. A forward integration scheme was used to 
compute each trial solution using the six initial conditions 
at r’ =v for each of the trial solutions. In general, none of 
the trial solutions satisfied the boundary conditions at 
r’ = 1, so a linear combination of the trial solutions pro- 
vided the final solution, 

The three coefficients, cl, c2, and c3, were found from the 
linear combination of the three boundary conditions ( 17) 
at the outer wall. This linear combination of boundary 
conditions resulted in a three by three matrix of values, one 
for,each combination of boundary condition and trial so- 
lution, which must have a zero determinant to obtain a 
nontrivial solution. For any trial value of Ta along with 
prescribed values of cr, a, 7, and p, this determinant was 
not necessarily zero, so the operations described above 
were repeated for a series of trial values of Ta until one was 
found for which the determinant of the coefficients was 
zero. Then, the wave number a was varied and the process 
described above was repeated until the critical wave num- 
ber for which Ta is a minimum was found. This minimum 
Taylor number is the critical Taylor number, Ta,. 

Once the values of cl, c2, and c3 were determined, u’, 
v’, and w’ were found from (12), (18), and (13), respec- 
tively. Since the three boundary conditions at the outer 
wall are all zero, only the ratio between c1 , c2, and c3 could 
be calculated. Thus, only the relative values of u, v, and w, 
not their absolute magnitudes, could be determined. 
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TABLE I. Comparison of the critical Taylor number and wave number 
with previous results. 

Radius ratio Ref. 21 Ref. 6 Present results 
77 ‘h a Ta, a Ta, a 

0.95 184.98 3.128 184.99 3.128 184.99 3.128 
0.90 131.61 3.129 ... ... 131.62 3.129 
0.85 108.31 3.130 ... ... 108.32 3.131 
0.75 85.78 3.136 85.78 3.135 85.78 3.135 
0.50 68.186 3.163 68.189 3.151 68.188 3.162 

For the results described here, &. (14) was solved 
numerically using a fourth-order Runge-Kutta method 
with 21 points to span the gap between the inner and outer 
cylinders. The radial Reynolds number a was varied from 
-30 to 30 in increments of 0.5 near a =0 and increments 
of 5 for / a I>5, avoiding a singularity at a = -2. The an- 
gular velocity ratio ,LL was varied from -0.2 to 0.3 in in- 
crements of 0.1. The problem was solved for five radius 
ratios ~7 of 0.50, 0.75, 0.85, 0.90, and 0.95. 

To assure the validity of our procedure we compared 
our results to previously published results6’21 for the case of 
no radial flow (a=O) . The similarity of the values for the 
critical Taylor number Ta, and the critical wave number a, 
shown in Table I, confirm that our procedure is correct. 

III. RESULTS AND DISCUSSION 

The effect of radial flow on the stability of Taylor- 
Couette flow is shown in Fig. 2(a) for the case of the outer 
cylinder fixed and the inner cylinder rotating. Radial in- 
flow, corresponding to negative Reynolds numbers, in- 
creases the critical Taylor number for all radius ratios 
shown, indicating a stabilizing effect. Radial outflow also 
stabilizes the flow by increasing the critical Taylor number 
for large positive Reynolds numbers. However, for small 
positive Reynolds numbers the critical Taylor number de- 
creases indicating less stable Aow, as shown in Fig. 2 (b) . 
The upturn in the curve related to the stabilizing effect of 
strong radially outward flows is already evident for 
r]=O.50 and q=O.75. For narrower gaps the increased sta- 
bility due to strong radial outflow is delayed to higher a. 
Bahl’” found a similar result over the narrow range of 
radial Reynolds numbers that he considered for the limit- 
ing case of r] approaching unity. For narrow gaps, indi- 
cated by radius ratios near unity, varying the radial Rey- 
nolds number has a relatively small effect on the critical 
Taylor number. As the annular gap widens, indicated by 
decreasing radius ratios, the effect of the radial flow has a 
more dramatic effect on the critical Taylor number. Similar 
results were obtained by Chang and Sartory,” although 
direct comparison is difficult. 

When the outer cylinder is co- or counter-rotating with 
respect to the inner cylinder, the effect of radial flow on the 
stability of the flow is similar to the case of a stationary 
outer cylinder. The effect of varying p =bZ,/R, on the sta- 
bility of the flow for a radius ratio r]=O.85 over a range of 
Reynolds numbers near zero is shown in Fig. 3 (a). In all 
cases, the flow in the annulus is more stable for radially 

(W 
a 

FIG. 2. The effect of the radial Reynolds number a on the critical Taylor 
number, Ta, , for transition to vortex flow normalized by the critical 
Taylor number for no radial flow, Taca=s ---, 77=0.95; ‘.., q=O.P; 
--, ~~0.85; ---, 7=0.75; and ---, 17=0.5. The outer cylinder is sta- 
tionary (p=O). (a) Over the entire range of study, -3O<o<30. (b) 
Detail for - 1.5<&4. 

inward flow through the porous walls than radially out- 
ward flow. For identical absolute values of ,u, the transition 
to Taylor vortex flow occurs at higher Taylor number for 
flow between corotating cylinders than for flow between 
counter-rotating cylinders. Varying the radial Reynolds 
number only changes the critical Taylor number slightly 
for corotating cylinders. The effect of changing the radial 
Reynolds number is greater for counter-rotating cylinders. 

As is the case with no radial flow, the axial wave num- 
ber of the vortices a is always larger for counter-rotating 
cylinders than for corotating cylinders, independent of ra- 
dial Reynolds number, as shown in Fig. 3 (b) . The appear- 
ance of the curves suggests that as the radial Reynolds 
number increases, the wave number may asymptote to a 
particular value, independent of p. 

The effect of the radial flow on the relative amplitude 
of the perturbed velocities is shown in Fig. 4 for n=O.85 
with a stationary outer cylinder (p=O). The relative am- 
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FIG. 3. (a) The et%& of radial Reynolds number a and angular velocity 
ratio p on the critical Taylor number Ta, for 77=0.85. (b) The effect of 
radial Reynolds number a and angular velocity ratio p on the critical 
wave number a for q=O.85. ---, (1=0.3; ---, /.~=0.2; ---, ~~0.1; 
-, p=O; ..., 111~ -0.1; and - - -, p= -0.2. 

plitudes shown in the figure can be related to the perturbed 
velocities through Eq. (3). Since the scaling of the ampli- 
tudes of the perturbed velocity components cannot be de- 
termined with respect to the velocity scale of the problem, 
the amplitudes are normalized by the maximum amplitude 
of the perturbed azimuthal velocity component, urnax, for 
that particular radial Reynolds number. The amplitudes of 
the perturbed velocities are zero at the inner wall, r’ =q, 
and at the outer wall, r’ = 1, in keeping with the proper 
boundary conditions at the wall. 

The radial position of the maximum value of the rela- 
tive amplitude of the perturbed azimuthal velocity u is 
shifted depending upon the radial Reynolds numbers, as 
shown in Fig. 4(a). For radially inward flow the maximum 
is shifted toward the inner cylinder, and for radially out- 
ward flow the maximum is shifted toward the outer cylin- 
der. The shifting of the maximum is also evident for the 
relative amplitude of the perturbed radial velocity U, as 
shown in Fig. 4(b). The relative amplitude of the per- 

0.85 0.88 0.91 0.94 0.97 

r’ 

3 IC > 

-0.05’ 
0:85 0.88 0.91 0.94 0.97 

r’ 
(4 

-“.:.A-- 0.97 

r’ 
w 

FIG. 4. The relative amplitude of the perturbation velocity from the inner 
cylinder at r’=0.85 to the outer cylinder at J = 1 for n=O.85 and p=O. 
-- 1 a=-30 (radially inward flow); ---, a=- 1; --, a=0 (no 
radial flow); -, a= 1 (radially outward flow); ..., 1x=30. (a) Relative 
amplitude of azimuthal perturbation velocity v/v,,, . (b) Relative ampli- 
tude of radial perturbation velocity u/v,, (c) Relative amplitude of 
axial perturbation velocity w/v,,, . 
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turbed radial velocity is less than one-third that of the 
azimuthal velocity. Radially inward flow results in a 
greater suppression of the relative amplitude of the radial 
velocity than radially outward flow. The relative amplitude 
of the perturbed axial velocity w is shown in Fig. 4(c). The 
sinusoidal shape of the curves is consistent with axial flow 
in opposite directions at the inner and outer portions of the 
Taylor vortex. Again the relative amplitude of the axial 
velocity component is less than one-third that of the azi- 
muthal velocity, and radially inward flow suppresses the 
amplitude more than radially outward flow. The zero 
crossing, maxima, and minima are shifted inward for radi- 
ally inward flow and outward for radially outward flow. 

2 

‘-~,,,,,1111 . . 
. . 

1 

Clearly, the radial flow shifts the position of the vortex 
within the annular gap between the cylinders. The shift in 
the radial position of the vortex is quite evident in the 
perturbed u-w velocity vector plots shown in Fig. 5. In the 
case of no radial flow, Fig. 5 (b), the vortex is almost cen- 
tered in the annular gap. The radial flow shifts the vortex 
in the direction of the flow, as shown in Figs. 5 (a) and 
5 (c). The radial flow also acts to increase the wavelength 
of the vortices, evident as elongated vortices in Figs. 5 (a) 
and 5(c). The axial wavelength of the vortices is a mini- 
mum near values of a slightly greater than zero for all 
cases considered. 
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The effect of the radius ratio on the shifting of the 
vortex is shown in Fig. 6 for the relative amplitude of the 
perturbed azimuthal velocity. For a wide annular gap be- 
tween the two cylinders corresponding to ~=0.75, the ra- 
dial shift of the maximum of the relative amplitude of the 
perturbed velocity is much greater than for a narrower gap 
corresponding to ~=0.95. The case of ~=0.85, shown in 
Fig. 4(a), falls in between. The profiles of the relative am- 
plitudes u and w show similar trends. The greater radial 
shift of the Taylor vortex in a wide annular gap than in a 
narrow annular gap may be a simple result of there being 
little room in a narrow gap annulus for the vortex to shift 
radially compared to a wide gap. 
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The angular velocity ratio p has only a small effect on 
the radial shift of the vortex. In Fig. 7 the relative ampli- 
tude of the perturbed azimuthal velocity is plotted for y= 
-0.2 and ~~0.2 in the case of ~=0.85. For both radially 
inward flow (a= - 1) and radially outward flow (a=4), 
counter-rotating cylinders results in the curves shifting 
slightly inward, and corotating cylinders results in the 
curves shifting slightly outward. The same result occurs for 
no radial flow. 

0.85 0.90 

r’ 

(W 

IV. SUMMARY 

The results of this analysis of flow between differen- 
tially rotating porous cylinders indicate that radially in- 
ward flow stabilizes the flow, whereas weak radially out- 
ward flow destabilizes the flow. This result is true 
regardless of radius ratio, although the effect is greater 
than the radius ratio is decreased. The stability result is 
also independent of whether the cylinders are co- or 
counter-rotating. Although a weak radial outflow destabi- 
lizes the flow, a strong outflow stabilizes the flow. 

FIG. 5. Velocity vector plots in a radial plane for ~=0.85. The inner 
cylinder is at r’=O.85 and the outer cylinder is at r’= 1. The vertical 
dimension z is normalized by the gap width r, - r, . (a) (x= -30. (b) 
a=O. (c) a=30. 

The physical effect of radial flow on the transition from 
stable flow to supercritical vortex flow may be related to 
where the incipient instability appears in the annulus. 
When there is no radial flow and the outer cylinder is fixed, 
the instability first appears near the inner rotating cylinder 
and propagates radially outward as the Taylor number 
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0.75 0.8 0.85 0.9 0.95 1 

r’ 

(W 

FIG. 6. The relative amplitude of the azimuthal perturbation velocity 
from the inner cyliider to the outer cylinder for p=O. (a) 77=0.75. (b) 
77=0.95. The curves are identified in Fig. 4. 

increases.22823 When a radial inflow is imposed, it may wash 
the fluid where the incipient instability first appears out of 
the annulus through the porous inner cylinder increasing 
the Taylor number at which the instability will occur 
throughout the entire annulus. On the other hand, a weak 
radial outflow washes the instability from near the inner 
cylinder outward across the annulus, resulting in the su- 
percritical transition at a lower Taylor number. But if the 
outflow is strong enough, it overwhelms the centrifugal 
instability, delaying the onset of supercritical vortices. 

The vortices in the annulus are shifted as a result of the 
radial flow, with the largest shifts occurring for the largest 
magnitudes of the radial Reynolds numbers. Radially in- 
ward flow shifts the vortices inward, while radially out- 
ward flow shifts the vortices outward. The shift is greater 
for a wide gap between the cylinders than for a narrow gap. 

The original motivation for this work was the flow in a 
rotating filter device. In such a device, only the inner cyl- 
inder is porous, while the outer cylinder is nonporous. An 

0.9 /.f 
..\ ‘.a 

.f li” 
‘\\ ‘$ 

0.8 4/ 
‘\ ,F,\ 

: ., ‘, ‘b 
0.7 

i 

it4 
‘\\ i\ 

g[ 
-$ !. 

0.6 $! 
‘\\ t 

0.5 $ ‘a 

FIG. 7. The relative amplitude of the azimuthal perturbation velocity 
from the inner cylinder to the outer cylinder for 77=0.85. - - -, p=O.2, 
a=-1; ---, p=- 0.2, a=-1; ---, ~=0.2, a=4; and .--, FL=-0.2, 
a=4. 

axial flow in the annulus is the source of the fluid that flows 
radially inward through the inner porous cylinder. The 
case of a single porous rotating cylinder, such as that in a 
rotating filter, is not as easily amenable to analysis as the 
flow discussed in this paper because no analytic stable so- 
lution exists for the flow and because the flow through the 
porous inner cylinder varies with axial position. However, 
the results presented here suggest several comments that 
can be made with respect to the rotating filter application. 
Since the bulk radial flow in a rotating filter is radially 
inward, results here suggest that a slightly higher rota- 
tional speed is needed to assure the appearance of Taylor 
vortices in the annulus than if there were no radial flow. 
The inward radial flow also shifts the vortices inward to- 
ward the porous inner cylinder. Most likely, this will have 
an advantageous effect on the role of Taylor vortices in 
washing the surface of the inner cylinder clean of particles 
preventing the pores of the rotating filter from plugging. 
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