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Imposing axial flow in the annulus and/or radial flow through the cylindrical walls in a Taylor–
Couette system alters the stability of the flow. Theoretical methods and numerical simulations were
used to determine the impact of imposed axial and radial flows, homogeneous in the axial direction,
on the first transition of Taylor–Couette flow in the framework of convective and absolute
instabilities. At low axial Reynolds numbers the convective instability is axisymmetric, but
convective helical modes with an increasing number of helices having a helicity opposite that of the
base flow dominate as the axial flow increases. The number of helices and the critical Taylor number
are affected only slightly by the radial flow. The flow becomes absolutely unstable at higher Taylor
numbers. Absolutely unstable axisymmetric modes occur for inward radial flows, while helical
absolute instability modes having a helicity identical to that of the base flow occur at high enough
axial Reynolds numbers for outward radial flow. © 2009 American Institute of Physics.
�doi:10.1063/1.3243976�

I. INTRODUCTION

In its simplest form, cylindrical Couette flow in an an-
nulus between a rotating inner cylinder and a concentric,
fixed outer cylinder becomes unstable at high enough rota-
tional speed resulting in pairs of counter-rotating toroidal
vortices stacked in the annulus. However, the stability of
Taylor vortex flow is altered when an additional flow is su-
perimposed. In particular, axial flow in the annulus or radial
through-flow via porous walls of both cylinders can alter the
conditions at which the supercritical transition occurs and
can modify the supercritical vortex structure. The effect of
axial flow, radial flow, and combined axial and radial flows
on the absolute and convective stability of the flow and the
nature of the vortex structure are examined in this paper.
Pressure-driven axial flow with radial flow in an annulus
between a rotating inner cylinder and a fixed outer cylinder
has several important engineering applications including
rotating filtration devices. In fact, rotating filtration, which
is used for blood filtration1–3 and has been proposed for
filtering suspensions and water purification via reverse
osmosis,4–10 is one of the key applications that motivate this
research, but the focus here is on the physics and underlying
stability of the flow. It should then be emphasized that filtra-
tion devices and experimental setups involve the presence of
porous cylinders to generate the radial flow, whereas the
present analytical and numerical study focuses on the sim-
pler situation of imposed nonzero wall-normal velocities on
the cylinders.

Superimposing an axial flow in the annulus between a
rotating inner cylinder and a fixed outer cylinder stabilizes
the circular Couette flow so that the transition to supercritical
Taylor vortex flow occurs at a higher Taylor number.11–24

When the vortices appear, they translate in the same direc-

tion as the bulk axial flow in the annulus at 1–1.4 times the
mean axial velocity.16,19–22,25–28 The axial flow can also alter
the character of the flow instability, resulting in helical vor-
tices and wavy helical vortices.14–16,19,23,26–32 It should be
emphasized at this stage that Taylor–Couette flow with su-
perimposed annular Poiseuille flow can also be seen as an-
nular Poiseuille flow with superimposed azimuthal motion
induced by the differential rotation of the cylinders, also
known as spiral Poiseuille flow. Both centrifugal and shear
instabilities can develop in such a system, depending on the
relative importance of the azimuthal and axial motions.33–36

Two features of the present study stem from the application
of the system to filtration techniques. First, unlike most stud-
ies of spiral Poiseuille flow, this paper does not consider a
rotating outer cylinder. Second, this paper focuses on cen-
trifugal instabilities, i.e., those occurring for a limited axial
mean velocity, the effect of which is therefore restricted
to advecting the instabilities. Furthermore, owing to the
supercritical nature of these centrifugal instabilities, the
modal stability analysis encompasses most of the dynamics.
Transient, nonmodal instabilities, pivotal in the case of
shear instabilities,37 are of limited interest here and are not
addressed.

A net radial through-flow in the annulus between two
differentially rotating porous cylinders also affects the abso-
lute stability of the Taylor vortex flow. Linear stability indi-
cates that radially inward flow and strong radially outward
flow have a stabilizing effect, while weak radially outward
flow destabilizes the system.22,32,38–42 This result has been
replicated computationally for imposed nonzero wall-normal
velocities,43 and the stabilizing effect also appears for radial
inflow through a single inner porous cylinder rotating within
a nonporous outer cylinder.31 The latter is the situation that
occurs in rotating filtration in which a suspension flows axi-
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ally in the annulus while pure fluid is extracted through the
inner porous cylinder.44 Returning to the situation of interest
here, i.e., nonvanishing wall-normal velocities on both cyl-
inders associated with a radial inflow or outflow, the compe-
tition between the imposed radial velocity and the radial ve-
locity related to the Taylor vortices may explain the effect of
an imposed radial flow on the stability of the system.43

In addition, not only does the radial flow alter the first
transition from subcritical to supercritical flow, it also stabi-
lizes the second transition from Taylor vortex flow to wavy
vortex flow and directly affects the phase speed of the wavy
vortices.43

The combined effects of axial and radial flow on the
stability of Taylor vortex flow can also be studied using lin-
ear stability analysis following generally the same approach
as that for axial or radial flow individually, although the im-
position of both flows simultaneously complicates the analy-
sis. The first attempt at the linear stability analysis for this
case considered the narrow gap case for corotating porous
cylinders with an axial flow, although the analysis suffered
from a simplistic axial velocity profile and fixed values for
the axial wave number and amplification factor.45 More so-
phisticated analyses avoided these limitations and considered
both axisymmetric and nonaxisymmetric perturbations at
various radius ratios.22,32

Imposing an axial flow in a cylindrical Couette system
of porous cylinders with radial flow naturally brings about
the need to consider the convective and absolute instability
limits. In fact, cylindrical Couette flow with an axial flow
�but no radial flow� has been used as a model for introducing
and studying the distinction between absolutely unstable
flow and convectively unstable flow for low axial Reynolds
number and Taylor numbers very near the transition to vor-
tical flow. Depending on the properties of the impulse re-
sponse, the behavior of the flow can be classified as uncon-
ditionally stable, convectively unstable, and absolutely
unstable as follows �see Refs. 46 and 47 for a review on the
hydrodynamics of convective and absolute instabilities�.

Unconditionally stable flow is characterized by any per-
turbation to the flow decaying, so vortices do not form. Con-
vectively unstable flow is distinguished by the situation in
which a localized perturbation cannot propagate upstream
but will grow as it is advected downstream until it is carried
out of the system. Without a permanent source of perturba-
tions, the system returns to the basic stable state everywhere.
Convectively unstable flow is evident experimentally in two
forms.20,48,49 In the first form, a localized perturbation is in-
troduced experimentally by rotating both cylinders back and
forth once through a small angle or by moving the inlet
boundary forward and back one time. The resulting pulse
consists of two or three vortex pairs near the upstream end of
the test cell where no vortices are otherwise present. The
vortex pairs propagate axially with the axial flow while
growing in amplitude and number as they proceed down-
stream. In the second form, the perturbation is the inherent
noise in the system resulting in the appearance of axially
propagating vortices. In both situations, convectively un-
stable flow occurs at increased driving conditions �higher
Taylor number� and smaller axial flow conditions �lower

axial Reynolds number� than the unconditionally stable flow
regime. Absolutely unstable flow is characterized by local-
ized perturbations that grow and spread both upstream and
downstream. This flow regime occurs at larger driving con-
ditions and smaller axial flow conditions than convectively
unstable flow. The flow itself appears similar to that for
noise-sustained propagating vortices in the convectively un-
stable regime, but there are several differences.20,48 First, the
boundary between the nonvortical flow entering the annulus
and the propagating vortices is stationary for absolutely un-
stable flow, but is time dependent for convectively unstable
flow. Nevertheless, it should be emphasized that this amounts
to the nonlinearity or the nonhomogeneity of the flow. Sec-
ond, the distance from the axial flow inlet to the boundary
between nonvortical and vortical flows scales differently in
the two flow regimes. Finally and more importantly, the
power spectrum of the propagating vortex velocity is noisier
for the convectively unstable regime than for the absolutely
unstable regime. This last property underlines the different
nature of convectively and absolutely unstable flows: while
the former behaves as a noise amplifier acting on all the
wave numbers and frequencies present in the forcing, the
latter behaves as a resonator prone to select specific wave
number and frequency.

The impact of radial flow on the convective and absolute
instability for axial flow superimposed on Taylor–Couette
flow has not been studied due to the inherent difficulties in
building an experimental setup with both inner and outer
porous cylinders and the challenges in computational simu-
lations of the flow. The case of a single rotating inner porous
cylinder, however, has been studied in some detail
experimentally.31 In this situation, the source for the fluid
that exits radially at the porous inner cylinder is the axial
flow. Consequently, the axial flow decreases along the length
of the annulus as fluid is removed. Helical vortices appear at
high Taylor numbers, but they appear in packets of five or six
helical vortex pairs with alternating signs for the helix angles
so that helices of both signs appear in different portions of
the annulus simultaneously. Since fluid is being lost through
the porous inner cylinder as the vortices translate with the
axial flow, the wavelength of a vortex decreases as it travels
axially in the annulus. The stability of the flow with an inner
porous cylinder and an outer nonporous cylinder with an
axial flow has not been studied analytically because of the
difficulty in obtaining an analytic solution for the stable flow.
Recent progress toward a solution based on a generalized
similarity formulation provided an initial step toward resolv-
ing this problem, but determining the stability with respect to
three-dimensional perturbations is still quite difficult.50

In this paper we take a two-pronged approach to study-
ing the stability of Taylor–Couette flow with an imposed
radial through-flow �two porous cylinders� and an imposed
axial flow. First, we consider the convective and absolute
instabilities of the flow using theoretical methods. Second,
we use direct numerical simulations to confirm the theoreti-
cal results and visualize the vortex structure.

The material is organized as follows. Section II presents
the geometry and the analytical solutions for the base flow in
a Taylor–Couette system with superimposed homogeneous
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axial and radial flows. Section III describes the theoretical
and numerical methods used for the convective/absolute
stability analysis and assesses their reliability and accuracy.
The theoretical and numerical results pertaining to this
analysis are discussed in Sec. IV. Finally, concluding re-
marks and possible extensions of this work are addressed in
Sec. V.

II. GEOMETRY AND STEADY FLOW

An annular cavity between two concentric cylinders of
inner and outer radii Rin and Rout is considered, with the inner
cylinder rotating at angular speed � and the outer cylinder
stationary. Departing from the usual Taylor–Couette setup,
an imposed pressure gradient along the length of the annulus
drives an axial flow, and a uniform wall-normal radial veloc-
ity is prescribed at the inner and outer cylinders as Uin and
Uout, respectively. Using cylindrical coordinates �r ,� ,z�, the
radial, azimuthal, and axial components of the velocity field
�u ,v ,w� and the pressure field p satisfy the continuity and
incompressible three-dimensional Navier–Stokes equations.
Apart from the prescribed wall-normal velocity, surfaces are
no-slip, imposing zero relative tangential velocities on the
cylinders.

A laminar steady flow �ub�r� ,vb�r� ,wb�r� , pb�r��, which
will act as the base flow in the analyses to come, can be
determined analytically. Nondimensional parameters of the
system are then the following:

�a� the radius ratio �=Rin /Rout;
�b� for the computations in a finite length cavity, the aspect

ratio �=h /d, where h is the distance between the ends
of the annulus and d= �Rout−Rin� is the gap �for the
theoretical analysis the cylinders are infinitely long�;

�c� the Taylor number Ta=Rin�d /�, where � is the kine-
matic viscosity �also called a rotating or inner Rey-
nolds number in this form, it is referred to as the Taylor
number to avoid confusion with the other two Rey-
nolds numbers in the problem; unlike some existing
definitions of the Taylor number proportional to �2, the
present one is proportional to the azimuthal velocity of
the inner cylinder�;

�d� the radial Reynolds number �=UinRin /� �=UoutRout /�,
owing to continuity�; and

�e� the axial Reynolds number �= w̄d /� where
w̄= �Rout

2 −Rin
2 �−1�Rin

Routwb�r�2rdr.

Following Ref. 32, the incompressible Navier–Stokes
and continuity equations are made nondimensional by intro-
ducing the following scales: d for the lengths, �=d2 /� for the
times, v=�d for the velocities, and 	=
�� for the pressure.
Unless stated, the quantities hereinafter are nondimensional.
Expressions for the base flow including the specific cases
�=−2, 0, and 2 can be found in the Appendix. An example
of such a base flow is depicted in Fig. 1 using an unusually
low value of Ta to magnify the radial and axial components
of the velocity.

The radius ratio has been kept constant at �=0.85 to

match a broad range of experiments and simulations for this
and similar radius ratios. Consistent with rotating filtration
devices, the outer cylinder has been kept fixed. Although the
analysis conducted here can relax these two constraints, it
would, of course, dramatically increases the scope of the
parametric study. This study therefore mostly focuses on the
influence of the radial and axial flows. Radial Reynolds num-
bers in the range of −20���20 and axial Reynolds num-
bers in the range of 0���50 have been considered again to
allow comparison with previous results and provide informa-
tion in the range that is representative of rotating filtration
devices �−10���−0.1 and 0���50�.22

III. METHODS

A. Convective and absolute stability analysis

The analytical approach focuses on determining the criti-
cal thresholds between unconditional stability and convec-
tive instability on the one hand and convective instability and
absolute instability on the other hand as well as the charac-
teristics of the associated critical modes. These stability
analyses amount to the impulse response of the linear stabil-
ity operator derived from the continuity and Navier–Stokes
equations. Strictly speaking, their scope is restricted to con-
figurations that are homogeneous in the axial direction. As
usual, the velocity and pressure fields are decomposed into
the steady laminar base flow �ub ,vb ,wb , pb� of Sec. II and
temporally evolving perturbations �up ,vp ,wp , pp�. The
continuity and Navier–Stokes equations linearized about the
base flow yield a system of partial differential equations
satisfied by �up ,vp ,wp , pp�. Seeking these perturbations in
the form �up ,vp ,wp , pp�= �u�r� ,v�r� ,w�r� , p�r��exp�−i�t
+ ikz+ in� recasts these partial differential equations into the
following eigenvalue problem:

�X = AX , �1�

together with vanishing boundary conditions for the velocity
on the inner and outer radii. The eigenvectors of Eq. �1� are
the radial dependences X�r�= �u�r� ,v�r� ,w�r� , p�r��T, associ-
ated with their respective eigenvalues for the complex fre-
quency �. The differential operator A is

Rin

Rout

FIG. 1. The base flow for �=0.85, �=−20, �=20, and Ta=20 decomposed
into the horizontal component �ub ,vb ,0� and the vertical one �0,0 ,wb�.
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d
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. �3�

For a given set of parameters and wave numbers
�� ,� ,Ta,k ,n� the solutions of the eigenproblem �1� are
computed by means of a spectral collocation method based
on Chebyshev polynomials in the radial direction.

For fixed values of �, �, and n, the critical conditions for
convective instability are sought after as the pair
�Tacrit

conv ,kcrit
conv� with real k, ensuring that the growth rate of the

least stable eigenmode is zero, as indicated by Im���=0,
where Im� · � is the imaginary part. The critical conditions for
the absolute instability are sought after as the pair
�Tacrit

abs ,kcrit
abs� with complex k, ensuring that the least stable

eigenmode satisfies Im���=0 and �k�=0.
These critical conditions are computed using Newton–

Raphson algorithms. The first one iterates on real k’s until
2�Im��k����10−10 �so as to locate at fixed Ta the wave num-
ber maximizing the growth rate� for the convective instabili-
ties or on complex k’s until �Re��k����10−10 and �Im��k���
�10−10 for the absolute instabilities. Then, a second one it-
erates on Ta’s for both convective and absolute instabilities
until �Im�����10−10. The convergence criteria and the
Newton–Raphson method require the first and second deriva-
tives of the frequency with respect to the axial wave number.
These quantities stem from the first and second derivatives of
the eigenproblem �1� with respect to k,

��kX − A�kX = �kAX − �k�X �4�

and

��k
2X − A�k

2X = �k
2AX − �k

2�X + 2�kA�kX − 2�k��kX .

�5�

The solvability conditions of Eqs. �4� and �5� lead to

�k� = 	�kAX�X�
 �6�

and

�k
2� = 	�k

2AX�X�
 + 2	�kA�kX�X�
 − 2�k�	�kX�X�
 , �7�

where X� stands for the solution of the adjoint problem, de-
duced from the stability problem �2�, and the following inner
product is introduced:

	X�Y
 = �
rin

rout

X · Ȳ
1

�1 − �2r − �1 − ��/�1 + ���2
dr , �8�

with Ȳ standing for the conjugate of Y. This choice for the
inner product stems from the possibility to compute Eqs. �6�
and �7� in the spectral space, i.e., on the Chebyshev coeffi-
cients, although the link between the norm and the energy of
the mode is then lost. The amplitude of the solution X of Eq.
�2� is set so as to satisfy 	X �X�
=1 and �kX is computed
from Eq. �4�. Similarly, the derivative �Ta� used in the
Newton–Raphson method is computed as

�Ta� = 	�TaAX�X�
 . �9�

The linear algebra involved in those computations is accom-
plished using NAG �Numerical Algorithms Group, Oxford,
U.K.� routines.

As a matter of validation, critical Taylor numbers for
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convective �Tacrit
conv� and absolute �Tacrit

abs� instabilities in the
case of Taylor–Couette flow with a superposed axial flow but
devoid of any radial flow ��=0� can be compared to previ-
ous results from the existing literature21 for �=0.8, n=0, and
various values of �. It can be observed in Table I that,
whereas the agreement is excellent as far as Tacrit

conv is con-
cerned, it deteriorates for Tacrit

abs as � increases. It should be
noted that in Ref. 21, the derivatives �k�, �k

2�, and �Ta� were
evaluated from the dispersion relation itself, i.e., from �
computed from various values of k and Ta, whereas our
method allows an exact computation of these derivatives,
which should be more accurate. Furthermore, the Tacrit in
Ref. 21 are given in the form of fits as functions of � within
the range 0���20, and we compare our direct calculation
of Tacrit to the values extracted from these fits. Further vali-
dations for �=0 but n�0 were obtained by comparison with
Refs. 19, 27, and 35 and showed excellent agreement �see
Table I�. The case �=0 requires a specific treatment to com-
pute the operator A. So the present computations have been
compared to previous results22 for various values of � with
�=0 and n=0, i.e., in the case of Taylor–Couette flow with
superposed radial flow but devoid of axial flow. The agree-
ment is again excellent �see Table I�.

B. Computations

For the numerical simulations of the incompressible
Navier–Stokes equations, we employed a pseudospectral
Chebyshev-collocation Fourier–Galerkin method that is
identical to that used in our previous work.43,51–55 Time inte-
gration was accomplished with a second-order backward im-
plicit Euler scheme for the linear terms and a second-order
explicit Adams–Bashforth scheme for the nonlinear terms.56

An improved projection algorithm was employed for
velocity-pressure coupling.57

The height of the cavity was set to h=50. The mesh

grid was defined by the Gauss–Lobatto–Chebyshev colloca-
tion points with nr=21 and nz=301 points in the radial and
axial directions, respectively. In the azimuthal direction,
n=12 equally spaced mesh points were used. The associ-
ated time step was �t=4�10−3 Ta−1� / ��−1�. Previous
validation43,52,53 has shown the method to be in good agree-
ment with theory21,22,42 and measurements.58

The boundary conditions at the ends of the annulus were
complicated by the axial flow entering and exiting the flow
domain. The velocity profile expressed in the Appendix, en-
compassing the azimuthal, axial, and radial laminar flows,
was imposed at the inlet �only cases with ��0 have been
addressed numerically�. A buffer region of length 0.1h ex-
tending upstream from the exit of the domain was used to
exponentially damp the perturbation and recover the analytic
base flow at the outlet.

The initial conditions were obtained by adding to the
laminar flow given in the Appendix a disturbance at the inlet
on the axial component of the velocity and consisting of a
sum of sine functions of azimuthal periodicity 2	 /k with k
ranging from 1 to 4. The amplitude of this disturbance was
set to 0.1% of the laminar flow amplitude.

To confirm consistency between the numerical simula-
tions and the analytic, the value for Tacrit

conv obtained by nu-
merical simulation was compared to the analytic value for
�=1 and �=2. Numerically, this was done by determining
Tacrit

conv from the growth rates Im��� for the axisymmetric
�n=0� component of the velocity field of the perturbation for
three Ta near the transition. The overall rms amplitude of the
velocity fluctuations �u0 ,v0 ,w0� for the n=0 mode �the most
unstable one�, after filtering the other modes, is plotted as a
function of time in Fig. 2�a�. The growth rates extracted from
the linear portion of the curves are plotted in Fig. 2�b�. The
value for Tacrit

conv from the simulation is 107.71, very similar
to the analytical prediction Tacrit

conv=107.25.

TABLE I. Comparison between results from the literature and present for the critical Taylor numbers Tacrit
conv and

Tacrit
abs.

Ref. � � � n

Tacrit
conv Tacrit

abs

Literature Present Literature Present

21 0.8 0 0 0 94.73 94.73

5 95.64 95.64 111.80 111.44

10 98.33 98.33 150.36 150.41

15 102.72 102.72 194.62 201.69

20 108.68 108.68 236.77 304.59

27 0.95 0 20 1 211.69 211.68

19 0.5 0 30 1 86.62 86.62

35 0.77 0 49 3 148.44 148.45

63.5 7 165.15 165.16

166 17 193.34 193.32

403.5 20 196.02 196.03

22 0.85 �15 0 0 155.79 155.79

0 108.31 108.31

15 108.57 108.57

104102-5 Absolute and convective instability of cylindrical Couette flow Phys. Fluids 21, 104102 �2009�

Downloaded 12 Oct 2009 to 129.105.118.196. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



IV. RESULTS

The instabilities in a Taylor–Couette flow with superim-
posed axial and radial flows, axisymmetric and helical modes
have been evaluated with n ranging from �30 to 30 for both
convective and absolute instabilities. Analytically obtained
critical conditions in terms of critical Taylor numbers above
which an unstable mode grows are presented in Fig. 3 for
the convective instability. On a broad scale, the axial flow
���0� stabilizes the Taylor–Couette system, whereas a
small amount of positive radial flow �0���15� slightly
destabilizes the system with respect to convective instabili-
ties, consistent with previous theoretical and numerical re-
sults limited to n=0.22,31,43

At the lowest axial Reynolds numbers, the vortices are
toroidal �n=0�. Figure 3 sheds light on the fact that helical
modes become the most unstable convective instabilities as
� increases further, whereas � only slightly affects this se-
lection. Helical vortices are always “left handed” or “inverse
threaded,” i.e., with positive k and n, consistent with previ-
ous results.16,19,26,59 Thus, the helicity of the vortex structure
is opposite the helicity of the base flow. For �=0, the mar-
ginal mode becomes a single helix �n=1� at �=14 and lead-
ing to Tacrit

conv=116.3, compared to Tacrit
conv=108.3 for �=0

�n=0�. This result is comparable to experimental data, which
indicates this transition is between �=7 and �=9 with
Tacrit

conv110–120 �see Fig. 4 in Ref. 26 and Fig. 2 in Ref.
28�. The same experiments also locate the critical conditions
for �=25 at Tacrit

conv138–146, favorably comparing with the
present predicted value Tacrit

conv=131.8. Increasing the axial
Reynolds number to �=34 with �=0, the marginal mode
becomes a double helix �n=2�. This transition was not noted
in the only experiments with high values of �, but this may
be accounted for by the experiments only extending to
�=37 �a single data point�. Furthermore, as depicted in Fig.
4, marginal Taylor numbers Tan

conv, i.e., Taylor numbers
yielding a zero growth rate at a fixed azimuthal wave num-
ber, in the vicinity of the most unstable azimuthal wave num-
ber remain fairly close to one another, suggesting that more
than one azimuthal wave numbers may be unstable in an
experiment. At still higher axial Reynolds number, the mar-

ginal mode is a triple helix �n=3� at �=44 and a quadruple
helix at �=49. The destabilization of the flow by modes with
increasingly large positive azimuthal wave numbers might be
akin to the instability of an inviscid vortex in unbounded
domains.60 Without radial flow, such an instability occurs
under the sufficient condition
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���

n = 0
��■

α

β

Taconv
crit

FIG. 3. �Color online� Critical Taylor number for the most unstable convec-
tive mode as a function of � and �. Increasingly lighter shades represent
n=0, 1, 2, 3, and 4. The white dots locate the numerical simulations of Fig.
6 ��=−10, �=20, and Ta=160� and Fig. 8 ��=10, �=40, and Ta=160� in
this parameter space. The insets sketch the toroidal mode �n=0� and the
single, double, triple, and quadruple helices �n=1, 2, 3, and 4, respectively�.
These sketches do not account for the spatial modulation of the amplitude of
the modes along the z-axis.
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FIG. 4. Marginal Taylor numbers Tan
conv as functions of the azimuthal wave

number n obtained at �a� �=−10, �=20 and �b� �=10, �=40, correspond-
ing to the white dots in Fig. 3.
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Nonetheless, this condition being satisfied in the present flow
for all values of � and Ta, it does not allow us to discriminate
the effect of the viscosity from the relevance of such insta-
bilities to explain the existence of a critical Taylor number.
For ��0, helical modes are still obtained analytically to be
the most unstable. The only experiments for ��0 are for a
porous inner cylinder and a nonporous outer cylinder.31 In
this case, the imposition of a radial flow causes helical vor-
tices to be replaced by toroidal vortices. Of course, analyti-
cally and numerically, the radial flow is imposed at both
cylinders and the axial and radial flows are invariant along
the z-axis. Experimentally, the radial flow was only through
the inner porous and the radial and axial flows both varied
substantially in the axial direction.

The analytical stability analysis also yields several
quantities characterizing the marginal mode at critical condi-
tions, including the temporal frequency �crit, the wave
number kcrit, and wavelength �=2	�kcrit

2 +n2 / r̄2�−1/2, where
r̄= �1+�� /2�1−�� is the mean radius, the group velocity
vg crit= ��k��crit, the phase speed v=�crit /kcrit, and the phase
velocity compared to the bulk axial velocity v /�. The de-
pendencies of these quantities on � and � are shown in Fig.
5. The temporal frequency �crit and the wave number kcrit,
shown in Figs. 5�a� and 5�c�, both increase smoothly with �
for a given value of n and increase sharply as n changes.
Consistent with analytic results over much more limited

ranges of � and �,22,32,42 the wave number is a minimum at
small positive values of �. It increases slightly with large
positive values of � and increases substantially for large
negative values of �, particularly at high �. The wavelength,
shown in Fig. 5�b�, is maximum for small � at about 2.0d
and decreases with increasing �, particularly for large nega-
tive �. There are little experimental data for the wavelength
near critical conditions, except for �=0.83, �=2.3, �=0,
Ta=108 �corresponding to n=0� for which � /d=1.85 and
�=14, �=0, Ta=122 �corresponding to n=1� in which
case � /d=1.9.28 These are very near the analytic values of
� /d=1.95 obtained at Tacrit

conv=102.33 and � /d=1.87 ob-
tained at Tacrit

conv=109.71, respectively. Further from critical
conditions, for �=0.848, �=7, �=0, and Ta=120 �corre-
sponding to n=0�, � /d=2.1, and for �=10, �=0, and
Ta=130 �corresponding to n=1�, � /d=2.0.26 These remain
relatively close to the analytic values of � /d=1.92 obtained
at Tacrit

conv=109.65 and � /d=1.85 obtained at Tacrit
conv=112.03,

respectively. Of course, increasing the departure from critical
conditions reduces the ability of the linear analysis to match
experiments. The phase speed v crit=�crit /kcrit, which is the
velocity at which the vortices translate, increases with �,
with jumps as n increases, but is relatively independent of �,
as shown in Fig. 5�e�. For convective instabilities, the wave
vector is real and, therefore, at the critical threshold, the
group velocity vg crit= ��� /�k�crit, namely, the velocity at
which the wave packet travels downstream, is also real. The
group velocity remains continuous as � and, consequently, n
increase and is relatively independent of �, as shown in Fig.
5�d�. The phase velocity is slightly higher than the group
velocity. For comparison with experiments, it is helpful to
consider the ratio of the phase velocity to the average axial
velocity of the base flow in dimensionless form v /�, shown
in Fig. 5�f�. At low �, the ratio is about 1.2, consistent with
experimental values for the vortex translation speed
wvortex / w̄.28 As � increases, the velocity of the vortices de-
creases for constant n, but increases sharply with transitions
in n. These results are generally consistent with experimental
results, although the experiments show a wide range of vor-
tex velocities �0.7�wvortex / w̄�2.2�. Of course, much of the
experimental data are not at transition conditions, so they are
not directly comparable with the analytic results.

The convection of a single-helix �n=1� wave packet
based on numerical simulations is shown in Fig. 6 for the
condition indicated by one of the dots in Fig. 3 �at �=−10,
�=20, and Ta=160 to be compared to Tacrit

conv=150.25�, con-
firming the analytic prediction for the selected pattern. Inter-
estingly, the wave packet begins with a right-handed sense
�n=−1�. As it progresses, the sense of the helix becomes
left handed �n=1� for the leading portion and right handed
�n=−1� for the trailing portion with a discontinuity in about
the middle of the wave packet. This is not surprising given
that the n=−1 mode is nearly as unstable as the n=1 mode.
The spatiotemporal propagation of the numerically obtained
wave packet is shown in Fig. 7. The wave packet initially
grows in both the number of waves and amplitude as it
propagates axially, but then diminishes near the downstream
end due to the boundary condition at the exit of the annulus.

FIG. 5. �Color online� Critical quantities for the most unstable convective
mode. �a� Temporal frequency �crit; �b� wavelength �crit=2	�kcrit

2

+n2 / r̄2�−1/2 where r̄= �1+�� /2�1−�� is the mean radius and kcrit is the axial
wave number, also depicted in �c�; �d� group velocity vg crit= ��� /�k�crit; �e�
phase speed v crit=�crit /kcrit; and �f� phase speed to axial Reynolds number
ratio. These quantities are evaluated at the critical threshold for the most
unstable convective mode in Fig. 3. Increasingly lighter shades represent
n=0, 1, 2, 3, and 4, respectively. The solid and dashed white lines highlight
the upper and lower limits, respectively, of the jumps of the plotted quanti-
ties as n changes.
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The analytic group velocity matches the velocity of the wave
packet in the simulations.

The propagation of a double helix �n=2� wave packet
based on numerical simulations is shown in Fig. 8 for the
condition indicated by the other dot in Fig. 3 �at �=10,
�=40, and Ta=160 to be compared to Tacrit

conv=156.41�, also
in agreement with the analytic prediction for n. In this case,
the sense of wave packet is always left handed �n positive�.
The match between the analytic group velocity and the nu-
merically obtained propagation is not quite as good in this
case, with the analytic value slightly higher, as shown in Fig.
9. Again the amplitude and number of waves in the wave
packet grow as it propagates.

The flow becomes absolutely unstable at much higher
Taylor numbers, as shown in Fig. 10. At higher values of �
and positive values of � the nonaxisymmetric modes become
the most absolutely unstable ones. However, unlike convec-
tive instabilities, these single-helix modes are right handed
with positive k and n=−1. For negative values of � the axi-
symmetric modes remain the most unstable even for large �.
The radial flow also has a greater influence on the critical
Taylor number for negative values of � than for positive
values.

The critical frequency increases with �, with the greatest
value for large negative �, as shown in Fig. 11�a�. The criti-
cal frequency is also substantially lower than that for the
convectively unstable situation and increasing the algebraic

t = 0.43 t = 1.27 t = 1.70

FIG. 6. Numerically obtained temporal evolution of the wave packet for
Ta=160, �=−10, �=20, and �=50, exhibiting a convective mode with both
n=1 and n=−1. Surfaces are fluctuations of axial velocity at slightly differ-
ent levels.

0 10 20 30 40 500 10 20 30 40 50
z

t = 0.43

t = 0.85

t = 1.27

t = 1.70

FIG. 7. Numerically obtained spatiotemporal evolution of the wave packet
for Ta=160, �=−10, and �=20 in the form of the axial velocity ��� and its
spatial Hilbert transform �� ��, compared to the positions of the maximum
of the wave packet inferred from the analytical group velocity vg=25.72
�� · ��, and of the point originally at z=0 and traveling at the mean
nondimensional axial velocity �=20 �¯ �. The buffer region used in the
numerical simulation extends between z=45 �¯ � and the outlet at z=50.

t = 0.28 t = 0.57 t = 1.13

FIG. 8. Numerically obtained temporal evolution of the wave packet for
Ta=160, �=10, �=40, and �=50, exhibiting a convective mode with
n=2. Surfaces are fluctuations of axial velocity at slightly different levels at
t=0.28 and t=0.57 while the surface at t=1.13 is plotted at a significantly
lower level.
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z

t = 0.28

t = 0.57

t = 0.85

t = 1.13

FIG. 9. Numerically obtained spatiotemporal evolution of the wave packet
for Ta=160, �=10, and �=40 in the form of the axial velocity ��� and its
spatial Hilbert transform �� ��, compared to the expected position of the
maximum of the wave packet inferred from the analytical group velocity
�� · ��, and of the point originally at z=0 and traveling at the mean
nondimensional axial velocity �=40 �¯ �. The buffer region is between z
=45 �¯ � and z=50.
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value of n increases the frequency. Unlike the convective
instabilities, the wavelength of the absolute modes strongly
increases with � and substantially departs from the ubiqui-
tous value of 2, as shown in Fig. 11�b�. This is due to
the sharp decrease in Re�kcrit�, shown in Fig. 11�c�. Interest-
ingly, elongated rolls with wavelengths of 3.0–3.4 have
been observed experimentally for �=0, �=3–10, and

Ta=500–1100, well above Tacrit
abs and corresponding to wavy,

modulated wavy, and turbulent vortical flows.26 The imagi-
nary part Im�kcrit� shown in Fig. 11�d� scales the steepness of
the rising front, irrespective of the temporal growth. This
steepness increases with � but saturates around ��15 with a
characteristic length l=1 / Im�kcrit��3. The phase velocity
v crit shown in Fig. 11�e� increases with � and negative �
for the n=0 mode but remains low for n=−1. The phase
velocity compared to the bulk axial velocity v crit /� is
shown in Fig. 11�f�. While this ratio remains close to 1.2–1.3
for the helical mode, it strongly increases with � for the
toroidal one, constituting another discrepancy with the con-
vective instability.

The numerical simulation of the development and propa-
gation of the vortical structure for an absolute axisymmetric
mode corresponding to one of the dots in Fig. 10 ��=−10,
�=10, and Ta=215 to be compared to Tacrit

abs=209.52� is
shown in Fig. 12. For these values of � and �, both the
convective and absolute most unstable modes are expected to
be toroidal. Initially, the toroidal vortices appear at the up-
stream end of the annulus. As time progresses, the vortical
structures spread further downstream, eventually filling the
annulus. The spatiotemporal development of the vortical
structures is shown in Fig. 13. Moreover, the temporal evo-
lution of the kinetic energy associated with each azimuthal
wave number �n� of the perturbation extracted from the nu-
merical simulation, i.e., the sum over the three components
of the velocity of the squared amplitudes of the Fourier co-
efficients in the azimuthal direction, is depicted in Fig. 14�a�.
The predominance of the n=0 mode is obvious. The �n�=5
mode is more than four orders of magnitude weaker than the
predominant mode, confirming that the azimuthal resolution
of the simulation is adequate. The vortical structure is made
up of vortices of relatively uniform strength, unlike the wave
packets of vortices for the convective instability, and it
spreads axially more quickly than the average axial velocity
of the base flow. The strength of the vortices is several orders

FIG. 10. �Color online� Critical Taylor number for the most unstable abso-
lute mode as a function of � and �. Increasingly lighter shades stand for
n=−1 and 0. The insets sketch the toroidal mode �n=0� and the right-
handed single-helix n=−1 mode. These sketches do not account for the
imaginary part of the axial wave number. The white dots locate the numeri-
cal simulations of Fig. 12 ��=−10, �=10, and Ta=215� and Fig. 15
��=5, �=15, and Ta=220� in this parameter space.

FIG. 11. �Color online� Critical quantities for the most unstable absolute
mode. �a� Temporal frequency �crit; �b� wavelength �crit=2	�Re�kcrit�2

+n2 / r̄2�−1/2; �c� real part of the axial wave number Re�kcrit�; �d� imagin-
ary part of the axial wave number Im�kcrit�; �e� phase speed
v crit=�crit /Re�kcrit�; and �f� phase speed to axial Reynolds number ratio.
These quantities are evaluated at the critical threshold for the most unstable
absolute mode in Fig. 10. Note that the specific orientations of the axes vary
in the different figures to conveniently display the surfaces. Increasingly
lighter shades represent n=−1 and 0, respectively. The solid and dashed
white lines highlight the upper and lower limits, respectively, of the jumps
of the plotted quantities as n changes.

t = 0.21 t = 0.42 t = 0.74

FIG. 12. Numerically obtained temporal evolution of the wave packet for
Ta=215, �=−10, and �=10, exhibiting an absolute mode with n=0. Sur-
faces are fluctuations of axial velocity at slightly different levels.
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of magnitude greater than for the convective instability, and
the sharp peaks and rounded troughs indicate nonlinearity in
the structure. No vortices appear at the upstream end of the
annulus due to the nonvortical flow imposed at the inlet. The
flow clearly exhibits a front-forming pattern at constant finite
length from the inlet. Without venturing further into the
analysis of the nonlinear behavior of the flow, this shows
strong similarities with the dynamics of the “healing length”
of nonlinear global modes in semi-infinite domains, as ad-
dressed within the formalism of amplitude equations for cy-
lindrical Couette flow with axial flow,61 wakes,62 and generic
Ginzburg–Landau equations.63 Vortices are intentionally
damped out in the buffer region at the downstream end of the
annulus.

The numerical simulation of the development and propa-
gation of the vortical structure for an absolute axisymmetric
mode corresponding to the other dot in Fig. 10 ��=5,
�=15, and Ta=220 to be compared to Tacrit

abs=216.81� is
shown Fig. 15. Unlike the case of Fig. 12 where both the
absolute and convective most unstable modes are axisym-
metric, for these values of � and �, the most convectively
unstable mode is expected to be a single right-handed helix,
although helices with n ranging from �6 to 9 are expected to
be convectively unstable. The initial instability is a double

helical structure �t=0.21�. As the structure grows and propa-
gates �t=0.62�, the trailing portion becomes a single helical
structure, consistent with the n=1 convective mode expected
at these values for � and �, while the leading portion re-
mains a double helical structure �t=0.83�. Although helical
structures persist near the inlet, the downstream portion fills
in with axisymmetric vortices related to the absolute insta-
bility �t=1.03�. As time progresses, the axisymmetric abso-
lute instability replaces the double helical structure, although
the single helical structure remains near the inlet �t=1.44�.
By the next time step shown, the entire annulus is filled with
axisymmetric vortices of the absolute instability �t=1.65�.
The spatiotemporal development of the structure, not shown
here because the different structures cannot be discriminated
in such a diagram, is similar to that shown in Fig. 13 with
vortices of relatively uniform strength that spread axially
more quickly than the average axial velocity of the base flow.
The temporal evolution of the energy associated with each
mode in the azimuthal direction is depicted in Fig. 14�b�.
Whereas the n=0, �n�=1, and �n�=2 modes are found to be of

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50
z

t = 0.11

t = 0.21

t = 0.32

t = 0.42

t = 0.53

t = 0.63

FIG. 13. Numerically obtained spatiotemporal evolution of the wave packet
for Ta=215, �=−10, and �=10 in the form of the axial velocity ��� and its
spatial Hilbert transform �� �� and, superposed, the point originally at
z=0 and traveling at the mean nondimensional axial velocity �=10 �¯ �.
The buffer region used in the numerical simulation extends between z=45
�¯ � and the outlet at z=50.
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FIG. 14. Numerically obtained temporal evolution of the energies E�n� asso-
ciated with azimuthal modes n=0 to �n�=5 for �a� Ta=215, �=−10, �=10
and �b� Ta=220, �=5, �=15.

t = 0.21 t = 0.62 t = 0.83

t = 1.03 t = 1.44 t = 1.65

FIG. 15. Numerically obtained temporal evolution of the wave packet for
Ta=220, �=5, and �=15, exhibiting an absolute mode with n=0. Surfaces
are fluctuations of axial velocity at slightly different levels.
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comparable importance at initial times, the axisymmetric
mode n=0 eventually becomes predominant.

V. CONCLUSIONS AND OUTLOOK

Owing to the conspicuous similarities between the body
of experimental results and the computed convective insta-
bilities, it is very likely that most of the experimental setups
act as amplifiers of the noise at the inlet, fostering
convective-type instabilities. The absolute modes are fairly
elusive even in the numerical simulations as they tend to be
overridden by convective instabilities triggered by the nu-
merical noise. Similarly, the absolute modes are also ex-
pected to be difficult to observe experimentally. A way to
alleviate this difficulty might be to use an experimental or
numerical configuration where the gap of the annulus re-
duces at the inlet, inducing the local stability of the flow at
the inlet by increasing � and �. Analytically, the framework
of the stability analyses would then shift to global modes
developing for the spatially varying �in the axial direction�
base flow, as introduced in fluid mechanics in Refs. 47 and
64. These global modes are known to be driven by local
absolute instability modes for configurations where the lo-
cally absolutely unstable region is of limited extent. These
configurations have been extensively studied in the case of
mixed Rayleigh–Bénard–Poiseuille convection.65,66

Of course, many discrepancies remain between the situ-
ation addressed in this study and experimental setups or fil-
tration devices. These discrepancies pave the way for pos-
sible future work. First, one or two porous cylinders should
be modeled to provide a more realistic boundary condition
than the assumption of imposed wall-normal velocities. Sec-
ond, the case of an inner porous cylinder and an outer non-
porous cylinder could be considered. This, however,
constitutes a significant challenge since there is no analytic
solution for the base flow. Moreover, depending on the

relative pressure drops along the axial direction and across
the porous cylinder, dramatic modifications of this base flow
could result as the exhaustion of the axial flow or the reversal
of the radial flow might occur. Furthermore, since fluid is
lost through the inner cylinder, the axial flow decreases along
the length of the annulus and vortices decrease in size.
Again, the natural framework for the stability analysis of
such a configuration amounts to global modes in semi-
infinite domains this time. Finally, as hinted by the results of
the numerical simulations, this system constitutes a worth-
while framework to analyze the nonlinear behavior of the
convective/absolute and global modes of instability accord-
ing to recent approaches.67 However tantalizing, work along
this line requires a large amount of analytical and numerical
effort and is beyond the scope of the present paper, although
it remains a longer term goal. Nevertheless, further insight
into the problem gained by addressing these configurations
could be applied to practical realizations such as rotating
filtration.
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APPENDIX: EXPRESSIONS FOR THE BASE FLOW

Starting from the incompressible Navier–Stokes equa-
tions, the laminar steady base flow is
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provided ��−2, 0, 2. For �=−2, the base flow is
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For �=0, the base flow is
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And, finally, for �=2, the base flow is
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The expression of the pressure field for the base flow is not
included here since it is not required for the stability
analysis.

1G. Beaudoin and M. Y. Jaffrin, “Plasma filtration in Couette flow mem-
brane devices,” Artif. Organs 13, 43 �1989�.

2R. M. Lueptow and A. Hajiloo, “Flow in a rotating membrane plasma
separator,” Trans. Am. Soc. Artif. Intern. Organs 41, 182 �1995�.

3K. Ohashi, K. Tashiro, F. Kushiya, T. Matsumoto, S. Yoshida, M. Endo, T.
Horio, K. Osawa, and K. Sakai, “Rotation-induced Taylor vortex enhances
filtrate flux in plasma separation,” Trans. Am. Soc. Artif. Intern. Organs
34, 300 �1988�.

4G. Belfort, P. Mikulasek, J. M. Pimbley, and K. Y. Chung, “Diagnosis of
membrane fouling using a rotating annular filter. 2. Dilute particule sus-
pension of known particle size,” J. Membr. Sci. 77, 23 �1993�.

5G. Belfort, J. M. Pimbley, A. Greiner, and K. Y. Chung, “Diagnosis of
membrane fouling using a rotating annular filter. 1. Cell culture media,” J.
Membr. Sci. 77, 1 �1993�.

6B. Hallström and M. Lopez-Leiva, “Description of a rotating ultrafiltration
module,” Desalination 24, 273 �1978�.

7K. H. Kroner and V. Nissinen, “Dynamic filtration of microbial suspension
using an axially rotating filter,” J. Membr. Sci. 36, 85 �1988�.

8A. Margaritis and C. R. Wilke, “The rotor fermentor. I. Description of the
apparatus power requirements and mass transfer characteristics,” Biotech-
nol. Bioeng. 20, 709 �1978�.

9S. T. Wereley, A. Akonur, and R. M. Lueptow, “Particle-fluid velocities
and fouling in rotating filtration of a suspension,” J. Membr. Sci. 209, 469
�2002�.

10J. A. Schwille, D. Mitra, and R. M. Lueptow, “Design parameters for
rotating filtration,” J. Membr. Sci. 204, 53 �2002�.

11J. Kaye and E. C. Elgar, “Modes of adiabatic and diabatic fluid flow in an
annulus with an inner rotating cylinder,” Trans. ASME 80, 753 �1958�.

12S. Chandrasekhar, “The hydrodynamic instability of viscid flow between
coaxial cylinders,” Proc. Natl. Acad. Sci. U.S.A. 46, 141 �1960�.

13R. C. DiPrima, “The stability of a viscous fluid between rotating cylinders
with an axial flow,” J. Fluid Mech. 9, 621 �1960�.

14R. J. Donnelly and D. Fultz, “Experiments on the stability of spiral flow
between rotating cylinders,” Proc. Natl. Acad. Sci. U.S.A. 46, 1150
�1960�.

15K. W. Schwarz, B. E. Springlett, and R. J. Donnelly, “Modes of instability
in spiral flow between rotating cylinders,” J. Fluid Mech. 20, 281 �1964�.

16K. C. Chung and K. N. Astill, “Hydrodynamic instability of viscous flow
between rotating coaxial cylinders with fully developed axial flow,” J.
Fluid Mech. 81, 641 �1977�.

17M. A. Hasoon and B. W. Martin, “The stability of a viscous axial flow in
an annulus with a rotating inner cylinder,” Proc. R. Soc. London, Ser. A
352, 351 �1977�.

18N. Gravas and B. W. Martin, “Instability of viscous axial flow in annuli
having a rotating inner cylinder,” J. Fluid Mech. 86, 385 �1978�.

19B. S. Ng and E. R. Turner, “On the linear stability of spiral flow between
rotating cylinders,” Proc. R. Soc. London, Ser. A 382, 83 �1982�.

20K. L. Babcock, G. Ahlers, and D. S. Cannell, “Noise-sustained structure in
Taylor–Couette flow with through-flow,” Phys. Rev. Lett. 67, 3388
�1991�.

21A. Recktenwald, M. Lücke, and H. W. Müller, “Taylor vortex formation in
axial through-flow: Linear and weakly nonlinear analysis,” Phys. Rev. E
48, 4444 �1993�.

22E. C. Johnson and R. M. Lueptow, “Hydrodynamic stability of flow be-
tween rotating porous cylinders with radial and axial flow,” Phys. Fluids
9, 3687 �1997�.

23H. A. Snyder, “Experiments on the stability of spiral flow at low axial
Reynolds numbers,” Proc. R. Soc. London, Ser. A 265, 198 �1962�.

24M. M. Sorour and J. E. R. Coney, “The characteristics of spiral vortex
flow at high Taylor numbers,” J. Mech. Eng. Sci. 21, 65 �1979�.

25R. C. DiPrima and A. Pridor, “The stability of viscous flow between
rotating concentric cylinders with an axial flow,” Proc. R. Soc. London,
Ser. A 366, 555 �1979�.

26R. M. Lueptow, A. Docter, and K. Min, “Stability of axial flow in an
annulus with a rotating inner cylinder,” Phys. Fluids A 4, 2446 �1992�.

27D. I. Takeuchi and D. F. Jankowski, “A numerical and experimental in-
vestigation of the stability of spiral Poiseuille flow,” J. Fluid Mech. 102,
101 �1981�.

28S. T. Wereley and R. M. Lueptow, “Velocity field for Taylor–Couette flow
with an axial flow,” Phys. Fluids 11, 3637 �1999�.

29K. Bühler, “Instabilitaten spiralformiger Strömungen im Zylinderspalt,” Z.
Angew. Math. Mech. 64, 180 �1984�.

30K. Bühler, “Symmetric and asymmetric Taylor vortex flow in spherical
gaps,” Acta Mech. 81, 3 �1990�.

31K. Min and R. M. Lueptow, “Circular Couette flow with pressure-driven
axial flow and a porous inner cylinder,” Exp. Fluids 17, 190 �1994�.

32A. Kolyshkin and R. Vaillancourt, “Convective instability boundary of
Couette flow between rotating porous cylinder with axial and radial flow,”
Phys. Fluids 9, 910 �1997�.

33A. Meseguer and F. Marques, “On the competition between centrifugal
and shear instability in spiral Poiseuille flow,” J. Fluid Mech. 455, 129
�2002�.

34D. L. Cotrell and A. J. Pearlstein, “The connection between centrifugal
instability and Tollmien–Schlichting-like instability for spiral Poiseuille
flow,” J. Fluid Mech. 509, 331 �2004�.

35D. L. Cotrell, S. L. Rani, and A. J. Pearlstein, “Computational assessment
of subcritical and delayed onset in spiral Poiseuille flow experiments,” J.
Fluid Mech. 509, 353 �2004�.

36A. Meseguer and F. Marques, “On the stability of medium gap corotating
spiral Poiseuille flow,” Phys. Fluids 17, 094104 �2005�.

37C. J. Heaton, “Optimal linear growth in spiral Poiseuille flow,” J. Fluid
Mech. 607, 141 �2008�.

104102-12 Martinand, Serre, and Lueptow Phys. Fluids 21, 104102 �2009�

Downloaded 12 Oct 2009 to 129.105.118.196. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1111/j.1525-1594.1989.tb02831.x
http://dx.doi.org/10.1016/0376-7388(93)85232-L
http://dx.doi.org/10.1016/0376-7388(93)85231-K
http://dx.doi.org/10.1016/0376-7388(93)85231-K
http://dx.doi.org/10.1016/S0011-9164(00)88089-3
http://dx.doi.org/10.1016/0376-7388(88)80009-7
http://dx.doi.org/10.1002/bit.260200507
http://dx.doi.org/10.1002/bit.260200507
http://dx.doi.org/10.1016/S0376-7388(02)00365-4
http://dx.doi.org/10.1016/S0376-7388(02)00016-9
http://dx.doi.org/10.1073/pnas.46.1.141
http://dx.doi.org/10.1017/S0022112060001365
http://dx.doi.org/10.1073/pnas.46.8.1150
http://dx.doi.org/10.1017/S0022112064001203
http://dx.doi.org/10.1017/S0022112077002274
http://dx.doi.org/10.1017/S0022112077002274
http://dx.doi.org/10.1098/rspa.1977.0004
http://dx.doi.org/10.1017/S0022112078001184
http://dx.doi.org/10.1098/rspa.1982.0091
http://dx.doi.org/10.1103/PhysRevLett.67.3388
http://dx.doi.org/10.1103/PhysRevE.48.4444
http://dx.doi.org/10.1063/1.869506
http://dx.doi.org/10.1098/rspa.1962.0004
http://dx.doi.org/10.1243/JMES_JOUR_1979_021_014_02
http://dx.doi.org/10.1098/rspa.1979.0069
http://dx.doi.org/10.1098/rspa.1979.0069
http://dx.doi.org/10.1063/1.858485
http://dx.doi.org/10.1017/S0022112081002565
http://dx.doi.org/10.1063/1.870228
http://dx.doi.org/10.1007/BF01174552
http://dx.doi.org/10.1007/BF00190916
http://dx.doi.org/10.1063/1.869187
http://dx.doi.org/10.1017/S0022112001007315
http://dx.doi.org/10.1017/S0022112004008857
http://dx.doi.org/10.1017/S0022112004008845
http://dx.doi.org/10.1017/S0022112004008845
http://dx.doi.org/10.1063/1.2046708
http://dx.doi.org/10.1017/S0022112008001870
http://dx.doi.org/10.1017/S0022112008001870


38S. K. Bahl, “Stability of viscous flow between two concentric rotating
porous cylinders,” Def. Sci. J. 20, 89 �1970�.

39K. Bühler, in Ordered and Turbulent Patterns in Taylor–Couette Flow,
edited by E. D. Andereck and F. Hayot �Plenum, New York, 1992�,
pp. 197–203.

40T. S. Chang and W. K. Sartory, “Hydromagnetic stability of dissipative
flow between rotating permeable cylinders,” J. Fluid Mech. 27, 65 �1967�.

41T. S. Chang and W. K. Sartory, “Hydromagnetic stability of dissipative
flow between rotating permeable cylinders. Part 2. Oscillatory critical
modes and asymptotic results,” J. Fluid Mech. 36, 193 �1969�.

42K. Min and R. M. Lueptow, “Hydrodynamic stability of viscous flow
between rotating porous cylinders with radial flow,” Phys. Fluids 6, 144
�1994�.

43E. Serre, M. A. Sprague, and R. M. Lueptow, “Stability of Taylor–Couette
flow in a finite-length cavity with radial through-flow,” Phys. Fluids 20,
034106 �2008�.

44S. Lee and R. M. Lueptow, “Rotating membrane filtration and rotating
reverse osmosis,” J. Chem. Eng. Jpn. 37, 471 �2004�.

45S. K. Bahl and K. M. Kapur, “The stability of a viscous flow between two
concentric rotating porous cylinders with an axial flow,” Def. Sci. J. 25,
139 �1975�.

46P. Huerre and P. A. Monkewitz, “Absolute and convective instabilities in
free shear layers,” J. Fluid Mech. 159, 151 �1985�.

47P. Huerre and P. A. Monkewitz, “Local and global instabilities in spatially
developing flows,” Annu. Rev. Fluid Mech. 22, 473 �1990�.

48A. Tsameret, G. Goldner, and V. Steinberg, “Experimental evaluation of
the intrinsic noise in the Couette–Taylor system with an axial flow,” Phys.
Rev. E 49, 1309 �1994�.

49A. Tsameret and V. Steinberg, “Noise-modulated propagating pattern in a
convectively unstable system,” Phys. Rev. Lett. 67, 3392 �1991�.

50F. Marques, J. Sanchez, and P. D. Weidman, “Generalized Couette–
Poiseuille flow with boundary mass transfer,” J. Fluid Mech. 374, 221
�1998�.

51O. Czarny and R. M. Lueptow, “Time scales for transition in Taylor–
Couette flow,” Phys. Fluids 19, 054103 �2007�.

52O. Czarny, E. Serre, P. Bontoux, and R. M. Lueptow, “Spiral and wavy
vortex flows in short counter-rotating Taylor–Couette cells,” Theor. Com-
put. Fluid Dyn. 16, 5 �2002�.

53O. Czarny, E. Serre, P. Bontoux, and R. M. Lueptow, “Interaction between

Ekman pumping and the centrifugal instability in Taylor–Couette flow,”
Phys. Fluids 15, 467 �2003�.

54O. Czarny, E. Serre, P. Bontoux, and R. M. Lueptow, “Ekman vortices and
the centrifugal instability in counter-rotating cylindrical Couette flow,”
Theor. Comput. Fluid Dyn. 18, 151 �2004�.

55E. Serre, E. C. del Arco, and P. Bontoux, “Annular and spiral patterns in
flows between rotating and stationary discs,” J. Fluid Mech. 434, 65
�2001�.

56J. M. Vanel, R. Peyret, and P. Bontoux, in Numerical Methods for Fluid
Dynamics II, edited by K. W. Morton and M. J. Baines �Clarendon, Ox-
ford, 1986�, pp. 463–475.

57I. Raspo, S. Hughes, E. Serre, A. Randriamampianina, and P. Bontoux, “A
spectral projection method for the simulation of complex three-
dimensional rotating flows,” Comput. Fluids 31, 745 �2002�.

58V. Sobolik, B. Izrar, F. Lusseyran, and S. Skali, “Interaction between the
Ekman layer and the Couette–Taylor instability,” Int. J. Heat Mass Trans-
fer 43, 4381 �2000�.

59H. A. Snyder, “Experiments on the stability of two types of spiral flow,”
Ann. Phys. 31, 292 �1965�.

60S. Leibovich and K. Stewartson, “A sufficient condition for the instability
of columnar vortices,” J. Fluid Mech. 126, 335 �1983�.

61P. Büchel, M. Lücke, D. Roth, and R. Schmitz, “Pattern selection in the
absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vor-
tices in axial flow,” Phys. Rev. E 53, 4764 �1996�.

62I. Delbende and J.-M. Chomaz, “Nonlinear convective/absolute instabili-
ties in parallel two-dimensional wakes,” Phys. Fluids 10, 2724 �1998�.

63A. Couairon and J.-M. Chomaz, “Absolute and convective instabilities,
front velocities, and global modes in nonlinear systems,” Physica D 108,
236 �1997�.

64P. A. Monkewitz, P. Huerre, and J.-M. Chomaz, “Global linear stability
analysis of weakly nonparallel shear flows,” J. Fluid Mech. 288, 1 �1993�.

65P. Carrière and P. A. Monkewitz, “Transverse-roll global modes in a
Rayleigh–Bénard–Poiseuille convection,” Eur. J. Mech. B/Fluids 20, 751
�2001�.

66D. Martinand, P. Carrière, and P. A. Monkewitz, “Three-dimensional glo-
bal instability modes associated with a localized hot spot in Rayleigh–
Bénard–Poiseuille convection,” J. Fluid Mech. 551, 275 �2006�.

67J.-M. Chomaz, “Global instabilities in spatially developing flows: Non-
normality and nonlinearity,” Annu. Rev. Fluid Mech. 37, 357 �2005�.

104102-13 Absolute and convective instability of cylindrical Couette flow Phys. Fluids 21, 104102 �2009�

Downloaded 12 Oct 2009 to 129.105.118.196. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1017/S0022112067000059
http://dx.doi.org/10.1017/S0022112069001595
http://dx.doi.org/10.1063/1.868077
http://dx.doi.org/10.1063/1.2884835
http://dx.doi.org/10.1252/jcej.37.471
http://dx.doi.org/10.1017/S0022112085003147
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/10.1103/PhysRevE.49.1309
http://dx.doi.org/10.1103/PhysRevE.49.1309
http://dx.doi.org/10.1103/PhysRevLett.67.3392
http://dx.doi.org/10.1017/S0022112098002560
http://dx.doi.org/10.1063/1.2728785
http://dx.doi.org/10.1007/s00162-002-0070-0
http://dx.doi.org/10.1007/s00162-002-0070-0
http://dx.doi.org/10.1063/1.1534108
http://dx.doi.org/10.1007/s00162-004-0140-6
http://dx.doi.org/10.1017/S0022112001003494
http://dx.doi.org/10.1016/S0045-7930(01)00070-6
http://dx.doi.org/10.1016/S0017-9310(00)00067-3
http://dx.doi.org/10.1016/S0017-9310(00)00067-3
http://dx.doi.org/10.1016/0003-4916(65)90260-5
http://dx.doi.org/10.1017/S0022112083000191
http://dx.doi.org/10.1103/PhysRevE.53.4764
http://dx.doi.org/10.1063/1.869796
http://dx.doi.org/10.1016/S0167-2789(97)00045-6
http://dx.doi.org/10.1017/S0022112093003313
http://dx.doi.org/10.1016/S0997-7546(01)01146-3
http://dx.doi.org/10.1017/S0022112005008323
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175810

