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Linear stability analysis predicts that a radial throughflow in a Taylor–Couette system will alter the
stability of the flow, but the underlying physics for the stabilization of the flow is unclear. We
investigate the impact of radial inflow and outflow on Taylor vortex flow and wavy vortex flow in
a finite-length cavity via direct numerical simulation using a three-dimensional spectral method. The
numerical simulations are consistent with linear stability predictions in that radial inflow and strong
radial outflow have a stabilizing effect, while weak radial outflow destabilizes the system slightly.
A small radial outflow velocity enhances the strength of the Taylor vortices resulting in
destabilization of the base flow, whereas strong radial outflow and radial inflow reduce vortex
strength, thus stabilizing the system. The transition to wavy vortex flow is unaffected by small radial
outflow, but is stabilized for radial inflow. For strong radial outflow the wavy vortex flow includes
localized dislocations in the vortex structure. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2884835�

I. INTRODUCTION

Couette flow between a rotating inner cylinder and a
stationary outer cylinder becomes centrifugally unstable
when the rotational speed exceeds a critical value resulting in
toroidal Taylor vortices. However, if the inner and outer cyl-
inders are porous and a radial throughflow is imposed, the
stability is altered. Linear stability analysis for axisymmetric
flow indicates that the flow is stabilized by a radial inward
flow or strong radial outward flow, while a weak radial out-
ward flow destabilizes the system slightly.1–7 The physics
underlying the stabilizing and destabilizing effects of radial
throughflow is not established.

Apart from the fundamental interest in this issue is that
one of the practical applications of Taylor–Couette flow, ro-
tating filtration, is based on a radial flow at the inner cylinder
of a Taylor–Couette cell.8 Rotating filtration is used commer-
cially for extracting plasma from whole blood,9–11 and it has
been proposed as a method for other filtration systems12–23 as
well as for reverse osmosis to purify water.24–26 A rotating
filter consists typically of a cylindrical porous inner cylinder
rotating within a concentric nonporous stationary outer cyl-
inder. A suspension enters the system at one end and travels
axially in the annulus between the two cylinders. As it travels
axially, pure fluid passes radially through the inner cylinder
and can be removed via a hollow shaft. By the time the
suspension reaches the opposite end of the annulus, it is
highly concentrated. The key advantage of rotating filtration
over other types of filtration is that the Taylor vortices con-
stantly wash particles away from the inner cylinder, prevent-

ing them from plugging the pores of the membrane.27,28

While radial throughflow between two porous cylinders is
somewhat different from rotating filtration in which the outer
cylinder is nonporous, it can provide insight into the funda-
mental physics that alter the stability of Taylor–Couette flow
when a radial throughflow is present.

Little work has been done to understand how the insta-
bility arises in this flow or the nature of the vortical structure,
other than linear stability analysis of the system with respect
to two-dimensional perturbations. Linear stability analysis,
however, only provides information about the conditions at
which the transition from stable to unstable flow occurs. Fur-
thermore, it is well known that three-dimensional instabili-
ties arise in cylindrical Couette flow. It is likely that similar
three-dimensional instabilities come about when a radial
flow is imposed on the system, although the radial flow may
alter the nature of the unstable flow.

In this paper, we use direct numerical simulation to ex-
amine the impact of radial throughflow on the stability of
cylindrical Couette flow. We begin by considering the two-
dimensional case: the transition from nonvortical to vortical
flow in a finite-length Taylor–Couette cell. Using simulation
results it is possible to examine the details of the flow field to
probe the underlying physics that lead to a stabilizing or
destabilizing effect on the flow. Next, we use three-
dimensional direct numerical simulation to examine the situ-
ation where the Taylor number is above that for transition
from nonvortical flow to nonwavy toroidal Taylor vortices,
resulting in vortical structures that can be fully three-
dimensional. This paper represents the first work done to
investigate these three-dimensional vortical structures in cy-
lindrical Couette flow when a radial flow is imposed.
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II. GEOMETRY AND NUMERICAL METHOD

An annular cavity between two finite-length concentric
cylinders of inner and outer radii ri and ro is considered, with
the inner cylinder rotating at angular speed � and the outer
cylinder and endwalls stationary. All surfaces are no-slip, and
the radial velocity is prescribed at the inner and outer cylin-
ders as ui and uo, respectively. The velocity field �u ,v ,w� is
described by the incompressible, three-dimensional Navier–
Stokes equations written using cylindrical coordinates
�r ,� ,z� in an absolute frame of reference according to the
velocity-pressure formulation. Characteristic parameters of
the system are the Taylor number Ta=�rid /� �sometimes
called a rotating Reynolds number in this form�, the radial
Reynolds number �=uiri /�, the radius ratio �=ri /ro, and the
aspect ratio �=2h /d, where � is the kinematic viscosity, 2h
is the distance between endwalls, and d=ro−ri. For all simu-
lations, �=0.85, �=20, and necessarily uo=�ui.

For the numerical simulations, we employed a pseu-
dospectral Chebyshev collocation method that is identical to
that used in our previous work.29–33 Time integration was
accomplished with a second-order backward implicit Euler
scheme for the linear terms and a second-order explicit
Adams–Bashforth scheme for the nonlinear terms.34 An im-
proved projection algorithm was employed for velocity-
pressure coupling.35 The two-dimensional mesh grid was de-
fined by the Gauss–Lobatto–Chebyshev collocation points
with 21 and 121 being the number of points in the radial and
axial directions, respectively. For simulations of higher-order
transitions, a three-dimensional model was used with 96
equally spaced mesh points in the azimuthal direction; radial
and axial grids were as in the two-dimensional model. The
boundary conditions on the endwalls are complicated by the
singularity at the junction between the endwalls and the inner
cylinder where there is a jump in the azimuthal and radial
velocities. To minimize the impact of these singularities on
numerical solutions, the azimuthal and radial velocity pro-
files at the endwalls were set so that the velocities are no-slip
except very near the singularity, where velocities exponen-
tially change to those of the adjacent cylinder as discussed in
Czarny et al.30 Previous validation29,30 has shown the method
to be in good agreement with theory36 and measurements.37

III. RESULTS

A. Axisymmetric results: Two-dimensional transitions

In the absence of radial throughflow, Couette flow in an
infinite-aspect-ratio system will become unstable to axisym-
metric counter-rotating vortices at Tac=108.31,36 where Tac

is the critical Taylor number for �=0. As discussed above,
linear stability analysis indicates that radial throughflow ��
�0� alters the stability of the system, stabilizing the flow for
��0 and ��15.0, and destabilizing the flow for 0��
�15.0. The minimum in the stability curve occurs at �
=7.08, for which Ta /Tac=0.955.

In comparing the simulation results to the stability curve,
it is necessary to extract the exact value for � at which the
transition from stable to unstable flow occurs, but this is
complicated by the finite length of the system. As an ex-

ample, consider simulations for radial inflow at Ta /Tac

=1.44, for which the critical radial Reynolds number for
transition is �=−15 according to linear stability analysis.5,6

Unlike an infinite-aspect-ratio system, weak vortical flow
will be present for all Ta�0 due to Ekman pumping at the
endwalls,30,37–41 which complicates the identification of
stable or unstable flow. Figure 1 shows radial velocities as-
sociated with vortical motion due to Ekman pumping for �
=−15.5, where the maximum and minimum radial velocities
decrease rapidly moving away from endwall located at z /h
=1, and for �=−14.5, where the maximum and minimum
radial velocities are nearly constant regardless of distance
from the endwall. The significant differences between the
two finite-cylinder results allow us to label the flows for �
=−15.5 and �=−14.5 as stable and unstable, respectively.
Implementing this approach, we found the transition from
stable to unstable flow for several values of �, as shown in
Fig. 2. Excellent agreement with linear stability theory is
evident, verifying the validity of our simulation results. Due
to the finite length of the system, similar agreement is not
expected for critical wavenumbers. For example, for
�=−15, the critical wavenumber of an infinite-aspect-ratio
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FIG. 1. Radial velocity in the upper-half of the cell at the midgap for
�=−15.5 and �=−14.5 with Ta /Tac=1.44 and �=20. Symbols indicating
nodal values are connected with Chebyshev polynomials.
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FIG. 2. Comparison of linear stability theory �Refs. 5 and 6� ��→	� and
axisymmetric computations ��=20� for the transition boundary between
nonvortical and vortical flow.
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system is 3.34d,6 whereas the wavenumber for �=−14.5,
Ta /Tac=1.44 in the finite system �Fig. 1� is 3.14d, consistent
with the finite aspect ratio that was imposed.

Although the stability curve in Fig. 2 serves as validation
of the numerical method and provides information for the
conditions under which transition occurs, it does not provide
insight into the physics leading to the stabilizing effect of
radial flow. To examine this, we consider velocity vector
plots in a region around the cylinder midlength at Ta /Tac

=1.1 and six values of � in Fig. 3. As the radial Reynolds
number is increased from �=0 to 6, the radial throughflow
alters the vortices slightly, most readily visible in the slight
outward tilt of the velocity vectors that were vertical at �
=0. Increasing the radial throughflow further to �=20 in-
creases the outward tilt of the velocity vectors, but more
importantly, reduces the magnitude of the axial flow indicat-
ing weaker vortices. For �=22, the vortices have disap-
peared altogether as the system reverts back to stable flow.
The impact of radial inflow ���0� on the velocity field is
similar. The velocity vectors at �=−4 have a slight inward
tilt compared to those at �=0. However, when �=−6, the
vortices have nearly disappeared. The effect of the radial
flow is also evident as a radial shift in the azimuthal flow,
which is the dominant flow in the annulus. The single con-
tour plotted in each frame of Fig. 3 corresponds to a dimen-
sionless azimuthal velocity of v /�ri=0.5. For stable flow
this contour would be a vertical straight line at �r−ri� /d
=0.48, approximately halfway across the gap. However, it is
clear that not only is the contour distorted due to the vortical
motion, it is shifted in the direction of the radial flow. In

addition, the outward bulges in the contour have a greater
axial extent than the inward bulges for radial outflow, sug-
gesting that the imposed radial flow enhances the vortical
outflow. Likewise, the inward bulges in the contour have a
greater axial extent than the outward bulges for radial inflow,
indicating enhancement of the vortical radial inflow.

When the radial flow is quite strong, such as the case
when �=20, the vortex structure is somewhat difficult to see,
so it is useful to subtract the local imposed mean radial ve-
locity �at a given radius� from the velocity field. As shown in
Fig. 4, this makes the vortical structure more clear. Upon
careful observation, it is evident that the vortex centers shift
slightly in the direction of the radial throughflow, consistent
with the shift in the relative amplitude of the perturbation
velocities for the linear stability analysis.5,6 The shift of the
position of the v /�ri=0.5 contour is substantially larger than
the shift in the position of the vortices themselves.

The radial shift of the vortices can be quantified based
on the zero-crossing of the axial velocity profile in the radial
direction at the middle of a vortex near the midlength of the
annulus. The radial shift of the vortex position depends
nearly linearly on the radial Reynolds number, as shown in
Fig. 5. The outward radial shift of the vortices decreases
slightly as the Taylor number increases, resulting in slightly
different slopes for the relation for different Taylor numbers.
The slope is steepest when the value for Ta /Tac is close to
the stability boundary, as is the case for Ta /Tac=1 for �
�0. This is most likely a result of the stronger influence of
the imposed radial flow when the system is near the stability
boundary than when it is not. Less data are available for

(a) α = −6 (b) α = −4 (c) α = 0 (d) α = 6 (e) α = 20 (f) α = 22

FIG. 3. Velocity vectors in the meridional plane for �z /h�
0.4 for several
values of the radial Reynolds number � with Ta /Tac=1.1 and �=20. In
each subplot, the single contour corresponds to v /�ri=0.50; the inner cyl-
inder is the left vertical line and the outer cylinder is the right vertical line.

(a) α = −6 (b) α = −4 (c) α = 0 (d) α = 6 (e) α = 20 (f) α = 22

FIG. 4. Velocity vectors of Fig. 3 after subtracting the imposed mean radial
velocity �at a given radius�. In each subplot, the single contour corresponds
to v /�ri=0.50; the inner cylinder is the left vertical line and the outer
cylinder is the right vertical line.
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radial inflow ���0� at low values of Ta /Tac because of the
nature of the instability boundary, so it is difficult to ascer-
tain if there are differences in the slope as Ta /Tac is varied.
The radial shift in the vortices is similar to that determined
from the shift in the perturbation velocities according to the
linear stability theory, as shown in Fig. 5. At transition to
vortical flow for �=10 �corresponding to Ta /Tac=0.97�, the
zero-crossing in the axial perturbation velocity is shifted by
4.2%, while for �=−10 �corresponding to Ta /Tac=1.25�, the
zero-crossing is shifted by −4.8%.6

While the results presented to this point have clarified
the nature of the vortical structure when a radial flow is
imposed, our primary interest here is in how the radial flow
alters the velocity field and affects the stability of the flow. A
previous explanation5,42 for the altered stability of the flow is
based on the idea that the incipient instability first appears
near the inner rotating cylinder43,44 and propagates radially
outward. The proposed explanation suggests that radial in-
flow or strong radial outflow could wash the fluid where the
incipient instability occurs out of the annulus, thus stabiliz-
ing the flow, while a weak radial outflow promotes the insta-
bility by carrying the incipiently unstable fluid across the
annulus. Of course, linear stability analysis does not predict a
localized instability, but instead a global instability. The in-
fluence of the imposed radial flow on the velocity field, par-
ticularly the tilting of velocity vectors in the direction of the
radial flow in Fig. 3 suggests that the competition between
the imposed radial velocity and the radial velocity related to
the Taylor vortices may better explain the stabilizing effect
of the imposed radial flow.

Given that the radial velocity associated with the vorti-
ces is key to the stability of the flow, we plot the maximum
and minimum dimensionless difference between the radial
velocity and the imposed mean velocity ū measured at the
midgap �r= �ri+ro� /2� in the central region �z /h�
0.4 as a
function of the radial Reynolds number in Fig. 6 for
Ta /Tac=1.0, 1.05, and 1.1. Also included in this figure are
vertical lines corresponding to the critical values of � for the
onset of Taylor vortices according to linear stability theory.5,6

The difference between the points where the relative maxi-
mum and minimum velocities are zero and the vertical bro-
ken lines for the linear stability boundaries is due to vortical
motion induced by the Ekman vortices at the endwalls,
which becomes more significant with increasing Ta /Tac.

Increasing the imposed radial outflow enhances the vor-
tex strength �as measured by the maximum radial velocity�
for 0���7. However, as the imposed outward radial flow
increases further, the maximum radial velocity drops off, ap-
parently due to the competition between the imposed out-
ward radial flow and the radial flow of the vortex opposing
it. Likewise, the imposed radial outflow first strengthens the
vortices, evident as the minimum radial velocity grows in
magnitude with increasing � for 0���9–12. For stronger
radial outflow the magnitude of the minimum radial velocity
decreases as the imposed radial flow stabilizes the system.
The strength of the vortical flow decreases with increasing �
until the flow becomes stable. The situation is somewhat
different for an imposed inward flow ���0�. In this case, the
radial velocities due to the vortical flow continually decrease
as the imposed inward radial flow increases �as � becomes
more negative�, indicating a stabilizing effect. This continues
as � decreases until the vortices disappear.

The destabilizing effect of weak radial outflow for 0
���10 and the stabilizing effect of radial inflow ���0�
and strong radial outflow ���10� evident in Fig. 2 can be
explained as follows. A small imposed radial outflow “en-
courages” the radial outflow portion of the vortices causing
them to strengthen. For larger values of �, the imposed radial
outflow competes with the radial inflow portion of the vorti-
ces. When � is increased further, the imposed radial outflow
dominates and suppresses the vortex structure altogether.
However, an analogous situation does not occur for radial
inflow, where the imposed flow reduces the vortex strength
even for small values of the imposed radial flow.

The effect of the radial flow on the stability could pos-
sibly be traced back to the nature of perturbations that result
in the unstable flow. The Rayleigh inviscid approach to the
stability is based on the idea that the flow becomes unstable
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when the inward pressure gradient restoring force is not bal-
anced by the outward inertia of the fluid. For inviscid flow,
this results in the flow being unstable to axisymmetric dis-
turbances at all radii for an inner cylinder rotating within a
stationary outer cylinder. Of course, Taylor showed that vis-
cosity stabilizes the flow at low Taylor numbers. Returning
to the inviscid analysis, a fluid particle perturbed outward
from its initial radius will move to a region where the local
restoring force due to the pressure gradient at the infinitesi-
mally larger radius is slightly less than the outward inertia of
the particle, which is based on the particle’s initial position.
As a result, a fluid particle perturbed outward will continue
outward. Likewise, a fluid particle perturbed inward from its
initial radius will move to a region where the local restoring
force due to the pressure gradient at the infinitesimally
smaller radius is slightly greater than the outward inertia of
the particle related to the particle’s initial position, so a fluid
particle perturbed inward will continue inward. The assump-
tion, of course, is that it does not matter if the perturbation is
inward or outward because continuity guarantees a return
flow forming a vortex of Taylor–Couette flow.

Now consider the situation in more detail. One can show
that, for the same perturbation magnitude, an inward pertur-
bation results in slightly larger imbalance between the inertia
and the restoring force than an outward perturbation. With no
radial flow, this does not make any difference—either an
inward or outward perturbation results in instability. Con-
sider now an imposed radially inward flow. The imposed
inward flow can “offset” a weak outward perturbation caus-
ing the flow to be more stable. A small imposed outward
flow can “help” the weaker outward perturbation, causing the
flow to become unstable more easily. On the other hand, a
stronger outward flow, while helping the weak outward per-
turbation, also “offsets” the stronger inward perturbation
making the flow more stable. This argument, of course, is
mere handwaving at best. Nevertheless, it may provide some
insight into the physics behind the nature of the stability
curve.

Returning to the idea that radial flow in the vortex
matches that of the imposed flow at the point the flow stabi-
lizes as shown in Fig. 6, one should be able to estimate the
value of radial velocity necessary to stabilize the flow. For
conditions similar to those simulated here, experiments indi-
cate that the maximum radial inflow velocity in a Taylor
vortex is mri�, where m�−0.02 for Ta /Tac=1.01 and m
�−0.04 for Ta /Tac=1.22.45 The imposed outflow radial ve-
locity at the midgap of the annulus can be written as
2��� /ri�1+��. Setting the sum of the vortical radial inflow
velocity and the imposed radial outflow velocity equal to
zero results in �=−m Ta�1+�� /2�1−��. This expression
provides an approximate value for � corresponding roughly
to the situation where the radial velocity of the vortex is
similar in magnitude to the imposed radial flow. Using
m=−0.02 results in a predicted radial Reynolds number of
outflow for transition of ��13, fairly close to the value
predicted from linear stability of about 15 at Ta /Tac=1. Us-
ing m=−0.03 for Ta /Tac=1.1 results in a predicted radial
Reynolds number for transition of ��20, fairly close to the
value of about 22 from linear stability theory. This approach

only works for imposed radial outflow, for which the flow is
first destabilized as � increases from �=0 and then stabilized
as � increases further. For imposed radial inflow, the situa-
tion is different in that the flow is already more stable at �
=0 than for small positive �. This is evident as the offset of
the least stable situation to ��7 in Fig. 2. Because of this
offset, the simple analysis outlined for imposed radial out-
flow does not accurately predict the critical value of � for
radial inflow.

B. Three-dimensional results: Higher-order
transitions

The Taylor number for transition from axisymmetric
Taylor vortices to wavy vortices is not firmly established,
even in the absence of radial flow. The transition to wavy
vortex flow is predicted to occur at Ta /Tac=1.1 for �
=0.85 for infinitely long cylinders.46,47 For finite-length cyl-
inders, experiments suggest a range of higher values for
Ta /Tac between 1.14 and 1.31 for 0.80
�
0.90, depend-
ing on experimental conditions including the length of the
apparatus,45,48–52 and simulations for �=0.87 predict transi-
tion at Ta /Tac=1.8 and 1.35 for �=10 and �=20,
respectively.51

The simulation of the transition to higher-order unstable
flows such as wavy-vortex flow is much more computation-
ally difficult than the simulation of the transition from non-
vortical to vortical flow, because the flow becomes three-
dimensional and time dependent. As a result of the
computational time involved in each simulation, it is chal-
lenging to map out the flow regimes that can occur in great
detail. Nevertheless, we have developed a coarse map of the
flow regimes that occur, with primary interest in the Taylor
number at which the flow transitions from axisymmetric vor-
tices to fully three-dimensional flow.

Three-dimensional simulations for �=0 were initialized
from two-dimensional simulation results for subcritical flow
�with Ekman vortices due to the no-slip endwalls�. The tran-
sition to wavy vortex flow occurred at Ta /Tac�1.32 for �
=0, consistent with numerical-simulation51 and
experimental45,48–52 results. Simulations were performed for
several values of Ta /Tac, where � was varied starting from
�=0 to locate transitions to different flow regimes. Four flow
types were found using three-dimensional simulations, de-
pending on the Taylor number and the radial Reynolds num-
ber: subcritical flow with Ekman vortices, axisymmetric Tay-
lor vortex flow, wavy vortex flow �with four waves�, and
wavy vortex flow with dislocations. Figure 7 maps the con-
ditions associated with the flow types for each of the simu-
lations including the boundary for the first transition from
subcritical stable flow to Taylor-vortex flow according to
two-dimensional linear stability theory5,6 �viz. Fig. 2�. Also
shown are approximate boundaries based on the numerical
results for the second transition �to wavy-vortex flow� and
the third transition �to wavy-vortex flow with dislocations�.
The general shape of the second stability boundary is similar
to that for the first transition to vortical flow except that there
is no destabilizing effect for small positive values of �. Thus,
radial inflow stabilizes the transition to nonaxisymmetric
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vortices, but radial outflow does not alter the stability until
��25, when the flow is stabilized. The three-dimensional
results indicate that the transition to wavy vortices occurs at
a higher Taylor number than the transition to Taylor vortices
for −18���30. For Ta /Tac=1.75 the transition from Tay-
lor vortex flow to subcritical flow �with decreasing �� is
shifted to a lower value of � than predicted by linear stability
theory and our axisymmetric simulations �Fig. 2�. This result
was verified using extended-time simulations and higher res-
olution for the numerical model. The shift for the transition
could be a result of hysteresis �decreasing � so the flow
transitions from wavy to nonwavy to stable�. The trends in
the data for large positive � suggest that the three-
dimensional flow may be less stable than two-dimensional
flow for ��30, as well.

Examples of the three types of vortex structures occur-
ring for Ta /Tac=1.47 are shown in Fig. 8, visualized using
the isosurface corresponding to v /�ri=0.50. The vortices
are axisymmetric for radial Reynolds numbers −15��
�−13, as shown in Fig. 8�a�. Wavy vortices similar to those
with no axial flow occur for −13���23, as shown in Fig.
8�b�. For ��23, however, dislocations appear in the wavy

vortices. In the case of �=30, there is a single dislocation
that has a wave speed identical to that of the wavy vortices
based on animations. Allowing the simulations to run for
long times suggests that the dislocations come about follow-
ing a transient secondary modulation of the waviness as the
magnitude of the radial Reynolds number is increased. The
dislocations are temporally stable, although they change
somewhat in character over the duration of extended calcu-
lations as long as 2.14hd /�=21d2 /�. �This duration is some-
what longer than the times of 2hd /� and 10d2 /� that have
been recommended as the times for onset and decay of Tay-
lor vortices,32 so we are reasonably sure that the dislocations
do not result from the computations not achieving steady
state.�

Other types of dislocations can occur as shown in Fig. 9
for �=30 and Ta /Tac=1.57 and 1.75. As the Taylor number
increases, the dislocations become more prevalent and ap-
pear at several locations in the annulus. For Ta /Tac=1.57,
there are two similar dislocations occurring on opposite sides
of the cylinder; for Ta /Tac=1.75, multiple dislocations are
uniformly spaced around the cylinder and extend toward the
endwalls.

Figure 10 shows velocity vector fields and contours of
constant azimuthal velocity at several azimuthal slices
through the dislocation corresponding to Fig. 8�c�. The vor-
tex centers are also shown based on the location of the local
minimum velocity magnitude in the azimuthal plane. Start-
ing with �=0, there are six vortex centers marked, the lower
two just below an outflow boundary where the dislocation
eventually appears. With increasing �, this outflow decreases
in strength �as indicated by the azimuthal velocity contour
being further from the outer wall for �=0.26 than for �=0�
and becomes a weak inflow region �as indicated by the left-
ward bump in the azimuthal velocity contour� at �=0.52.
This inflow region is now associated with a new pair of weak
vortices in what was originally the outflow region for �=0.
This is accompanied by a weakening of the adjacent vortex
pairs above and below the new pair of vortices. These new
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2nd transition
3rd transition

subcritical flow
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wavy vortices
wavy vort. w/disloc.
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FIG. 7. Flow regime occurring under various parameters for three-
dimensional simulations. Also shown is the two-dimensional linear stability
boundary for the transition to Taylor-vortex flow �extrapolated for ��30�,
and the approximate stability boundaries for the transition to wavy-vortex
flow and the transition to wavy-vortex flow with dislocations.

(a) α = −15 (b) α = 13.3 (c) α = 30

FIG. 8. Examples of vortex structures at Ta /Tac=1.47 for �a� �=−15 �axi-
symmetric Taylor vortices�, �b� �=13.3 �wavy vortices�, and �c� �=30
�wavy vortices with a single dislocation�. Surfaces of v /�ri=0.50 are
shown.

(a) Ta/Tac = 1.57 (b) Ta/Tac = 1.75

FIG. 9. Examples of wavy vortex structures with dislocations at �=30 for
�a� Ta /Tac=1.57 and �b� Ta /Tac=1.75. Surfaces of v /�ri=0.50 are shown.
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vortices are stronger at �=0.79. The process reverses through
the next azimuthal slices as the new pair of vortices disap-
pears and the adjacent vortex pairs strengthen. By �=1.50,
the situation is very similar to that at �=0. The weakening of
the adjacent vortex pairs suggests that the imposed outflow
disrupts these vortices allowing the new vortex pair to ap-
pear.

Returning to the general impact of the radial flow on the
vortical structure, Fig. 11 shows velocity vectors in the me-
ridional plane at �=0 for Ta /Tac=1.47 and several values of
�. The radial shift of the flow is readily indicated by the shift
of the azimuthal velocity contour corresponding to v /�ri

=0.50. As is the case for Taylor vortices, the stronger the
radial flow, the greater the shift in this contour in the direc-
tion of the flow. Like the nonwavy vortices, the outward
bulges in the contour grow in axial extent with increasing
radial outflow as the imposed radial flow enhances the vor-
tical outflow. Likewise, the inward bulges in the contour
grow for radial inflow, indicating enhancement of the vorti-
cal inflow.

Of course, one of the inherent characteristics of wavy
vortex flow is the speed at which the wavy vortex structure
advances in the azimuthal direction. The wave speeds for
wavy-vortex flow, c, based on Fourier analysis of the data at
the midgap and noting that four waves occur around the
circumference, are shown in Fig. 12 for four values of
Ta /Tac. Also shown is the numerical/experimental result
from Edwards et al.51 for Ta /Tac=1.35, �=20, �=0.87,
which agrees well with our results. It is surprising that the
wave speed is linearly dependent on the radial Reynolds
number. Thus, radial inflow slows the azimuthal propagation
of the waves, while radial outflow speeds it up. The wave
speed of the dislocation is identical to the wave speed of the

wavy structure. Furthermore, the wave speed is independent
of Ta /Tac for the range of Taylor numbers studied here.

Again the question arises about the underlying physics
that cause the stabilization of the waviness with increasing
magnitude of the radial Reynolds number, but the answer is
not clear. We plot the maximum and minimum radial veloci-
ties as a function of the radial Reynolds number along with
the imposed radial velocity in Fig. 13 for Ta /Tac=1.34,

(a) θ = 0 (b) θ = 0.26 (c) θ = 0.52 (d) θ = 0.79 (e) θ = 1.00 (f) θ = 1.25 (g) θ = 1.50

FIG. 10. Velocity vectors in several meridional planes for �z /h�
0.4, slicing
through the wavy-vortex dislocation for Ta /Tac=1.57, �=30. In each sub-
plot, the single contour corresponds to v /�ri=0.50; the inner cylinder is the
left vertical line and the outer cylinder is the right vertical line.

(a) α = −15 (b) α = −10 (c) α = 0 (d) α = 10 (e) α = 30

FIG. 11. Velocity vectors in the meridional plane at �=0 for �z /h�
0.4 for
Ta /Tac=1.47 demonstrating the vortical structure of the flow in the �a�
absence and �b�–�d� presence of wavy vortices, and �e� with wavy vortices
with a dislocation. In each subplot, the single contour corresponds to
v /�ri=0.50; the inner cylinder is the left vertical line and the outer cylinder
is the right vertical line.
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FIG. 12. Dependence of the wave speed for wavy-vortex flow on the radial
Reynolds number for several Ta /Tac.
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which is just above the transition to wavy vortex flow for
−5
�
25. The corresponding data for nonwavy vortices at
Ta /Tac=1.10 are shown for comparison. The dependence of
the radial velocities on the radial Reynolds number is similar
in character to that for the transition to Taylor-vortex flow,
shown in Fig. 6, but it provides less insight. Again, a small
imposed radial outflow enhances the strength of the vortices,
while larger positive magnitudes of � and negative values of
� correspond to reduced vortex strength. However, it is dif-
ficult to directly relate this to the appearance of wavy vortex
flow, as was done for the transition to Taylor vortex flow.

IV. CONCLUSIONS

These simulations provide new insight into the connec-
tion between radial through-flow and the Taylor instability,
as well as providing the first results for the transition to wavy
vortices for the situation of an imposed radial flow. The vor-
tex strength increases for small radial outflows leading to
transition to vortical flow at a lower Taylor number than with
no radial flow. But for larger radial outflow and any radial
inflow the vortices are suppressed leading to a more stable
situation than with no axial flow. For both radial inflow and
radial outflow the vortices themselves and the azimuthal ve-
locity isocontours are shifted in the direction of the flow a
distance roughly proportional to the magnitude of the radial
flow. This result was predicted from linear stability theory at
the transition boundary between nonvortical and vortical
flow, but has not been shown previously for Taylor numbers
above the transition. Even when the flow becomes wavy, the
vortices are similarly shifted in the direction of the radial
flow.

Several question remain. The means by which the radial
flow alters the stability of the transition from Taylor vortices
to wavy vortices is still unclear. Further, the appearance of
dislocations in the wavy vortex flow at high values of the
radial Reynolds number is a curious phenomenon that may
be related to the flow tending toward modulated wavy vorti-

ces. With regard to the practical motivation for this study,
that of better understanding the flow physics in rotating fil-
tration systems, this study is just a first step. In such a device,
only the inner cylinder is porous, while the outer cylinder is
nonporous. Thus, the next step is to model the system with
an axial flow in the annulus to provide the source of the fluid
that flows radially inward through the inner porous cylinder.
However, this brings with it additional complexities from a
simulation standpoint, including spatially varying axial and
radial velocities in the annulus. Furthermore, it is well
known that the imposition of an axial flow alters the stability
of the Taylor–Couette flow.6,43,44,53–62 In addition, when the
vortices appear, they translate with the bulk axial
flow,36,57,63–67 leading to potential challenges in applying the
appropriate boundary conditions at the entrance and exit for
the axial flow, as well as the appropriate endwall boundary
conditions. The three-dimensional simulations will also be
challenging because of the appearance of helical vortices,
wavy helical vortices, and higher-order vortical
structures.60,64,65,68–74 Apart from the computational chal-
lenges, while an axial flow has been shown to alter the sta-
bility of the Taylor–Couette flow based on both linear stabil-
ity theory and experiments, the physics behind the flow
stabilization has not been established, let alone how the in-
teraction of an axial flow with the radial flow affects the
stability.
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