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Inertial particle motion in a Taylor Couette rotating filter
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~Received 26 May 1998; accepted 16 October 1998!

In rotating filtration, which is based on supercritical cylindrical Couette flow with a rotating porous
inner cylinder, the motion of particles in the suspension depends on both centrifugal sedimentation
and transport due to the vortical motion of Taylor vortices. We have simulated the motion of dilute,
rigid, spherical particles in Taylor Couette flow using computational particle tracking in an analytic
velocity field for flow just above the transition to supercritical Taylor vortex flow. Neutrally buoyant
particles follow fluid streamlines closely, but not exactly due to the curvature of the velocity field
very near the particle. The motion of particles with a density greater than the fluid is primarily
determined by the competition between the centrifugal sedimentation related to the primary
cylindrical Couette flow and the secondary radial and axial transport of the Taylor vortex flow. As
a result, particles that start near the outer edge of a vortex spiral inward toward a limit cycle orbit.
Likewise, particles initially near the center of a vortex spiral outward toward the same limit cycle
orbit. Even when a small radially inward throughflow is imposed, particles can remain trapped in
retention zones that are away from the wall of the annulus. Consequently, the dynamics of the flow
field result in particles tending to be transported away from the porous inner cylinder, thus
contributing to the antiplugging character of rotating filter devices. ©1999 American Institute of
Physics.@S1070-6631~99!01302-1#
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I. INTRODUCTION

A rotating filter separator consists of a porous inner c
inder rotating within an outer cylindrical shell. As a suspe
sion travels axially in the annulus, filtrate is withdraw
through the inner cylinder, leaving an increasingly conc
trated suspension in the annulus. Rotating filters are p
ently used for the separation of plasma from whole blo
and other biological separations, and they show promise
a wide range of other filtration applications. The unique a
vantage of rotating filtration is that plugging of the pores
the filter with particles is greatly reduced compared to st
dard filtration techniques. Three mechanisms have been
posed for this resistance to fouling.1 First, Taylor vortices
may ‘‘scrub’’ the filter surface, washing off particles th
could potentially plug the filter pores.2 Second, since the
particulate phase is typically more dense than the fluid,
centrifugal field in the annulus resulting from the rotation
the filter may cause significant sedimentation of partic
away from the filter surface. Third, the rotation of the filt
gives rise to a high shear, much like that in cross-flow filt
tion, which has been shown to enhance flow through a fi
medium due to shear-induced particle migration away fr
the filter surface.3 In this paper, we computationally trac
particles in Taylor Couette flow in order to investigate t
role of the first two mechanisms with respect to the antipl
ging character of rotating filters.

A significant body of research related to rotating filt
separation exists,1,2,4–10 but most of these studies were fo
cused on the filtration performance in specific applicatio
with little attention paid to the physics of the particle motio
in a rotating filter. The flow field in a rotating filter is quit
3251070-6631/99/11(2)/325/9/$15.00
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complex and is best described as supercritical cylindr
Couette flow in an annulus with a porous wall bounda
condition at the inner cylinder and a superimposed ax
flow. The rotation of the inner cylinder creates a centrifug
field that is a maximum near the inner rotating cylinder a
decreases to zero at the stationary outer cylinder. This c
trifugal field creates a net radial force on non-neutrally buo
ant particles. At the same time the toroidal Taylor vortic
carry particles from near the inner cylinder to near the ou
cylinder, and vice versa. The axial flow carries partic
along the length of the rotating filter annulus, while the flo
through the porous wall of the inner cylinder carries partic
radially inward.

The motion of individual particles in Taylor vortex flow
has not been investigated in detail, except for the nota
computational particle tracking of Rudman an
co-workers.11,12 They computationally placed particles i
both nonwavy and wavy vortex flow fields calculated usi
finite difference methods and then tracked inertial partic
in the flow field. Although they provided some informatio
on particle paths, their primary interest was the strain hist
that inertial particles experienced due to their paths and
dispersion of fluid particles. While our approach is similar
Rudman and co-workers, in that we also computationa
track particles in Taylor vortex flow, there are significa
differences. First, our focus is on the segregation of partic
as a result of interaction of Taylor vortices with the centrif
gal field. Second, by considering various particle densit
we attempt to describe the underlying physics of the seg
gation. Third, we consider the effect of an imposed net rad
flow, which is inherently present in a rotating filter, on th
© 1999 American Institute of Physics
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particle motion. Fourth, we use an analytic representation
the fluid velocity field rather than a computationally dete
mined flow field.

II. TAYLOR VORTEX FLOW MODEL AND PARTICLE
TRACKING

We model the flow in a rotating filter separator as no
wavy, nonhelical Taylor vortex flow. The axial velocity du
to axial throughflow is usually only a few percent of th
surface speed of the rotating filter.13,14 As a result, the axial
Reynolds numbers are typically small enough so that the
effect of the imposed axial flow is simply the axial trans
tion of nonwavy vortices without the appearance of heli
vortices that occur at higher axial Reynolds numbers.13,15–18

Consequently, the axial through-velocity can be neglec
with regard to its effect on particle motion within vortice
Its only effect is to carry particles axially with the axiall
translating vortices. Initially, we also neglect the radial v
locity through the porous inner cylinder, since it is typica
two orders of magnitude smaller than the velocities aris
from the Taylor vortices.1,13 In Sec. IV we will include the
effect of an imposed inward radial flow at the inner cylind

The Taylor vortex velocity field was modeled b
Davey19 using a weakly nonlinear perturbation solution
the Navier–Stokes equations that provides a continuous
resentation of the velocity field that matches experimen
data quite well.14,20–23 The first two terms of the velocity
components are usually adequate to accurately model
flow.14,23 The velocity components, normalized with th
speed of the inner cylinderr iV, are

ur~r ,z,e8!5Ae~e8!u1~r !coskz1Ae
2~e8!u2~r !cos 2kz,

~1a!

uu~r ,z,e8!5A0r 1B0 /r 1Ae
2~e8!v̄1~r !

1Ae~e8!v1~r !coskz

1Ae
2~e8!v2~r !cos 2kz, ~1b!

uz~r ,z,e8!5Ae~e8!w1~r !sin kz1Ae
2~e8!w2~r !sin 2kz,

~1c!

wheree8512(Rec /Re)2, Ae is a generalized amplitude co
efficient,un , vn , andwn are shape factors~eigenfunctions of
the linear stability problem!, andk is the fundamental axia
wave number. Here Re5riVd/n is the rotating Reynolds
number based on the radius of the inner cylinderr i , the rate
of rotationV, the gap between the cylindersd, and the kine-
matic viscosityn. Also, Rec is the critical rotating Reynolds
number at which the transition to supercritical flow occu
Note that the azimuthal velocity includes the stable flow
lution A0r 1B0 /r along with a correction to the mean velo
ity v̄1(r ). Here Ae , k, un , vn , wn , and v̄1 were found
following the solution method outlined by Davey.

The motion of a rigid, spherical particle of radiusa in a
dilute suspension can be well described by a form of Ne
ton’s second law of Maxey and Riley,24
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dVi

dt
5mf

Dui

Dt U
Y~ t !

2
1

2
mf

d

dt ~Vi~ t !2ui@Y~ t !,t#

2 1
10 a2¹2ui uY~ t !!1~mp2mf !gi

26pam~Vi~ t !2ui@Y~ t !,t#2 1
6 a2¹2ui uY~ t !! ,

~2!

wheremp is the mass of the particle,mf is the mass of the
fluid displaced by the particle,Y(t) is the location of the
particle,Vi is the velocity of the particle,ui is the velocity
field of the fluid from Eq.~1!, andm is the dynamic viscosity
of the fluid. The left side of the equation represents the in
tia of the particle. The terms on the right side are, from left
right, the pressure gradient force~called this since the fluid
acceleration is related to the pressure gradient of the un
turbed flow!, the added mass force~related to the necessit
of moving a mass of fluid when a particle displaces it!, the
gravitational body force, and the Stokes drag force. The B
set history force, which is important in the initial motion of
particle starting from rest under certain conditions, can
neglected, since other acceleration terms are much large
the long-time behavior of the particles. The Laplacian of t
velocity field, known as the Faxen correction, was includ
in two terms on the right side of Eq.~2! by Maxey and Riley
to correct for the effects of curvature in the velocity field o
the drag force, assuming steady Stokes flow around
sphere.24 The Coriolis and centrifugal accelerations acting
the particle do not explicitly appear in Eq.~2!, but appear
implicitly in the terms containing the particle velocityVi

when properly accounting for the rotating frame of referen
A shortcoming of using Eq.~2! is that it is based on creepin
flow, so it does not include lateral migration of the partic
due to Saffman lift related to the velocity shear or wall e
fects. Using a modified lift expression,25 it can be shown that
the lift is at least an order of magnitude smaller than the d
force. Likewise, the wall effects can be shown to be about
order of magnitude smaller than the drag when the partic
are more than one to two diameters from the wall.26 Conse-
quently, we ignore these effects. A conventional finite diffe
ence discretization of Eq.~2! was used to integrate the pa
ticle’s position and velocity forward in time using a standa
Runge–Kutta technique with Eq.~1! used for the velocity
field of the fluid.

Several parameters are important for the simulation. T
cylinder radius ratio was set toh5r i /(r i1d)50.83, to cor-
respond to the radius ratio for which we typically perfor
experiments. For this radius ratio, the vortex pair spaci
based onk determined as part of the Davey solution,
2.007d. The rotating Reynolds number was set to Re5125,
which is above the Reynolds number for transition to Tay
Couette flow of Rec5102 for this radius ratio, but below th
Reynolds number for the transition to wavy vortex flow
Re'130. The Davey solution has been shown to clos
match experimentally measured Taylor Couette veloc
fields under these conditions.14,23 There are two importan
parameters for the particles that are being tracked: the d
sity ratio,b5rp /r f , whererp is the particle density andr f

is the fluid density; and the particle size ratio,a5d/2a.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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III. MOTION OF PARTICLES IN TAYLOR COUETTE
FLOW

Although our primary interest is in the balance of forc
on particles that are more dense than the fluid, it is helpfu
first consider the motion of a neutrally buoyant particle
finite size, as opposed to an infinitely small fluid particle. F
a neutrally buoyant particle, the gravitational term in Eq.~2!
drops out. But the particle’s velocity,Vi , cannot be identica
to the surrounding fluid velocity,ui , because of the Laplac
ian ~the Faxen correction to account for the effects of cur
ture in the velocity field! in the added mass term and th
Stokes drag force term. Carrying out the analysis indica
that the added mass term is negligible in comparison to
other terms, so it is the Laplacian in the drag term that res
in the particle velocity differing from the fluid velocity.

The effect of the correction to the drag force is qu
small, but readily evident when comparing the fluid strea
lines with the particle paths, as shown in Fig. 1. In this a
subsequent figures, the horizontal coordinate is the radia
ordinate normalized by the gap width,r /d, so that the wall
of the inner rotating cylinder is the left side of the figure a
the wall of the outer fixed cylinder is the right side of th
figure. The vertical coordinate is the axial position norm
ized by the gap width,z/d, with z50 corresponding to an
outflow boundary between vortices. Thus, we show a sin
counterclockwise vortex. The particle paths and streamli
indicated in the figure are projections in the meridion
plane. The actual paths and streamlines also have an
muthal component~into the page! that is not shown. Five
particle paths are represented by dots corresponding to
formly spaced time increments in Fig. 1. The streamlines
a best fit to the corresponding particle path~in a least-squares
sense!. The particle paths are nearly aligned with the strea
lines at the top and the bottom of the orbits, correspondin
inflow and outflow boundaries of the vortices. But the p
ticle paths are slightly outward from the streamlines dur

FIG. 1. Neutrally buoyant particle paths projected in a meridional plane
a counterclockwise vortex. Dots represent particle positions at equ
spaced time instants, while the solid curves represent the best fit strea
to each set of dots.
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the axial portion of the orbit due to the correction of the dr
force. Particles retrace their orbits to within the accuracy
the simulation for the length of the simulation, which w
several hundred revolutions around the vortex center.

While the particles travel around the center of the vor
as shown in Fig. 1, the azimuthal velocity of the fluid carri
the particles azimuthally at a very high speed near the in
cylinder and at a very low speed near the outer cylinder.
a result, a particle on the outer orbit is continually acceler
ing to high azimuthal velocity near the inner cylinder a
then decelerating to a low azimuthal velocity near the ou
cylinder as it traces its orbit. On the other hand, a particle
the innermost orbit sees nearly the same azimuthal velo
throughout its orbit. At the Reynolds number for which th
simulation was run, the particle on the outermost orbit co
pleted 1.55 revolutions around the inner cylinder for ea
revolution around the vortex center, while a particle on t
innermost orbit needed only 0.33 revolutions around the c
inder for each revolution around the vortex center.

If the particles are more dense than the fluid, gravity c
play a significant role in the particle motion. Figure 2 sho
the projection of the particle paths in a meridional plane
three different density ratios with gravity acting downwar
parallel to the axis of rotation. The ratio of the gravitation
force to the centrifugal acceleration is 245, typical of th
used in our large-scale laboratory rotating filter device,
much larger than that in commercial devices for blo
plasma separation. The upper and lower boundaries of
figure are periodic, so that particles that exit the bottom
the figure atz/d50 reenter the top of the figure atz/d
52p/kd52.007. There are two vortices in this figure, th
top one rotating clockwise and the bottom one rotating co
terclockwise. The density ratio always appears as~b21! in
the force balance equation, so results forb51.01,1.10,2.00
represent a two orders of magnitude increase in~b21!. Fig-
ure 2~a! shows that nearly neutrally buoyant particles a
largely caught up in the vortices. A few of the particles win
downward around the vortices. Although it is difficult to d
tect in Fig. 2~a!, the paths of particles caught in the vortic
are not closed loops, but over long times spiral inward
outward, as discussed later in this paper.

r
ly
ine

FIG. 2. Particle paths projected in the meridional plane with gravity act
downward for Re5125 anda529.7. The upper vortex rotates CW; th
lower vortex rotates CCW.~a! b51.01; ~b! b51.1; ~c! b52.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Increasing the particle density relative to the fluid de
sity results in more particles winding around vortices wh
generally moving downward, as shown in Fig. 2~b!. Other
particles remain bound up in nearly closed particle paths
‘‘retention zones.’’ Even though the vortices extend acro
the entire annular gap, the retention zones are alterna
close to the inner and outer wall of the annulus. The partic
that wind downward around the vortices are caught in
downward axial motion on the side of one vortex. Then th
fall by gravity into the next vortex, where they continue the
downward axial motion on the opposite side of that vorte

A further increase in the particle density results in wa
axial particle paths, shown in Fig. 2~c!. The waviness results
from the Taylor vortices carrying the particles radially, b
the difference in the density between the particles and
fluid is so large that particles fall right through a vortex wit
out being caught up in the vortical flow. For the particl
closest to the inner cylinder, several parallel particle pa
are evident. This results from the generally outward rad
motion of the particles due to the centrifugal force and
periodic boundary condition imposed in the analysis. For
stance, the particle associated with the innermost path m
downward and a small distance radially outward so t
when it reenters the periodic domain at the top of the figu
its path is at a slightly greater radius. As a result, a partic
free zone will tend to form near the inner cylinder. A simil
effect occurs for smaller values ofb, although it is not
readily apparent from the particle paths in Fig. 2~a!. Near the
fixed outer cylinder, the centrifugal force is negligible, so t
particle paths overlap in Fig. 2~c!. Since the radial velocity
due to the vortices is greatest away from the walls of
annulus, the particle paths are wavy near the center of
annulus. The particle paths in Fig. 2 are in qualitative agr
ment with the results of Rudmanet al.11

It is clear from Fig. 2 that gravity plays a major role
defining paths for non-neutrally buoyant particles by car
ing particles axially from one vortex to another, but our p
mary interest here is in the relative effect of the other for
on the motion of particles. In particular, we are interested
the relative importance of the centrifugal acceleration and
drag due to the Taylor vortices on particle motion. To stu
this interplay of forces, it is helpful to remove the gravit
tional field from the analysis in order to compare the mo
subtle effects of other forces on the particle motion. Furth
more, the motion of particles in a gravity-free environme
germane to the use of rotating filters for water purification
outer space applications, is of interest. Consequently,
gravitational force has been set to zero for the followi
results.

Nonwavy Taylor vortices are independent cells with
cross-flow between vortices. Thus, the streamlines for
symmetric Taylor Couette flow are closed. When the gra
tational force is zero and diffusion is omitted, particles w
not cross from one vortex into another. The projection in
meridional plane of two particle paths in a single count
clockwise vortex are shown in Fig. 3 for relatively den
particles~b511!. A particle that begins near the inner cylin
der at@r /d'4.94,z/d'0.42# spirals inward toward the vor
tex center. A particle that begins near the center of the vo
Downloaded 23 May 2001 to 129.105.69.194. Redistribution subject to 
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at @r /d55.33, z/d'0.42# spirals outward from the vortex
center. Clearly both particles approach a limit cycle indica
by the dark band between the two spiral paths.~The actual
limit cycle orbit is a single path. The dark band results fro
plotting the closely spaced particle paths as they slowly
proach the limit cycle orbit.! Based on the spiral nature o
either particle path, it is evident that particles initially
other locations in the flow domain will also eventually en
up on the same final orbit. Because of the nature of Tay
vortex flow, the particle paths for the adjacent vortices abo
or below the vortex shown would be mirror images reflec
about the boundary between the vortices.

Limit cycles similar to those shown in Fig. 3 occur ov
two orders of magnitude decrease in~b21!, as shown in Fig.
4. As the density ratio decreases, the particles spiral tow
the limit cycle much more slowly. The overlap of the lim

FIG. 3. Particle paths projected in the meridional plane with no gravitatio
body force for Re5125,a529.7, andb511. The asterisks mark the startin
point. The dark orbit is the limit cycle.

FIG. 4. Limit cycle orbits with no gravitational body force for Re5125,
a529.7, andb51.1, 2, 11~from smallest to largest!. Dots on the curve are
equally spaced in time.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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cycle paths forb52 and 11 in the outflow region is some
what surprising. We have checked this result thoroughly
concluded that it is coincidental, resulting from the intera
tion of the drag force and the sedimentation force in e
case.

The particle paths approximately follow the vortic
flow, but the paths deviate slightly from the streamlines
shown in Fig. 5. In this figure, three particle paths are sho
~in order of decreasing diameter!: spiraling inward, limit
cycle, and spiraling outward. In each case, the particle pa
indicated by the dots corresponding to uniform time inc
ments. The solid curve represents the streamline that co
sponds to the best fit streamfunction~in a least-squares
sense! to the particle path. Consider first the largest diame
path. The particle begins near the inner cylinder. The hig
density particle sediments radially outward past the stre
line due to the centrifugal field so that the particle is radia
outside of the streamline when it nears the outer cylind
But as the particle gets closer to the outer cylinder, the c
trifugal force decreases and the fluid drag due to the vo
motion becomes large enough to overcome the small c
trifugal force, bringing the particle back loward the inn
cylinder. Near the inner cylinder, the outward centrifug
force increases, preventing the particle from reaching its
tial radial position. Thus, as the vortex carries the parti
around one orbit, the diameter of the orbit decreases cau
the particle to spiral toward the limit cycle orbit. Near th
center of the vortex the centrifugal field is not as strong.
a result, the fluid drag due to the vortex motion carries
particle a little farther inward than the centrifugal force se
ments the particle outward, resulting in the particle spiral
toward the larger diameter limit cycle orbit. The change
radius of the smallest diameter path during one cycle is
small that it is not easily evident in Fig. 5. For the clos
orbit, the inward deviation of the particle path from th
streamline is the same as its outward deviation from
streamline, resulting in a particle following a limit cycle o
bit.

FIG. 5. Particle paths~dots! and streamlines~solid curves! for Re5125,
a529.7, andb511 with no gravitational body force. Dots are equal
spaced in time.
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Although Fig. 5 shows the particle path in the meridion
plane, the particle is also simultaneously moving azimu
ally. A three-dimensional representation of the path of
particle on the outermost orbit in Fig. 5 with dots represe
ing identical time steps is shown in Fig. 6 as the parti
revolves clockwise around the inner cylinder. The spac
between dots shows that the azimuthal particle velocity
quite high near the inner cylinder and quite low near t
outer cylinder. The particle quickly moves from its initia
position near the inner cylinder into the outflow region b
tween the vortex shown and the next lower vortex. As
moves outward it slows and then spends substantial t
moving axially near the outer cylinder. It accelerates a
muthally as it moves inward toward the inner cylinder a
finally ends its revolution about the vortex center closer
the center than where it started.

The particle on the outermost orbit completes 0.80 re
lutions around the inner cylinder for each revolution arou
the vortex center, while a particle on the limit cycle pa
needs only 0.40 revolutions around the cylinder to compl
each orbit. Thus, a particle on the limit cycle orbit wou
move around that orbit about 2.5 times for every time
makes one complete revolution in the annulus. The den
of the particle is of little consequence for the azimuthal m
tion. This is most evident for the smallest diameter paths
Figs. 1 and 5. These two paths are essentially the same
ameter and extend azimuthally 0.33 revolutions around
cylinder for the neutrally buoyant particle and 0.32 revo
tions around the cylinder for the more dense particle for e
revolution around the vortex center.

The motion of the particle comes about as a result of
relative importance of the various terms of Eq.~2!. These
terms are shown in Fig. 7 as a function of time over the lim
cycle period,T, for Re5125. The upper part of Fig. 7 show
the radial position of the particle through one complete or
with the particle being at its nearest approach to the in
cylinder att/T50 and 1. The curves in the lower part of Fi
7 show the relative magnitude of the radial components
the particle inertia, centrifugal force, drag force, and t
pressure gradient force throughout one orbit around the l
cycle path, where the forcesF are nondimensionalized usin
the speed of the inner cylinderr iV, the gap widthd, and the
particle massmp . It is evident that the largest forces a

FIG. 6. The three-dimensional particle path for the particle in the outerm
orbit in Fig. 5. Dots on the curve are equally spaced in time.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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those related to the centrifugal field and the drag on the
ticle. The pressure gradient force is much smaller, but is
same order of magnitude as the resulting inertia. The ac
eration due to the added mass is quite small, about two
ders of magnitude less than the force due to the pres
gradient, so it overlays the horizontal axis in the figure.

The minimum centrifugal force occurs slightly after th
particle reaches its outermost radial position, and the m
mum centrifugal force occurs slightly after the partic
reaches its innermost radial position. The lag of the part
centrifugal force behind the fluid centrifugal acceleration
related to the different azimuthal velocities of the partic
and the fluid. It takes some time for the particle to reach
same local azimuthal velocity as the fluid, resulting in t
phase lag. Contributing to this effect is the transport of l
momentum fluid inward at the inflow boundaries betwe
vortices and the transport of high momentum fluid outwa
at the outflow boundaries.23 For instance, in an outflow
boundary, the particle can travel radially outward in a reg
of high azimuthal velocity to quite near the outer cylind
before the azimuthal fluid velocity decreases substantia
Thus, the particle can be well past its outermost radial p
tion before its azimuthal velocity and, consequently, the c
trifugal force have decreased to their minimum values.

When the particle is moving axially near the inner cy
inder, 0.00,t/T,0.12 and 0.86,t/T,1.00, it acquires a
high azimuthal velocity resulting in an increase in the ce
trifugal force acting on the particle after a short lag. As t

FIG. 7. ~a! The particle position as a function of time.~b! The dimensionless
radial forces and inertia of a particle on a limit cycle orbit Re5125,a529.7,
andb511 as a function of time. —, inertia; ---, centrifugal force; - - -, drag
force, –--–, pressure gradient force. The gravitational body force is omi
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particle is carried outward in an outflow region between v
tices, 0.12,t/T,0.32, the centrifugal force results in th
particle traveling radially outward faster than the surroun
ing fluid cventually causing a radially inward drag force o
the particle. When the particle is moving axially near t
outer cylinder, 0.32,t/T,0.56, it loses its azimuthal veloc
ity so the outward centrifugal force is subsequently reduc
By the time the particle is in the inflow region between vo
tices, 0.56,t/T,0.86, its azimuthal velocity is small, so th
outward directed centrifugal force is small. The particle
moving inward more slowly than the surrounding fluid,
the drag force is directed inward, causing the particle
move radially inward. Of course, the particle eventua
nears the inner cylinder, where it regains its azimuthal vel
ity and the cycle repeats.

When a particle is outside of the limit cycle orbit, th
radially inward drag force and pressure gradient force dur
each revolution are never quite enough to carry the part
back to its original radial position near the inner cylinde
and the particle spirals inward toward the vortex center to
limit cycle orbit. When the particle is inside of the lim
cycle orbit, the inward drag force and pressure gradient fo
during each revolution always carry the particle radially
ward to a smaller radial position than for its previous orb
and the particle spirals outward from the vortex center to
limit cycle orbit. In the limit cycle orbit, the net outward
centrifugal force is just balanced by the net inward drag a
pressure gradient forces to bring the particle back to its or
nal starting position after each orbit.

IV. MOTION OF PARTICLES WITH AN IMPOSED
RADIAL FLOW

The original motivation for this work was to understan
the motion of particles in a rotating filter separator in whi
the inner cylinder is a filter through which fluid, but no
particles, can pass. In a rotating filter, an axial flow in t
annulus provides the source of fluid that flows radially
ward through the inner porous cylinder. It is quite difficult
model this flow analytically, although some progress h
been made in that direction.9,27 Instead, we use a simple,ad
hocapproach to shed light on the effect of a radial inflow
particle motion. We form an approximate solution to t
equations of motion by adding a small continuity-satisfyi
radial inflow ~from the outer cylinder to the inner cylinder!
to the Davey solution. This is equivalent to making both t
inner and outer cylinders porous. This flow, while clearly n
identical to that in a rotating filter, can provide insight in
how particle motion, particularly near the inner cylinder,
Taylor Couette flow can be affected by a radial flow. We c
confidently add a small radial flow without significantly a
tering the Taylor vortices based on stability analyses t
indicate that the transition Reynolds number, transition wa
number, and perturbation velocities are virtually unaffec
for small radial Reynolds numbers.28,29

Including a small radial throughflow does not change
azimuthal or axial velocity, to a first approximation, fro
that given by Eqs.~1b! and ~1c!. The radial velocity is al-
tered slightly to

d.
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ur~r ,z,e8,Rerad!5ur~r ,z,e8!1
Rerad

Re

r i

r
, ~3!

whereur(r ,z,e8) is the radial velocity from the Davey solu
tion @Eq. ~1a!# and Rerad5ur ,id/n is the radial Reynolds
number based on the radial velocity at the inner cylinderur ,i

and the gap widthd. Since the second term on the right-ha
side of ~3! satisfies continuity, the radial velocity includin
the Davey solution and the radial throughflow exactly sa
fies continuity. For typical conditions of Rerad of O(0.1) or
smaller and Re ofO(100), the second term on the right-han
side is easily small enough to be considered a perturbatio
the flow. Thus, momentum conservation is also satisfied
leading order.

The streamlines of the vortical flow with the impose
radial flow at two radial Reynolds numbers are shown in F
8 for a single counterclockwise vortex at Re5125. The per-
turbed velocity field retains the reflectional symmetry ab

FIG. 8. Streamlines for the Davey solution for a CCW vortex, Re5125,
with an imposed right to left radial throughflow. The vortex centers
marked with a plus~1! symbol. Each set of streamlines, both inside a
outside the heavy streamline, are spaced equally although the spacing
is not equal to the spacing outside.~a! Rerad50.1; ~b! Rerad50.2.
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the outflow boundary~at z/d50! of the original Davey so-
lution. The bold curve represents the boundary stream
between fluid elements that are trapped in the vortex
those that proceed from right to left~from the outer cylinder
to the inner cylinder! around the vortex. It is evident tha
increasing the radial flow causes more fluid to be swept
ward to the inner cylinder and less to be retained in
vortex. The area within the bold boundary streamline
about three-quarters of the total area of the vortex cell
Rerad50.1, while it is about two-thirds for Rerad50.2.

Neutrally buoyant particles would follow the streamlin
shown in Fig. 8 fairly closely, except for the small deviatio
due to the velocity field curvature near the particles sim
to that indicated in Fig. 1. However, particles that are mo
dense than the fluid are subject to a centrifugal force that
to carry them outward against the radial flow. Simulating t
motion of such particles begins with the particles initia
advecting with the vortical flow and then suddenly switchi
on the radial flow. In this case we consider particles o
slightly more dense than the fluid,b51.01. Results of the
simulation at two radial Reynolds numbers with no gravi
tional body force are shown in Fig. 9 for ten particles, star
at evenly spaced positions along a vertical line near the o
cylinder ~marked with asterisks!. Four additional particles
were started within the heavy streamline that marks
boundary between fluid elements that are trapped in the
tex and fluid elements outside of the vortex. All particles th
were started within the bold streamline complete orb
within the ‘‘retention zone,’’ and are thus prevented fro
getting near enough to the inner cylinder to have potentia
foul it. Assuming an approximately uniform initial particl
concentration, the fraction of particles remaining in the
tention zone is approximately equivalent to the area of
retention zone: about three-quarters for Rerad50.1 and two-
thirds for Rerad50.2. Since the particles are only slight
more dense than the fluid, there is no evidence of spira
toward a limit cycle orbit over the duration of the simulatio
Over a long time, such spiraling toward a limit cycle do
occur.

The particles that were started outside of the retent
zone near the outer cylinder are carried upward and t
radially inward. For Rerad50.1, seven out of the ten particle
are carried around the vortex and then downward before t
reach the inner cylinder, as shown in Fig. 9~a!. In a physical
device, these particles get near enough to the porous i
cylinder to have potential for fouling it, although other e
fects such as the filtration membrane surface chemistry
morphology as well as inertial particle migration, none
which are not included in our model, clearly can play a s
nificant role in the fate of these particles. Three out of the
particles outside of the ‘‘retention zone’’ never reach t
inner cylinder and are captured by the vortex, spiraling
ward the limit cycle orbit within the retention zone. The
paths are evident near the bottom corners of the bold stre
line. Smaller radial flows would result in more particles b
ing captured in the retention zone.

At a larger radial Reynolds number, Rerad50.2, all of the
particles that started near the outer cylinder reach the in
cylinder, as shown in Fig. 9~b!. In this case, the particles ar

ide
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subject to a larger radial drag force and they are expose
the centrifugal field for a shorter time than at the lower rad
Reynolds number because of the higher imposed radial
locity. As a result, fewer particles will be trapped in th
vortex and more particles can potentially deposit in the po
of the porous inner cylinder. Even so, the majority of p
ticles will remain trapped in the vortex, away from the inn
cylinder in the retention zone. Of course, at a high enou
radial velocity no particles will be trapped in the vortex a
the limit cycle path will not occur because the drag related
the radial flow will overwhelm centrifugal force on the pa
ticles. In this case, the particles will all end up at the inn
cylinder.

V. DISCUSSION

The goal of this research was to obtain insight into
physical mechanism that causes the segregation of part

FIG. 9. Particle paths for Re5125,a529.7, andb51.01, with an imposed
right to left radial throughflow and no gravitational body force. The asteri
~* ! represent the starting positions of some of the particles. The four clo
curves show the paths of four particles trapped by the vortex. The he
curve is the streamline that separates trapped fluid elements from fluid
ments added and removed by the radial flow.~a! Rerad50.1; ~b! Rerad

50.2.
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in supercritical Taylor Couette flow. These same mec
nisms can contribute to the observed antiplugging beha
of rotating filter separators. Neutrally buoyant particl
nearly follow the fluid streamlines, with only small devia
tions due to the Faxen correction in the force balance o
particle. But for particles with a density greater than t
fluid, the situation in most rotating filter applications, th
particle paths deviate substantially from the fluid streamlin
due to the interplay between the centrifugal force and
drag force. Particles near the center of a vortex spiral o
ward seeking a limit cycle orbit that is not near the walls
the annulus. Likewise particles far from the center of t
vortex spiral inward seeking the same limit cycle orbit. W
have observed the concentration of particle image veloc
etry ~PIV! tracer particles away from the walls of the annul
in a Taylor Couette cell after several hours of operatio
consistent with the predicted limit cycle behavior. Other
searchers have noted a similar result.30 Since the forces on
the particles tend to keep them away from the inner cylind
the tendency toward a limit cycle orbit appears to be a k
factor related to the antiplugging character of rotating filt
tion.

Of course, in a rotating filter there is a small radial flo
through the porous inner cylinder which causes an additio
radially inward drag force on the particles very near the in
cylinder that could draw particles toward the pores of t
inner cylinder and cause plugging. But modeling this velo
ity as a radially inward throughflow indicates that this rad
velocity is not strong enough to carry a substantial numbe
particles to the inner cylinder. Most particles remain in orb
within the vortex retention zone. Only a small fraction
particles are likely to get close enough to the filter to plug
pores. Even in the presence of gravity, it appears that
interplay between the centrifugal force and the drag force
likely to play a major role in preventing particles from ge
ting near the porous inner cylinder and plugging its pore
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