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Inertial particle motion in a Taylor Couette rotating filter
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In rotating filtration, which is based on supercritical cylindrical Couette flow with a rotating porous
inner cylinder, the motion of particles in the suspension depends on both centrifugal sedimentation
and transport due to the vortical motion of Taylor vortices. We have simulated the motion of dilute,
rigid, spherical particles in Taylor Couette flow using computational particle tracking in an analytic
velocity field for flow just above the transition to supercritical Taylor vortex flow. Neutrally buoyant
particles follow fluid streamlines closely, but not exactly due to the curvature of the velocity field
very near the particle. The motion of particles with a density greater than the fluid is primarily
determined by the competition between the centrifugal sedimentation related to the primary
cylindrical Couette flow and the secondary radial and axial transport of the Taylor vortex flow. As
a result, particles that start near the outer edge of a vortex spiral inward toward a limit cycle orbit.
Likewise, particles initially near the center of a vortex spiral outward toward the same limit cycle
orbit. Even when a small radially inward throughflow is imposed, particles can remain trapped in
retention zones that are away from the wall of the annulus. Consequently, the dynamics of the flow
field result in particles tending to be transported away from the porous inner cylinder, thus
contributing to the antiplugging character of rotating filter devices.1999 American Institute of
Physics[S1070-663099)01302-1

I. INTRODUCTION complex and is best described as supercritical cylindrical
Couette flow in an annulus with a porous wall boundary
. . L o condition at the inner cylinder and a superimposed axial
inder rotating within an outer cylindrical shell. As a SUSPEN“q4\. The rotation of the inner cylinder creates a centrifugal

tsrllon trﬁ\:ﬁls 'aX|aIIy I'.n dthe Iann'ulus, fl.ltrate '.S v:/lthdrawn field that is a maximum near the inner rotating cylinder and
roug € Inner cylinder, feaving an Increasingly Concenyy -0 5565 1o zero at the stationary outer cylinder. This cen-
trated suspension in the annulus. Rotating filters are pre

. rifugal field creates a net radial force on non-neutrally buoy-
ently used for the separation of plasma from whole bIOO(jant particles. At the same time the toroidal Taylor vortices

and other biological separations, and they show promise for . . .
a wide range of other filtration applications. The unique ad--a"y particles from near the inner _cylmder o near the Quter
vantage of rotating filtration is that plugging of the pores ony“nder’ and vice versa. The _aX|aI flow carries particles
the filter with particles is greatly reduced compared to stanf’llong the length of the rotatmg filter an_nulus, wh_He the flow
dard filtration techniques. Three mechanisms have been pr(r)hrough the porous wall of the inner cylinder carmies particles

posed for this resistance to foulifgFirst, Taylor vortices 'adially inward. o
may “scrub” the filter surface, washing off particles that The motion of individual particles in Taylor vortex flow

could potentially plug the filter porésSecond, since the has not peen investi_gated in dgtail, except for the notable
particulate phase is typically more dense than the fluid, thgomputatlorla}lz particle  tracking ~of Rudman and
centrifugal field in the annulus resulting from the rotation of Co-workers. They computationally placed particles in
the filter may cause significant sedimentation of particle?0th nonwavy and wavy vortex flow fields calculated using
away from the filter surface. Third, the rotation of the filter finite difference methods and then tracked inertial particles
gives rise to a high shear, much like that in cross-flow filtra-in the flow field. Although they provided some information
tion, which has been shown to enhance flow through a filtePn particle paths, their primary interest was the strain history
medium due to shear-induced particle migration away fronihat inertial particles experienced due to their paths and the
the filter surfacé. In this paper, we computationally track dispersion of fluid particles. While our approach is similar to
particles in Taylor Couette flow in order to investigate theRudman and co-workers, in that we also computationally
role of the first two mechanisms with respect to the antiplugirack particles in Taylor vortex flow, there are significant
ging character of rotating filters. differences. First, our focus is on the segregation of particles
A significant body of research related to rotating filter as a result of interaction of Taylor vortices with the centrifu-
separation exists?>*~°but most of these studies were fo- gal field. Second, by considering various particle densities,
cused on the filtration performance in specific applicationsyve attempt to describe the underlying physics of the segre-
with little attention paid to the physics of the particle motion gation. Third, we consider the effect of an imposed net radial
in a rotating filter. The flow field in a rotating filter is quite flow, which is inherently present in a rotating filter, on the

A rotating filter separator consists of a porous inner cyl-
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particle motion. Fourth, we use an analytic representation of av; Du;
the fluid velocity field rather than a computationally deter- mp W:mf Dt
mined flow field.
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Il. TAYLOR VORTEX FLOW MODEL AND PARTICLE —GWaM(Vi(t)—ui[Y(t).t]— 5 anzuilvm),
TRACKING @

We model the flow in a rotating filter separator as non-wherem, is the mass of the particley; is the mass of the
wavy, nonhelical Taylor vortex flow. The axial velocity due fluid displaced by the particleY(t) is the location of the
to axial throughflow is usually only a few percent of the particle,V; is the velocity of the particley; is the velocity
surface speed of the rotating filter'* As a result, the axial field of the fluid from Eq(1), and is the dynamic viscosity
Reynolds numbers are typically small enough so that the naif the fluid. The left side of the equation represents the iner-
effect of the imposed axial flow is simply the axial transla- tia of the particle. The terms on the right side are, from left to
tion of nonwavy vortices without the appearance of helicalright, the pressure gradient for¢ealled this since the fluid
vortices that occur at higher axial Reynolds numbBérs=1®  acceleration is related to the pressure gradient of the undis-
Consequently, the axial through-velocity can be neglectedurbed flow, the added mass fordeelated to the necessity
with regard to its effect on particle motion within vortices. of moving a mass of fluid when a particle displaces tiie
Its only effect is to carry particles axially with the axially gravitational body force, and the Stokes drag force. The Bas-
translating vortices. Initially, we also neglect the radial ve-set history force, which is important in the initial motion of a
locity through the porous inner cylinder, since it is typically particle starting from rest under certain conditions, can be
two orders of magnitude smaller than the velocities arisingheglected, since other acceleration terms are much larger for
from the Taylor vortices:*® In Sec. IV we will include the the long-time behavior of the particles. The Laplacian of the
effect of an imposed inward radial flow at the inner cylinder.velocity field, known as the Faxen correction, was included

The Taylor vortex velocity field was modeled by in two terms on the right side of ER) by Maxey and Riley
Davey® using a weakly nonlinear perturbation solution of to correct for the effects of curvature in the velocity field on
the Navier—Stokes equations that provides a continuous rephe drag force, assuming steady Stokes flow around a
resentation of the velocity field that matches experimentasphere®® The Coriolis and centrifugal accelerations acting on
data quite well*2°-23The first two terms of the velocity the particle do not explicitly appear in E(), but appear
components are usually adequate to accurately model theplicitly in the terms containing the particle velocity,
flow.1*?3 The velocity components, normalized with the when properly accounting for the rotating frame of reference.

speed of the inner cylindet(}, are A shortcoming of using Eq_2) is that it is based on creeping
flow, so it does not include lateral migration of the particle
ur(r,z,e’)=Ae(e’)u1(r)coskz+A§(e’)u2(r)cos Xz, due to Saffman lift related to the velocity shear or wall ef-

(1a)  fects. Using a modified lift expressidhjt can be shown that
. the lift is at least an order of magnitude smaller than the drag
Uy(r,z,€")=Agl +Bo/r +AZ(€' )vy(r) force. Likewise, the wall effects can be shown to be about an
+ A€ )v4(r)coskz order of magnitude smaller _than the drag when the particles
€ 1 are more than one to two diameters from the &alConse-

+A§(e’)vz(r)cos Xz, (1b) quently, we ignore these effects. A conventional finite differ-
ence discretization of Eq2) was used to integrate the par-
U,(r,z,€")=Ag(€ )W, (r)sin kz+A2(e' )w,(r)sin Xz, ticle’s position and velocity forward in time using a standard

(10 Runge—Kutta technique with Eql) used for the velocity
field of the fluid.

wheree’' =1— (Re,/ReY, A, is a generalized amplitude co- Several parameters are important for the simulation. The
efficient,u,, v,, andw, are shape factorgigenfunctions of cylinder radius ratio was set tp=r;/(r;+d)=0.83, to cor-
the linear stability problem andk is the fundamental axial respond to the radius ratio for which we typically perform
wave number. Here Rer;Q)d/v is the rotating Reynolds experiments. For this radius ratio, the vortex pair spacing,
number based on the radius of the inner cylinderthe rate  based onk determined as part of the Davey solution, is
of rotation(}, the gap between the cylindedsand the kine- 2.00d. The rotating Reynolds number was set to=R&5,
matic viscosityr. Also, Re is the critical rotating Reynolds which is above the Reynolds number for transition to Taylor
number at which the transition to supercritical flow occurs.Couette flow of Rg=102 for this radius ratio, but below the
Note that the azimuthal velocity includes the stable flow so-Reynolds number for the transition to wavy vortex flow of
lution Agr + By /r along with a correction to the mean veloc- Re=130. The Davey solution has been shown to closely
ity v,(r). Here A., k, u,, v,, W,, andv, were found match experimentally measured Taylor Couette velocity
following the solution method outlined by Davey. fields under these conditiofi$?® There are two important

The motion of a rigid, spherical particle of radiasn a  parameters for the particles that are being tracked: the den-
dilute suspension can be well described by a form of Newsity ratio, 8= p,/ps, Wherep,, is the particle density ang;
ton’s second law of Maxey and Rilé&, is the fluid density; and the particle size ratios d/2a.
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FIG. 2. Particle paths projected in the meridional plane with gravity acting
510 512 54 5|6 5|8 downward for Re=125 and «=29.7. The upper vortex rotates CW; the
d ’ ’ lower vortex rotates CCWa) 8=1.01;(b) 8=1.1;(c) B=2.

FIG. 1. Neutrally buoyant particle paths projected in a meridional plane for
a counterclockwise vortex. Dots represent particle positions at equall)the axial portion of the orbit due to the correction of the drag

spaced time instants, while the solid curves represent the best fit streamline . . . Ly
t(feach set of dots. P orce. Particles retrace their orbits to within the accuracy of

the simulation for the length of the simulation, which was

several hundred revolutions around the vortex center.
Il MOTION OF PARTICLES IN TAYLOR COUETTE While Fhe particles trayel around th(_a center of the vor_tex
FLOW as shown in Fig. 1, the azimuthal velocity of the fluid carries

the particles azimuthally at a very high speed near the inner

Although our primary interest is in the balance of forcescylinder and at a very low speed near the outer cylinder. As
on particles that are more dense than the fluid, it is helpful t@ result, a particle on the outer orbit is continually accelerat-
first consider the motion of a neutrally buoyant particle ofing to high azimuthal velocity near the inner cylinder and
finite size, as opposed to an infinitely small fluid particle. Forthen decelerating to a low azimuthal velocity near the outer
a neutrally buoyant particle, the gravitational term in B2).  cylinder as it traces its orbit. On the other hand, a particle on
drops out. But the patrticle’s velocity,, , cannot be identical the innermost orbit sees nearly the same azimuthal velocity
to the surrounding fluid velocityy; , because of the Laplac- throughout its orbit. At the Reynolds number for which this
ian (the Faxen correction to account for the effects of curvasimulation was run, the particle on the outermost orbit com-
ture in the velocity fielgl in the added mass term and the pleted 1.55 revolutions around the inner cylinder for each
Stokes drag force term. Carrying out the analysis indicatesevolution around the vortex center, while a particle on the
that the added mass term is negligible in comparison to theéanermost orbit needed only 0.33 revolutions around the cyl-
other terms, so it is the Laplacian in the drag term that resultsxder for each revolution around the vortex center.
in the particle velocity differing from the fluid velocity. If the particles are more dense than the fluid, gravity can
The effect of the correction to the drag force is quiteplay a significant role in the particle motion. Figure 2 shows

small, but readily evident when comparing the fluid stream-the projection of the particle paths in a meridional plane for
lines with the particle paths, as shown in Fig. 1. In this andthree different density ratios with gravity acting downward,
subsequent figures, the horizontal coordinate is the radial cqgarallel to the axis of rotation. The ratio of the gravitational
ordinate normalized by the gap width/d, so that the wall force to the centrifugal acceleration is 245, typical of that
of the inner rotating cylinder is the left side of the figure andused in our large-scale laboratory rotating filter device, but
the wall of the outer fixed cylinder is the right side of the much larger than that in commercial devices for blood
figure. The vertical coordinate is the axial position normal-plasma separation. The upper and lower boundaries of the
ized by the gap widthz/d, with z=0 corresponding to an figure are periodic, so that particles that exit the bottom of
outflow boundary between vortices. Thus, we show a singl¢he figure atz/d=0 reenter the top of the figure afd
counterclockwise vortex. The particle paths and streamlines-27/kd=2.007. There are two vortices in this figure, the
indicated in the figure are projections in the meridionaltop one rotating clockwise and the bottom one rotating coun-
plane. The actual paths and streamlines also have an azerclockwise. The density ratio always appearg§@s1) in
muthal componentinto the pagg that is not shown. Five the force balance equation, so results f+1.01,1.10,2.00
particle paths are represented by dots corresponding to uriepresent a two orders of magnitude increasesinl). Fig-
formly spaced time increments in Fig. 1. The streamlines arere 2a) shows that nearly neutrally buoyant particles are
a best fit to the corresponding particle pétha least-squares largely caught up in the vortices. A few of the particles wind
sensg The particle paths are nearly aligned with the streamdownward around the vortices. Although it is difficult to de-
lines at the top and the bottom of the orbits, corresponding téect in Fig. Z2a), the paths of particles caught in the vortices
inflow and outflow boundaries of the vortices. But the par-are not closed loops, but over long times spiral inward or
ticle paths are slightly outward from the streamlines duringoutward, as discussed later in this paper.
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Increasing the particle density relative to the fluid den- 1.0
sity results in more particles winding around vortices while
generally moving downward, as shown in FighR Other
particles remain bound up in nearly closed particle paths in
“retention zones.” Even though the vortices extend across
the entire annular gap, the retention zones are alternately
close to the inner and outer wall of the annulus. The particles
that wind downward around the vortices are caught in the
downward axial motion on the side of one vortex. Then they
fall by gravity into the next vortex, where they continue their
downward axial motion on the opposite side of that vortex.

A further increase in the particle density results in wavy
axial particle paths, shown in Fig(@. The waviness results
from the Taylor vortices carrying the particles radially, but
the difference in the density between the particles and the
fluid is so large that particles fall right through a vortex with- : 50 52 54 56 58
out being caught up in the vortical flow. For the particles vd
closest to the inner cylinder, several parallel particle path$c. 3. Particle paths projected in the meridional plane with no gravitational
are evident. This results from the generally outward radiabody force for Re=125,2=29.7, ands=11. The asterisks mark the starting
motion of the particles due to the centrifugal force and theP?int- The dark orbit is the limit cycle.
periodic boundary condition imposed in the analysis. For in-

stance, the particle associated with the innermost path moves _ .
downward and a small distance radially outward so thal t[r/d=5.33, 2/d~0.42] spirals outward from the vortex

when it reenters the periodic domain at the top of the figurecenter. Clearly both particles approach a limit cycle indicated

its path is at a slightly greater radius. As a result, a particle—by the dark band between the two spiral pafi$ie actual

free zone will tend to form near the inner cylinder. A similar Ilrlnlttt_cyci(ra] ork|)|t |s|a smgledpathi_'l'lhe dz:k barlﬂ resullts Ifrom
effect occurs for smaller values @8, although it is not piotting the closely spaced particle paihs as they slowly ap-

readily apparent from the particle paths in Figg)2Near the p_rc;]ach the. I:mit c>;]clej qrbil. Qéased ﬁn the ;p:ral .ne_lt.urlia of
fixed outer cylinder, the centrifugal force is negligible, so theSIther particle path, it Is evident that particles initially at

particle paths overlap in Fig.(®. Since the radial velocity other locations m.the rovy domain will also eventually end
due to the vortices is greatest away from the walls of theP on the same final orbit. Because of the nature of Taylor

annulus, the particle paths are wavy near the center of thyortex flow, the particle paths for the adjacent vortices above

annulus. The particle paths in Fig. 2 are in qualitative agree(-)r below the vortex shown would be mirror images reflected
ment with the results of Rudmaet al*: about the boundary between the vortices.

It is clear from Fig. 2 that gravity plays a major role in Limit cycles similar to those shown in Fig. 3 occur over

defining paths for non-neutrally buoyant particles by carry—tWO orders of magnitude decrease(ft-1), as shown in Fig.

ing particles axially from one vortex to another, but our pri—4' A? the density ratio decreases, the particles spiral tpward
mary interest here is in the relative effect of the other force§he limit cycle much more slowly. The overlap of the limit

on the motion of particles. In particular, we are interested in
the relative importance of the centrifugal acceleration and the
drag due to the Taylor vortices on particle motion. To study

this interplay of forces, it is helpful to remove the gravita- 09r
tional field from the analysis in order to compare the more 08l
subtle effects of other forces on the particle motion. Further-

more, the motion of particles in a gravity-free environment, 0.7
germane to the use of rotating filters for water purification in 0.6}

outer space applications, is of interest. Consequently, the
gravitational force has been set to zero for the following
results. 0.4}

Nonwavy Taylor vortices are independent cells with no
cross-flow between vortices. Thus, the streamlines for axi-
symmetric Taylor Couette flow are closed. When the gravi- 0.2t
tational force is zero and diffusion is omitted, particles will
not cross from one vortex into another. The projection in a
meridional plane of two particle paths in a single counter- 0.0 n = = = 3
clockwise vortex are shown in Fig. 3 for relatively dense ' v/d ' ‘
particles(5=11). A particle that. beQ!ns near the inner cylin- FIG. 4. Limit cycle orbits with no gravitational body force for R&25,
der at[r/d~4.94,2/d~0.42] spirals inward toward the vor- a=29.7, andB=1.1, 2, 11(from smallest to largestDots on the curve are
tex center. A particle that begins near the center of the vortexqually spaced in time.

0.1r
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FIG. 6. The three-dimensional particle path for the particle in the outermost
orbit in Fig. 5. Dots on the curve are equally spaced in time.

50 512 5i4 516 5..8
7 Although Fig. 5 shows the particle path in the meridional
FIG. 5. Particle path;*?doté and ;tre_amline$solid curve$ for Re=125, p|ane, the partic|e is also 5imu|taneous|y moving azimuth-
g;azcgeg 'inatri'r?fe’).:ll with no gravitational body force. Dots are equally g1y - A three-dimensional representation of the path of the
particle on the outermost orbit in Fig. 5 with dots represent-
ing identical time steps is shown in Fig. 6 as the particle
cycle paths forB=2 and 11 in the outflow region is some- revolves clockwise around the inner cylinder. The spacing
what surprising. We have checked this result thoroughly andbetween dots shows that the azimuthal particle velocity is
concluded that it is coincidental, resulting from the interac-quite high near the inner cylinder and quite low near the
tion of the drag force and the sedimentation force in eaclouter cylinder. The particle quickly moves from its initial
case. position near the inner cylinder into the outflow region be-
The particle paths approximately follow the vortical tween the vortex shown and the next lower vortex. As it
flow, but the paths deviate slightly from the streamlines asmoves outward it slows and then spends substantial time
shown in Fig. 5. In this figure, three particle paths are showmmoving axially near the outer cylinder. It accelerates azi-
(in order of decreasing diamejerspiraling inward, limit  muthally as it moves inward toward the inner cylinder and
cycle, and spiraling outward. In each case, the particle path inally ends its revolution about the vortex center closer to
indicated by the dots corresponding to uniform time incre-the center than where it started.
ments. The solid curve represents the streamline that corre- The particle on the outermost orbit completes 0.80 revo-
sponds to the best fit streamfunctidm a least-squares lutions around the inner cylinder for each revolution around
sensgto the particle path. Consider first the largest diametethe vortex center, while a particle on the limit cycle path
path. The particle begins near the inner cylinder. The higheneeds only 0.40 revolutions around the cylinder to complete
density particle sediments radially outward past the streameach orbit. Thus, a particle on the limit cycle orbit would
line due to the centrifugal field so that the particle is radiallymove around that orbit about 2.5 times for every time it
outside of the streamline when it nears the outer cylindermakes one complete revolution in the annulus. The density
But as the particle gets closer to the outer cylinder, the cenef the particle is of little consequence for the azimuthal mo-
trifugal force decreases and the fluid drag due to the vortetion. This is most evident for the smallest diameter paths in
motion becomes large enough to overcome the small cerkigs. 1 and 5. These two paths are essentially the same di-
trifugal force, bringing the particle back loward the inner ameter and extend azimuthally 0.33 revolutions around the
cylinder. Near the inner cylinder, the outward centrifugalcylinder for the neutrally buoyant particle and 0.32 revolu-
force increases, preventing the particle from reaching its initions around the cylinder for the more dense patrticle for each
tial radial position. Thus, as the vortex carries the particlerevolution around the vortex center.
around one orbit, the diameter of the orbit decreases causing The motion of the particle comes about as a result of the
the particle to spiral toward the limit cycle orbit. Near the relative importance of the various terms of Eg). These
center of the vortex the centrifugal field is not as strong. Asterms are shown in Fig. 7 as a function of time over the limit
a result, the fluid drag due to the vortex motion carries thecycle period,T, for Re=125. The upper part of Fig. 7 shows
particle a little farther inward than the centrifugal force sedi-the radial position of the particle through one complete orbit,
ments the particle outward, resulting in the particle spiralingwith the particle being at its nearest approach to the inner
toward the larger diameter limit cycle orbit. The change incylinder att/T=0 and 1. The curves in the lower part of Fig.
radius of the smallest diameter path during one cycle is s@ show the relative magnitude of the radial components of
small that it is not easily evident in Fig. 5. For the closedthe particle inertia, centrifugal force, drag force, and the
orbit, the inward deviation of the particle path from the pressure gradient force throughout one orbit around the limit
streamline is the same as its outward deviation from theycle path, where the forcésare nondimensionalized using
streamline, resulting in a particle following a limit cycle or- the speed of the inner cylindey(}, the gap widthd, and the
bit. particle massm,. It is evident that the largest forces are
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particle is carried outward in an outflow region between vor-
/—\ tices, 0.12t/T<0.32, the centrifugal force results in the
5.5} particle traveling radially outward faster than the surround-
ing fluid cventually causing a radially inward drag force on
5.4 the particle. When the particle is moving axially near the
Near Near Near outer cylinder, 0.3 t/T<0.56, it loses its azimuthal veloc-
ety vl e ity so the outward centrifugal force is subsequently reduced.
By the time the patrticle is in the inflow region between vor-
tices, 0.56<t/T<0.86, its azimuthal velocity is small, so the
52 / \\ outward directed centrifugal force is small. The particle is
moving inward more slowly than the surrounding fluid, so
0 0.2 0.4 0.6 0.8 1 o . . :
@ the drag force is directed inward, causing the particle to
move radially inward. Of course, the particle eventually
0.10 TN nears the inner cylinder, where it regains its azimuthal veloc-
~ N . ity and the cycle repeats.
0.0 R When a patrticle is outside of the limit cycle orbit, the

Fd radially inward drag force and pressure gradient force during

m — | e — each rev_olutio.n'are never quit'e. enough to carry the particle
T back to its original radial position near the inner cylinder,

A - ] and the particle spirals inward toward the vortex center to its
. AN limit cycle orbit. When the particle is inside of the limit
005 1 - v cycle orbit, the inward drag force and pressure gradient force
4. 4 ] during each revolution always carry the particle radially in-

0 0.2 0.4 0.6 0.8 1 ward to a smaller radial position than for its previous orbit,

(b) T and the particle spirals outward from the vortex center to its
FIG. 7. (&) The particle position as a function of tim@) The dimensionless limit cycle orbit. In the limit cycle orbit, the net outward
radi.al f.orces an%l inerti;ofa particle on a limit cycle orbit=R5, »=29.7, centrifugal forFe IS just balan‘?ed by the r_]et inward d.rag and
andB=11 as a function of time. —, inertia; -, centrifugal foree -, drag ~ Pressure gradient forces to bring the particle back to its origi-
force, —-—, pressure gradient force. The gravitational body force is omittednal starting position after each orbit.

r/id

5.3
‘Outflow Inflow

. . IV. MOTION OF PARTICLES WITH AN IMPOSED
those related to the centrifugal field and the drag on the P&l ADIAL ELOW

ticle. The pressure gradient force is much smaller, but is the
same order of magnitude as the resulting inertia. The accel- The original motivation for this work was to understand
eration due to the added mass is quite small, about two othe motion of particles in a rotating filter separator in which
ders of magnitude less than the force due to the pressutbe inner cylinder is a filter through which fluid, but not
gradient, so it overlays the horizontal axis in the figure. particles, can pass. In a rotating filter, an axial flow in the

The minimum centrifugal force occurs slightly after the annulus provides the source of fluid that flows radially in-
particle reaches its outermost radial position, and the maxiward through the inner porous cylinder. It is quite difficult to
mum centrifugal force occurs slightly after the particle model this flow analytically, although some progress has
reaches its innermost radial position. The lag of the particldeen made in that directiot’ Instead, we use a simplad
centrifugal force behind the fluid centrifugal acceleration ishocapproach to shed light on the effect of a radial inflow on
related to the different azimuthal velocities of the particleparticle motion. We form an approximate solution to the
and the fluid. It takes some time for the particle to reach theequations of motion by adding a small continuity-satisfying
same local azimuthal velocity as the fluid, resulting in theradial inflow (from the outer cylinder to the inner cylinder
phase lag. Contributing to this effect is the transport of lowto the Davey solution. This is equivalent to making both the
momentum fluid inward at the inflow boundaries betweeninner and outer cylinders porous. This flow, while clearly not
vortices and the transport of high momentum fluid outwardidentical to that in a rotating filter, can provide insight into
at the outflow boundari€s. For instance, in an outflow how particle motion, particularly near the inner cylinder, in
boundary, the particle can travel radially outward in a regionTaylor Couette flow can be affected by a radial flow. We can
of high azimuthal velocity to quite near the outer cylinder confidently add a small radial flow without significantly al-
before the azimuthal fluid velocity decreases substantiallytering the Taylor vortices based on stability analyses that
Thus, the particle can be well past its outermost radial posiindicate that the transition Reynolds number, transition wave
tion before its azimuthal velocity and, consequently, the cenaumber, and perturbation velocities are virtually unaffected
trifugal force have decreased to their minimum values.  for small radial Reynolds numbef$2°

When the particle is moving axially near the inner cyl- Including a small radial throughflow does not change the
inder, 0.06<t/T<0.12 and 0.861t/T<1.00, it acquires a azimuthal or axial velocity, to a first approximation, from
high azimuthal velocity resulting in an increase in the centhat given by Eqs(1b) and (1c). The radial velocity is al-
trifugal force acting on the particle after a short lag. As thetered slightly to
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10 ' ' ' , : the outflow boundaryat z/d=0) of the original Davey so-
lution. The bold curve represents the boundary streamline
between fluid elements that are trapped in the vortex and
those that proceed from right to léfrom the outer cylinder

to the inner cylinder around the vortex. It is evident that
increasing the radial flow causes more fluid to be swept in-
ward to the inner cylinder and less to be retained in the
vortex. The area within the bold boundary streamline is
about three-quarters of the total area of the vortex cell for
Re.4s=0.1, while it is about two-thirds for Rg=0.2.

Neutrally buoyant particles would follow the streamlines
shown in Fig. 8 fairly closely, except for the small deviations
due to the velocity field curvature near the particles similar
to that indicated in Fig. 1. However, particles that are more
, , ] , dense than the fluid are subject to a centrifugal force that acts
@) 50 52 r/5d-4 56 5.8 to carry them outward against the radial flow. Simulating the

motion of such particles begins with the particles initially
advecting with the vortical flow and then suddenly switching
on the radial flow. In this case we consider particles only
slightly more dense than the fluig=1.01. Results of the
simulation at two radial Reynolds numbers with no gravita-
tional body force are shown in Fig. 9 for ten particles, started
at evenly spaced positions along a vertical line near the outer
cylinder (marked with asterisks Four additional particles
were started within the heavy streamline that marks the
boundary between fluid elements that are trapped in the vor-
tex and fluid elements outside of the vortex. All particles that
were started within the bold streamline complete orbits
within the “retention zone,” and are thus prevented from
getting near enough to the inner cylinder to have potential to
foul it. Assuming an approximately uniform initial particle
concentration, the fraction of particles remaining in the re-
0.0 : tention zone is approximately equivalent to the area of the

5.0 52 54 5.6 5.8 ]
(b) rfd retention zone: about three-quarters for Re0.1 and two-

. _ thirds for Re,=0.2. Since the particles are only slightly
FIG. 8. Streamlines for the Davey solution for a CCW vortex=R@&5, d th the fluid. th . id f spirali
with an imposed right to left radial throughflow. The vortex centers are'more en_se_ an the .UI » there 1S nQ evidence O splr_alng
marked with a plug+) symbol. Each set of streamlines, both inside and toward a limit cycle orbit over the duration of the simulation.

outside the heavy streamline, are spaced equally although the spacing insi@ver a |0ng time, such spiraling toward a limit cycIe does
is not equal to the spacing outside) Re,=0.1; (b) Rg,=0.2. occur.

0.9¢

0.8f

0.1

The particles that were started outside of the retention

zone near the outer cylinder are carried upward and then
R€.q i radially ?nward. For Rgs=0.1, seven out of the ten particles
Re 1 3 are carried around the vortex and then downward before they

reach the inner cylinder, as shown in Figa In a physical
whereu,(r,z,€") is the radial velocity from the Davey solu- device, these particles get near enough to the porous inner
tion [Eq. (1a)] and Reg=u, ;d/v is the radial Reynolds cylinder to have potential for fouling it, although other ef-
number based on the radial velocity at the inner cylindgr  fects such as the filtration membrane surface chemistry and
and the gap widthl. Since the second term on the right-handmorphology as well as inertial particle migration, none of
side of (3) satisfies continuity, the radial velocity including which are not included in our model, clearly can play a sig-
the Davey solution and the radial throughflow exactly satishificant role in the fate of these particles. Three out of the ten
fies continuity. For typical conditions of Rgof O(0.1) or  particles outside of the “retention zone” never reach the
smaller and Re o®(100), the second term on the right-hand inner cylinder and are captured by the vortex, spiraling to-
side is easily small enough to be considered a perturbation tward the limit cycle orbit within the retention zone. Their
the flow. Thus, momentum conservation is also satisfied t@aths are evident near the bottom corners of the bold stream-
leading order. line. Smaller radial flows would result in more particles be-

The streamlines of the vortical flow with the imposed ing captured in the retention zone.

radial flow at two radial Reynolds numbers are shown in Fig. At a larger radial Reynolds number, Re=0.2, all of the
8 for a single counterclockwise vortex at R&25. The per- particles that started near the outer cylinder reach the inner
turbed velocity field retains the reflectional symmetry aboutcylinder, as shown in Fig.(®). In this case, the particles are

u,(r,z,e’' ,Re9=u,(r,z,e’ )+
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1.0 ' — in supercritical Taylor Couette flow. These same mecha-
ool ‘\ ] nisms can contribute to the observed antiplugging behavior
of rotating filter separators. Neutrally buoyant particles
08¢ m 1 nearly follow the fluid streamlines, with only small devia-
0.7_/ ] tions due to the Faxen correction in the force balance on a
particle. But for particles with a density greater than the
0.6 , \ ) fluid, the situation in most rotating filter applications, the
Zos} / particle paths deviate substantially from the fluid streamlines
| due to the interplay between the centrifugal force and the
04p drag force. Particles near the center of a vortex spiral out-
03 ward seeking a limit cycle orbit that is not near the walls of
the annulus. Likewise particles far from the center of the
02 vortex spiral inward seeking the same limit cycle orbit. We
o1l have observed the concentration of particle image velocim-
00 & etry (PIV) tracer particles away from the walls of the annulus
( )' 5.0 52 34 5.6 5.8 in a Taylor Couette cell after several hours of operation,

consistent with the predicted limit cycle behavior. Other re-
searchers have noted a similar resfiiSince the forces on
the particles tend to keep them away from the inner cylinder,
the tendency toward a limit cycle orbit appears to be a key
factor related to the antiplugging character of rotating filtra-
tion.

Of course, in a rotating filter there is a small radial flow
through the porous inner cylinder which causes an additional
radially inward drag force on the particles very near the inner
cylinder that could draw particles toward the pores of the
inner cylinder and cause plugging. But modeling this veloc-
ity as a radially inward throughflow indicates that this radial
velocity is not strong enough to carry a substantial number of
particles to the inner cylinder. Most particles remain in orbits

031/

=

0.2F

OIJ ] within the vortex retention zone. Only a small fraction of

' particles are likely to get close enough to the filter to plug its
0.0 3 5 ” v 53 pores. Even in the presence of gravity, it appears that the

(b) t/d interplay between the centrifugal force and the drag force is

. _ _ likely to play a major role in preventing particles from get-
FIG. 9. Particle paths for Rel25, =29.7, andB=1.01, with an imposed . . . . .
right to left radial throughflow and no gravitational body force. The asteriskstIng near the porous nner cyllnder and plqumg Its pores.
(*) represent the starting positions of some of the particles. The four closed
curves show the paths of four particles trapped by the vortex. The heavCKNOWLEDGMENTS
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