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Hydrodynamic stability of a suspension in cylindrical Couette flow
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A linear stability analysis was carried out for a dilute suspension of rigid spherical particles in
cylindrical Couette flow. The perturbation equations for both the continuous fluid phase and the
discontinuous particle phase were decomposed into normal modes resulting in an eigenvalue
problem that was solved numerically. At a given radius ratio, the theoretical critical Taylor number
at which Taylor vortices first appear decreases as the particle concentration increases. Increasing the
ratio of particle density to fluid density above one decreases the stability. However, using an
effective Taylor number based on the suspension density and viscosity largely accounts for this
effect. The axial wave number is the same for a suspension as it is for a pure fluid. Experiments
using neutrally buoyant particles in a Taylor–Couette apparatus show that the flow is more stable as
the particle concentration increases. The reason that the theory does not fully capture the physics of
the flow should be addressed in future research. ©2002 American Institute of Physics.
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I. INTRODUCTION

The linear stability of circular Couette flow in the ann
lus between a rotating inner cylinder and a concentric, fix
outer cylinder has been studied from both theoretical
experimental standpoints. The instability appears as pair
counter-rotating, toroidal vortices stacked in the annu
Taylor1 conducted a simple flow visualization experiment
confirm his analytic prediction for the onset of the instabili
Chandrasekhar,2 DiPrima and Swinney,3 Kataoka,4 and
Koschmeider5 provide extensive summaries of the abund
research on this topic since Taylor’s pioneering work.

The stability of Taylor vortex flow is altered when com
plexity is added to the system. For instance, an axial flow
the annulus stabilizes the circular Couette flow so that
transition to supercritical Taylor vortex flow occurs at
higher Taylor number.6–8 Likewise, a radial flow in the an-
nulus between differentially rotating porous cylinders a
affects the stability of the Taylor vortex flow.9–11

Our interest in the effect of a complex fluid, specifica
a dilute suspension, on the stability of Taylor–Couette fl
is motivated by the processing of a suspension in a Tayl
Couette reactor cell12–15 or in a rotating filter device during
dynamic filtration.16–24 In Taylor–Couette reactors, chem
cally reacting species are dispersed or exposed uniforml
chemical catalysts by the vortical motion. In rotating filt
devices, an axial flow introduces a suspension into the an
lus between a rotating porous inner cylinder and a station
nonporous outer cylinder. Filtrate passes radially through
porous wall of the rotating inner cylinder, while the conce
trate is retained in the annulus. The Taylor vortices appea
in the device are believed to wash the filter surface of
inner cylinder clean of particles thus preventing the plugg
of pores of the filter medium.25 Centrifugal forces acting on
the particles in suspension and the shear resulting from
1231070-6631/2002/14(3)/1236/8/$19.00
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rotation of the inner cylinder are also thought to inhibit pa
ticles from plugging the pores of the filter.26

Nearly all research on the stability of cylindrical Couet
flow has been done for simple Newtonian fluids with a fe
notable exceptions. Recently there has been interest in
stability of a viscoelastic fluid in Taylor–Couette flow.27 For
example, using a simple viscoelastic constitutive equat
Khayat found that the flow is destabilized as the fluid el
ticity is increased.28 However, experimental results indica
both stabilizing and destabilizing effects of viscoelastici
depending upon the polymer solution used.29 Fewer studies
have addressed a suspension as a complex fluid in cylind
Couette flow. Nsom carried out a stability analysis for a s
pension of rigid fibers using rheological coefficients in t
stress tensor to account for the non-Newtonian effects.30 Re-
sults indicate that increasing the concentration of fibers
creases the stability of the system. Yuan and Ronis con
ered the stability of colloidal crystals in cylindrical Couet
flow using a Stokes drag interaction between the partic
and the fluid.31 Although the Taylor instability is suppresse
as the colloidal crystal lattices become more rigid, other
tice instabilities appear. Although not directly related to t
stability of a suspension, there recently has been substa
interest in tracking particle motion in both nonwavy an
wavy Taylor–Couette flow.32–37 This work has focused on
particle paths and enhanced diffusion without regard to
effect of the particles in the suspension on the stability of
flow. Finally, Dominguez-Lermaet al.detected a nonperiodi
cally time-dependent nonuniformity in the size of the vor
ces when a low concentration of flakes was used to visua
Taylor–Couette flow in vertical apparatus, but they did n
note how the flakes affected the critical Taylor number.38

The processing of suspensions in Taylor–Couette rea
cells and in rotating filtration devices has motivated
to address the effect of particles on the stability of Taylo
6 © 2002 American Institute of Physics
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1237Phys. Fluids, Vol. 14, No. 3, March 2002 Stability of a suspension in cylindrical Couette flow
Couette flow. In this study we apply linear hydrodynam
stability analysis to determine the critical Taylor number
the transition from stable cylindrical Couette flow to vortic
flow when a dilute concentration of a discontinuous phase
rigid spherical particles is present in the fluid. In addition,
provide results of simple experiments on the stability o
suspension of neutrally buoyant particles in cylindrical Co
ette flow. While the stability of the flow of a suspension in
Taylor–Couette device is a much simpler problem than t
in a Taylor–Couette reactor cell or in a rotating filtratio
device that have axial flow and other complications, our
tent is to provide insight into the stability of the flow in the
devices.

II. ANALYTICAL FORMULATION

The conservation equations for the system are base
the traditional two-fluid formulation, appropriate for a dilu
concentration of monodisperse rigid particles.39 In this for-
mulation, concentration-weighted forms of the continu
and Navier–Stokes equations in cylindrical coordina
(r ,u,z) are used for the continuous fluid phase and the
perse particle phase. The flow is assumed to be steady
incompressible. The cylinders are assumed to be infini
long with the inner cylinder rotating and the outer cylind
fixed. For axisymmetric flow, the dimensional form of th
continuity and Navier–Stokes equations for the fluid ph
are

1

r *
]

]r * ~r * Vf r* !1
]Vf z*

]z*
50, ~1a!

]Vf r*

]t*
1Vf r*

]Vf r*

]r *
2

Vf u*
2

r *
1Vf z*

]Vf r*

]z*

5nF ]

]r * S 1

r *
]

]r * ~r * Vf r* ! D1
]2Vf r*

]z* 2 G2
1

r f

]p*

]r *
2

nFr*

r f
,

~1b!

]Vf u*

]t*
1Vf r*

]Vf u*

]r *
1

Vf r* Vf u*

r *
1Vf z*

]Vf u*

]z*

5nF ]

]r * S 1

r *
]

]r * ~r * Vf u* ! D1
]2Vf u*

]z* 2 G2
nFu*

r f
, ~1c!

]Vf z*

]t*
1Vf r*

]Vf z*

]r *
1Vf z*

]Vf z*

]z*
5nF 1

r *
]

]r * S r *
]Vf z*

]r * D 1
]2Vf z*

]z* 2 G
2

1

r f

]p*

]z*
2g2

nFz*

r f
. ~1d!

In these equations, the asterisk indicates dimensional v
ables. (Vf r* ,Vf u* ,Vf z* ) are the fluid velocities in ther * , u* ,
andz* directions, respectively,t* represents time,p* is the
pressure,r f is the fluid density,n is the number density o
the particles, andF* is defined shortly. The equations for th
particulate phase take on a similar form except that the
cous terms are absent. The dimensional form of the cont
ity and Navier–Stokes equations for the particulate phase
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]
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50, ~2a!
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52
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~2b!

]Vpu*

]t*
1Vpr*

]Vpu*

]r *
1

Vpr* Vpu*

r *
1Vpz*

]Vpu*

]z*
5

nFu*

aprp
, ~2c!

]Vpz*

]t*
1Vpr*

]Vpz*

]r *
1Vpz*

]Vpz*

]z*
52

1

rp

]p*

]z*
2g1

nFz*

aprp
, ~2d!

where (Vpr* ,Vpu* ,Vpz* ) are the particle velocities,rp is the
particle density, andap is the volume fraction of particles
a f is the volume fraction of the fluid such thata f1ap51.
We consider very dilute suspensions (a f@ap), soa f can be
assumed constant and approximately equal to unity. It th
fore does not appear in the fluid phase equations. Note
the volume fraction of particles is related to the number d
sity by40

ap5
npf* 3

6
,

wheref* is the diameter of the particle. The last term on t
right-hand side of the momentum equations for both pha
is the Stokes drag and added mass, expressed as

Fi* 53pmf* ~Vf i* 2Vpi* !1
r fp~f* !3

12

]

]t*
~Vf i* 2Vpi* !

for i 5r ,u,z, ~3!

wherem is the dynamic viscosity of the carrier fluid.41 The
drag force acting on the particles due to the fluid is equa
magnitude but has opposite sense to the force acting on
fluid due to the particles, thus coupling the fluid phase a
particle phase equations.

The equations are nondimensionalized by using the
lowing scheme:

r 5
r *

d
, z5

z*

d
, f5

f*

d
,

Vjr

Vjr*
5

Vj u

Vj u*
5

Vjz

Vjz*
5

1

V1r 1
~where j 5 f ,p!, ~4!

p5
p*

r fV1
2r 1

2 , t5
t*

t
.

Here, the characteristic length scale is the gap width betw
the two cylindersd5r 22r 1 , wherer 1 and r 2 are the inner
and outer radii of the cylinders, respectively. The velocit
are nondimensionalized using the characteristic velocity
rotationV1r 1 whereV1 is the rotational speed of the inne
cylinder. t5d2/n is the characteristic viscous time scale
the problem. Upon nondimensionalizing the continuity a
Navier–Stokes equations the parameters that appear ar
density ratio, e5rp /r f , and the Taylor number, Ta
5V1r 1d/n, wheren is the kinematic viscosity of the carrie
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1238 Phys. Fluids, Vol. 14, No. 3, March 2002 Ali et al.
fluid. This form of the Taylor number, often called the rota
ing Reynolds number, is used because it is simple and c
sistent with the form used in other studies.42

The nondimensional equations are similar to those u
by Dimas and Kiger to analyze the linear stability of
particle-laden mixing layer.40 Implicit in this derivation are
the following assumptions:~1! The scale of the particle mo
tion relative to the fluid motion is very small.~2! The particle
Reynolds number is always less than unity, so that the d
force on the particle is described by Stokes law.~3! The
particles are spherical and rigid.~4! The suspension is suffi
ciently dilute to prevent hydrodynamic interactions betwe
particles.~5! The Faxen correction to the Stokes drag is n
ligible. ~6! The Bassett history force is negligible in compa
son to the Stokes drag.

A linear stability analysis is performed by separating t
variables into mean and perturbation components such t

Vf r5u8~r ,z,t !, Vf u5V̄~r !1v8~r ,z,t !,

Vf z5w8~r ,z,t !,

Vpr5up8~r ,z,t !, Vpu5V̄~r !1vp8~r ,z,t !, ~5!

Vpz5wp8~r ,z,t !,

p5P1p8~r ,z,t !, ap5A1ap8~r ,z,t !.

Here, the primed~8! variables are the perturbation comp
nents,A is the concentration of particles in the undisturb
state, and the stable velocity profile is given byV̄(r )5C1r
1C2 /r , where the constantsC1 andC2 are functions of the
radius ratio,h5r 1 /r 2 .

Next, the perturbations are expressed as normal mo
of the form

u8

u~r !
5

v8

v~r !
5

w8

w~r !
5e~ ikz1st !,

up8

up~r !
5

vp8

vp~r !
5

wp8

wp~r !
5e~ ikz1st !, ~6!

p8

v~r !
5e~ ikz1st !,

ap8

ap~r !
5e~ ikz1st !,

where u(r ), v(r ), w(r ), up(r ), vp(r ), wp(r ), v(r ), and
ap(r ) are the amplitudes of the corresponding disturbancek
is the axial wave number of the disturbance, ands5s r

1 is i is an amplification factor. The wave number and t
amplification factor are nondimesionalized ask5k* d and
s5s*t.

Equations~5! and ~6! are then substituted into the non
dimensionalized governing equations and the stable fl
terms subtracted out. Linearization of the equations by
carding higher order terms results in the final form of t
disturbance equations, which for the fluid phase can be w
ten as

D* u~r !52 ikw~r !, ~7a!
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1

r 22S 18A

f2 1
As

2 D Dw~r !

5 ik Ta v~r !2S 18A

f2 1
As

2 Dwp~r !, ~7d!

where the differential operatorsD andD* are defined as

D~ !5
d

dr
~ !, D* ~ !5

d

dr
~ !1

1

r
~ !.

For the case of zero concentration (A50), these equations
reduce to those for Taylor–Couette flow of a simple fluid2

A similar treatment of the particulate phase equatio
results in expressions forup(r ), vp(r ), andwp(r ) in terms
of the fluid velocity perturbations,

up~r !5H 2 TaV̄P0

r ~~s1P0!212 Ta2~~V̄/r !D* V̄!!
J v~r !

1H P0~s1P0!

~~s1P0!212 Ta2~~V̄/r !D* V̄!!J u~r !

2H Ta~s1P0!

e~~s1P0!212 Ta2~~V̄/r !D* V̄!!J Dv~r !, ~8a!

vp~r !52H TaP0D* V̄

~~s1P0!212 Ta2~~V̄/r !D* V̄!!
J u~r !

1H P0~s1P0!

~~s1P0!212 Ta2~~V̄/r !D* V̄!!J v~r !

1H Ta2 D* V̄

e~~s1P0!212 Ta2~~V̄/r !D* V̄!!
J Dv~r !, ~8b!

wp~r !5
P0

~s1P0!
w~r !2

ik Ta

e~s1P0!
v~r !, ~8c!

where

P05
18

f2e
1

s

2e
.

The particle velocity components~8! are then substituted
into ~7! and the equations simplified to a set of 12 nonline
first-order ordinary differential equations. This system
equations was solved using the boundary-value problem s
ware packageSUPORT43 in combination with the nonlinea
equation solverSNSQE.44,45 Computations were performed i
double precision. Extensive code testing of theSUPORTpack-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1239Phys. Fluids, Vol. 14, No. 3, March 2002 Stability of a suspension in cylindrical Couette flow
age with theSNSQEsolver has been previously reported.46–49

The eigenvalue problem may be written in the implicit fun
tional form

F~Ta,A,f,k,e,h,s!50. ~9!

The parametersA, f, k, e, andh are usually fixed and solu
tion of the ordinary differential equations is obtained by
eration on the eigenvalue pair (Ta,s i) using the procedure
outlined in Ali and Weidman.48,49 Since we seek to find the
neutral stability conditions,s r is set to zero. At fixed radius
ratio h, a search is conducted over all wave numbersk to find
the minimum Taylor number, denoted as Tac . A sample of
neutral stability curves forh50.45, 0.65, 0.75, and 0.85 ar
given in Fig. 1 forA50.05,e51, andf50.004. For specific
values ofA, e, f, and h, critical conditions Tac , kc , and
(s i)c are those for which the Taylor number is a minimu
For the example in Fig. 1, Tac563.04, 69.75, 79.82, 100.7
in an ascending order ofh. In the vicinity of the minimum,
the increments inDk were taken to be 0.001. The wav
number of the neutral curves in Fig. 1 are 3.172, 3.1
3.135, 3.130 in ascending order ofh.

To assure the validity of our procedure we compared
results for a simple fluid by assuming zero concentrat
in the analysis (A50) to previously published results.50

The similarity of the values for the critical Taylor numbe
Tac and critical wave numberskc , shown in Table I, confirm

FIG. 1. Sample of the stability curves for several radius ratios~A50.05,
e51, f50.004!.

TABLE I. Comparison of critical Taylor number and wave number obtain
for pure Taylor–Couette flow from Rectenwaldet al. ~Ref. 50! with the
present study.

h Tac ~Ref. 50! Tac ~present study! kc ~Ref. 50! kc ~present study!

0.400 68.2963 68.2965 3.1835 3.183
0.500 68.1860 68.1863 3.1625 3.162
0.600 71.7154 71.7157 3.1483 3.148
0.700 79.4903 79.4907 3.1389 3.139
0.750 85.7760 85.7765 3.1354 3.135
0.800 94.7331 94.7336 3.1326 3.133
0.900 131.6139 131.6145 3.1288 3.129
0.975 260.9483 260.9499 3.1270 3.127
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the validity of our procedure. The critical Taylor numbe
and wave number for Taylor–Couette flow of a simple flu
are also recovered fore approaching zero, corresponding t
inertialess particles, further confirming the validity of ou
numerics.

The range of parameters that was considered is con
tent with physically realizable systems. Particle density
tios were used that are consistent with gas bubbles in a liq
~e50.001!, neutrally buoyant particles~e51!, heavy particles
in a liquid ~e510!, and particles about the density of water
a gas~e5833!. In the case of gas bubbles, we do not accou
for the deformability of the bubbles or the deviation from
Stokes drag due to a fluid disperse phase. Particle radiu
gap widths ranged fromf50.0002~the gap corresponds to
5000 particle diameters! to f50.02 ~the gap corresponds to
50 particle diameters!. Assuming that the velocity difference
between the particle and fluid is at least one order of mag
tude smaller than the surface velocity of the inner cylind
~probably an overestimate!, the particle Reynolds number is
always less than 0.4 justifying the use of the Stokes drag
the formulation. Furthermore, a simple order of magnitu
analysis of the ratio of the Bassett history force to the Stok
drag goes likef, indicating that it is reasonable to neglec
the particle history. Particle concentrations up toA50.05
were considered, noting that our assumptions requiring a
lute concentration make our results most dependable at lo
concentrations than this. Radius ratios fromh50.45 to
h50.99 were considered.

III. RESULTS AND DISCUSSION

The critical Taylor number for transition from stable cy
lindrical Couette flow to supercritical Taylor vortex flow fo
a suspension of neutrally buoyant particles is shown in Fig
as a function of the particle concentration for radius rati
ranging fromh50.45 toh50.95. As the particle concentra
tion increases, the flow becomes less stable. For all con
tions studied the critical Taylor number decreases by ab

FIG. 2. Critical Taylor number for several radius ratios as a function
particle concentrationA for neutrally buoyant particles~e51, f50.004!. ~* !
h50.45, ~d! h50.65, ~m! h50.75, ~j! h50.85, ~l! h50.95.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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7% as the particle concentration increases from zero to
maximum concentration. This result for spherical particles
different from theoretical predictions for rigid fibers.30 In that
case, the fibers stabilize the flow. The differing results co
be a consequence of the different shape of the particles o
different analytical techniques~two-fluid model versus non
Newtonian rheological coefficients!.

The critical wave number is not altered by the conce
tration of particles. Table II provides the wave number
neutrally buoyant particles for concentrations ranging fr
A50 to A50.05. This result is independent of density ra
and particle size ratio.

The effect of the particle density on the critical Tayl
number is shown in Fig. 3 for three radius ratios. It is app
ent that the more dense particles have a much greater e
on the stability of the flow than less dense particles. As
particle concentration increases from 0 to 5%, the decreas
the critical Taylor number is negligible fore50.001, but as
large as 35% fore510. The destabilizing effect is even mo
striking for particles in a gas~e5833!, where the critical
Taylor number decreases to only a small fraction of its va
as the particle concentration increases.

The greater effect of heavy particles on the stability m
be attributed to their inertia, which results in an increas
degree of coupling between the fluid and particle phas
This effect is most evident if considered in terms of t
Stokes number, defined as

St5
rpf* 2r 1V1

18md
.

The Stokes number represents the ratio of the viscous re
ation time for the particle (rpf* 2/18m) to the time scale of
the flow (d/r 1V1). It indicates the ability of the particles t
respond to the motion of the carrier fluid.40,51 For small val-
ues of the Stokes number, particles accurately follow
carrier fluid, whereas for large values the particles do
closely follow the fluid motion because of their inertia. Th
Stokes number fore5833 ranges from 1022 to 1021 depend-
ing on concentration and radius ratio, whereas for the lo
density ratios, the Stokes number is one to six orders
magnitude less. Thus, for the smaller density ratios, the
ertia of the particles is so small that the particles have li
effect on the stability. For the largest density ratio, the p
ticles interact more strongly with the flow and reduce t
stability.

This naturally poses the possibility of accounting for t
effect of the density ratio in the form of the critical Taylo
number. The Taylor numbers in Figs. 2 and 3 are based
the fluid properties~density and viscosity!. However, the
presence of particles alters the effective density and visco
of the suspension. This suggests the use of an effective

TABLE II. Critical wave numbers at different concentrations in the ran
0<A<0.05 for several radius ratios.

kc ~h50.95! kc ~h50.85! kc ~h50.75! kc ~h50.65! kc ~h50.45!

3.127 3.130 3.135 3.143 3.172
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lor number based on the bulk effective density and viscos
of the suspension. The effective density is readily calculat
based on the particle concentration and the density ratio. T
effective density can be as much as 42 times the fluid dens
for dense particles at the highest concentration consider
The effective viscosity is more difficult to specify. Severa
correlations, both theoretical and empirical, exist to calcula
the effective viscosity of a suspension.39 For simplicity, we
use the Einstein formulation such thatmeff5m(112.5A).
Thus, the effective viscosity can be as much as 12.5% grea
than the fluid viscosity for the concentrations that we consi
ered. Figure 4 indicates the dependence of the effective cr
cal Taylor number, based on the effective bulk density a
viscosity, on the concentration of particles for density ratio
from e50.001 toe5833 and the three radius ratios that wer
shown in Fig. 3. Using the effective critical Taylor numbe

FIG. 3. The effect of density ratioe on critical Taylor number for several
radius ratios~— •—! e50.001,~—! e51, ~– – –! e510, ~- - -! e5833; ~m!
h50.75, ~j! h50.85, ~l! h50.95.

FIG. 4. The effect of particle concentration on the effective critical Taylo
number. The effective Taylor number is based on the density and visco
of the suspension~-•-! e50.001~nearly hidden by the solid line!, ~—! e51,
~–––! e510, ~---! e5833.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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nearly collapses the data for this wide range of density rat
at all three radius ratios. Apparently, the effective suspens
density, which plays a much greater role than the effecti
viscosity in the effective Taylor number, accounts for th
degree to which particles follow the fluid flow and thereb
affect the stability.

The effect of the density ratioe on the critical Taylor
number is shown in Fig. 5 for a single concentration ofA
50.005 and several radius ratios. The density ratio has lit
effect on the critical Taylor number until it is quite large
~Values for 10,e,833 were not calculated, since they d
not represent physically realizable systems.!

Finally, we calculated the critical Taylor number for par
ticle sizes of 0.0002<f<0.02 over the range of concentra
tions and density ratios that were considered. The critic
Taylor number and critical wave number were independe
of f.

IV. EXPERIMENTAL RESULTS FOR A NEUTRALLY
BUOYANT SUSPENSION

We performed a limited number of experiments for su
pensions of neutrally buoyant particles to determine ho
well the linear stability analysis captures the physics of t
problem. The experiments were conducted using a stand
Couette cell with a fixed outer cylinder, stepper motor drive
inner cylinder, and fixed end caps such that 2r 154.97
60.013 cm, 2r 256.0360.013 cm. The radius ratio was
h50.824 and the aspect ratio wasG5H/d596, whereH
550 cm, is the height of the column. The concentration
the aqueous glycerol solution was matched to the appro
mate density of the nylon particles~r>1.1 g/cm3!. It was
difficult to exactly match the density of all particles, due t
variability in the particles. The 2065 mm particles~Goodfel-
low LS194265, Cambridge, UK! were used in volume con-
centrations of 0<A<0.005. Surfactant in the form of deter
gent was added in very small amounts~>1.5 ml/1000 ml of
suspension! to assure suspension of the particles. A sma

FIG. 5. Critical Taylor number as a function of density ratio for sever
radius ratios~A50.005,f50.004!; ~d! h50.65,~m! h50.75,~j! h50.85,
~l! h50.95.
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quantity (Aflakes50.000 05) of silicon dioxide coated mic
reflective flakes~Flamenco Superpearl, Mearl Corp.! were
added to the suspension to make the vortices visible.
concentration of the flakes was a factor of 20–100 times
than the nylon particle concentration. The temperature in
annulus was monitored during the experiments to per
temperature correction of the density and viscosity.

The Taylor number was increased from rest in a stepw
fashion using small increments~DTa'1 near the theoretica
transition point!. The system was allowed to equilibrate fo
at least 10 min after each change in Ta. Transition was sa
occur at the minimum Taylor number where vortices we
observed to fill the entire annulus.~Here we refer to the fluid
Taylor number, not the effective Taylor number, though th
is little difference between them fore51.! Precursor vortices
appeared first near the end caps and then in various par
the annulus slightly below the critical Taylor number, co
sistent with previous results for simple fluids.52 The Taylor
number was increased until the vortices filled the annu
and then decreased until they were visible only in parts of
annulus. In this way, we could bracket the transition fro
stable to Taylor–Couette flow to be 98.6,Ta,100.3 for A
50. The theoretical value is Tac5100.73 for the radius ratio
of the setup.50 Although the wavelength of the vortices wa
not measured precisely, it was clearly quite near the expe
value for square vortical cells. When observing transition
nonzero particle concentrations, a similar method to brac
the transition was used to determine the critical Taylor nu
ber. The critical Taylor number for transition from Taylo
vortex flow to wavy vortex flow was determined in a simil
way. Transition to wavy vortex flow was said to occur wh
wavy vortices filled the entire annulus. For zero particle co
centration the wavy transition could be bracketed as 1
,Ta/Tac,1.25. Previous experiments show significant va
ability in the transition depending on the aspect ratio a
experimental conditions.53 The range is 1.15 to 1.28 Tac for
radius ratios near that in our experiments.

The effect of concentration on transition is shown in F

l FIG. 6. Experimental results obtained using neutrally buoyant nylon p
ticles ~h50.824,f50.0038!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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6 for A<0.005, concentrations that are much lower than
concentrations in previous figures. Clearly, the presence
neutrally buoyant particles stabilizes the flow for both t
transition from stable flow to Taylor vortex flow and from
Taylor vortex flow to wavy vortex flow. Obviously, the ex
perimental results differ from the linear stability analys
There may be a maximum in the data forA50.004 for both
transitions with a slight downward trend for greater conc
trations that might be consistent with the theoretical pred
tion. Unfortunately, the transition became more difficult
detect visually as the concentration increased, so that it
impossible to detect forA.0.005. Thus, it is not clear if the
maximum vaguely evident in Fig. 6 really occurs or is
result of the difficulty in identifying the transition to vortica
flow at high particle concentrations. We further note that
experimental results displayed a consistent stabilizing tr
with increasing concentration even for very low concent
tions (A50.001).

We are confident that our experiments were repeata
and robust. While it was challenging to determine the ex
Taylor number for transition by visualizing the flow, the st
bilizing effect was quite clear. Our visual observation of t
first transition coinciding with the predicted theoretical val
for a fluid with no nylon particles gives us further confiden
in our method. Furthermore, our visual observation of
transition to wavy vortices with no nylon particles is cons
tent with previous measurements. We note that it was q
difficult to match the fluid density to the particle density~a
small fraction of the particles always sank while a simi
small fraction floated!. However, the bulk of the particle
were neutrally buoyant, so we doubt that density differen
affected the results.

There are some differences between the experiments
the stability analysis that could be speculated as reason
the differing analytical and experimental results.~1! Al-
though our experimental setup had a reasonably large as
ratio, end effects, which are not included in the theory, co
play a role. However, this seems unlikely given that e
effects do not alter the critical Taylor number for particl
free flows except when the aspect ratio is quite small.~2! The
model assumes monodisperse particles, whereas a reaso
narrow distribution of polydisperse particles were used in
experiments. However, the negligible dependence of
model results on particle size suggests that this is not a p
lem. ~3! The model assumes spherical particles, whereas
experiments included flakes~in small concentration! for vi-
sualization and used particles that were not exactly spher
Since similar flakes have been used by many researche
visualize transition to vortical flow without adverse affec
we can only assume that the small concentration of flake
inconsequential.~4! It is possible that the detergent added
aid in the dispersion of particles affected the stability of t
flow. However, the amount of detergent was so small that
viscosity and density of the fluid were unaffected. Furth
more, the experiment at zero particle concentration using
water-glycerol-detergent solution matched the theoret
prediction quite well indicating no fluid non-Newtonian e
fects. The only possibility is that the detergent altered
interaction between phases so that the interfacial force t
Downloaded 14 Mar 2002 to 129.105.69.150. Redistribution subject to A
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was altered from that used in Eq.~3!. ~5! The linear stability
analysis necessarily neglects nonlinear terms. Howeve
seems unlikely that a subcritical instability related to the
terms would occur altering the theoretical results.~6! The
Bassett history force acting on the particles is assumed to
negligible based on an order of magnitude analysis. Ho
ever, a recent study has suggested that the motion of a
ticle itself may be unstable when the Bassett history force
included.54 The way in which this would impact the two
fluid model used here is unclear.~7! The linear stability
analysis assumes that the stable concentration of particl
uniform @A in Eq. ~5! is independent ofr, z, andt#. Given the
uniform shear in stable Couette flow, it seems unlikely th
shear-induced diffusion would result in a concentration g
dient, but clearly the wall-exclusion effect results in a no
uniform concentration profile near the walls of the annu
that was not included in the model. In addition, once vortic
occur the concentration of particles is unlikely to be unifor
It is likely that one of the two latter points, the omission
history term or the assumption of a uniform concentration
particles in the theory, are the most likely causes of
theory not capturing the physics to properly match the
periments.

V. SUMMARY

The results of the theoretical analysis of the stability o
suspension in cylindrical Couette flow indicate that the flo
is destabilized by the presence of a dispersed species.
degree of destabilization depends on the density ratio
tween the dispersed phase and the continuous phase.
dense particles result in more of a destabilizing effect. M
likely more dense particles~such as solid particles in a gas!
are less likely to follow the fluid motion, based on the pa
ticle Stokes number. This results in a stronger interact
between the disperse and continuous phases through
Stokes drag term~since the velocity difference is greater!. It
is quite logical to argue that this disrupts the stability mo
easily than neutrally buoyant or very light particles. The
fect of the density ratio can be readily taken into account
least to a first approximation, by converting the calcula
critical Taylor number, which is based on the fluid properti
to an effective Taylor number based on the bulk suspens
density and viscosity. This permits the estimation of a criti
Taylor number that is nearly independent of the density ra
Nevertheless, our preliminary experiments with neutra
buoyant particles indicate a stabilizing effect of particle
This could be argued as a logical result given that the p
ticles increase the effective viscosity slightly and thereby
quire a larger Taylor number based on fluid properties
have the effective Taylor number reach the critical valu
However, this effect should be quite small for the experime
tal particle concentrations.

The original motivation for this work was the flow o
suspensions in Taylor–Couette reactor cells or rotating
ters. In these devices, the base flow is substantially m
complex due to the necessary axial or radial flows to ca
the process fluid into and out of the cell. The results p
sented here provide some insight with regard to these ap
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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cations. In particular, our results suggest that an estimat
the conditions for the flow to become unstable may be ba
on the effective Taylor number. However, the differences
tween the experimental and theoretical results prevent
conclusions with regard to the stabilizing or destabilizi
effect of particles in suspension on Taylor–Couette flo
Clearly, the effect of particles in suspension on the stabi
of Taylor–Couette flow remains an open question that
significance in several applications.
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