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Hydrodynamic stability of a suspension in cylindrical Couette flow
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A linear stability analysis was carried out for a dilute suspension of rigid spherical particles in
cylindrical Couette flow. The perturbation equations for both the continuous fluid phase and the
discontinuous particle phase were decomposed into normal modes resulting in an eigenvalue
problem that was solved numerically. At a given radius ratio, the theoretical critical Taylor number
at which Taylor vortices first appear decreases as the particle concentration increases. Increasing the
ratio of particle density to fluid density above one decreases the stability. However, using an
effective Taylor number based on the suspension density and viscosity largely accounts for this
effect. The axial wave number is the same for a suspension as it is for a pure fluid. Experiments
using neutrally buoyant particles in a Taylor—Couette apparatus show that the flow is more stable as
the particle concentration increases. The reason that the theory does not fully capture the physics of
the flow should be addressed in future research.2@2 American Institute of Physics.
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I. INTRODUCTION rotation of the inner cylinder are also thought to inhibit par-
ticles from plugging the pores of the filtét.
The linear stability of circular Couette flow in the annu- Nearly all research on the stability of cylindrical Couette

lus between a rotating inner cylinder and a concentric, fixedlow has been done for simple Newtonian fluids with a few
outer cylinder has been studied from both theoretical anchotable exceptions. Recently there has been interest in the
experimental standpoints. The instability appears as pairs aftability of a viscoelastic fluid in Taylor—Couette fléWFor
counter-rotating, toroidal vortices stacked in the annulusexample, using a simple viscoelastic constitutive equation,
Taylor' conducted a simple flow visualization experiment toKhayat found that the flow is destabilized as the fluid elas-
confirm his analytic prediction for the onset of the instability. ticity is increased® However, experimental results indicate
Chandrasekhdr, DiPrima and Swinney, Kataoka! and  both stabilizing and destabilizing effects of viscoelasticity,
Koschmeidet provide extensive summaries of the abundantdepending upon the polymer solution ugddeewer studies
research on this topic since Taylor’s pioneering work. have addressed a suspension as a complex fluid in cylindrical
The stability of Taylor vortex flow is altered when com- Couette flow. Nsom carried out a stability analysis for a sus-
plexity is added to the system. For instance, an axial flow irpension of rigid fibers using rheological coefficients in the
the annulus stabilizes the circular Couette flow so that thetress tensor to account for the non-Newtonian effédie-
transition to supercritical Taylor vortex flow occurs at a sults indicate that increasing the concentration of fibers in-
higher Taylor numbet:® Likewise, a radial flow in the an- creases the stability of the system. Yuan and Ronis consid-
nulus between differentially rotating porous cylinders alsoered the stability of colloidal crystals in cylindrical Couette
affects the stability of the Taylor vortex flow!! flow using a Stokes drag interaction between the particles
Our interest in the effect of a complex fluid, specifically and the fluid®* Although the Taylor instability is suppressed
a dilute suspension, on the stability of Taylor—Couette flowas the colloidal crystal lattices become more rigid, other lat-
is motivated by the processing of a suspension in a Taylor-tice instabilities appear. Although not directly related to the
Couette reactor céfli*°or in a rotating filter device during stability of a suspension, there recently has been substantial
dynamic filtration'®=%* In Taylor—Couette reactors, chemi- interest in tracking particle motion in both nonwavy and
cally reacting species are dispersed or exposed uniformly tavavy Taylor—Couette flow?~3" This work has focused on
chemical catalysts by the vortical motion. In rotating filter particle paths and enhanced diffusion without regard to the
devices, an axial flow introduces a suspension into the annweffect of the particles in the suspension on the stability of the
lus between a rotating porous inner cylinder and a stationarflow. Finally, Dominguez-Lermat al. detected a nonperiodi-
nonporous outer cylinder. Filtrate passes radially through theally time-dependent nonuniformity in the size of the vorti-
porous wall of the rotating inner cylinder, while the concen-ces when a low concentration of flakes was used to visualize
trate is retained in the annulus. The Taylor vortices appearingaylor—Couette flow in vertical apparatus, but they did not
in the device are believed to wash the filter surface of thenote how the flakes affected the critical Taylor numifer.
inner cylinder clean of particles thus preventing the plugging  The processing of suspensions in Taylor—Couette reactor
of pores of the filter mediurf Centrifugal forces acting on cells and in rotating filtration devices has motivated us
the particles in suspension and the shear resulting from thio address the effect of particles on the stability of Taylor—
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Couette flow. In this study we apply linear hydrodynamic 5, f?(apV;Z)
stability analysis to determine the critical Taylor number for—- + ﬂr—*(apr*V;r) +—% =0, (2a)
the transition from stable cylindrical Couette flow to vortical
flow when a dilute concentration of a discontinuous phase of\/* IV* \yE2 IV* 1 gp* nF*
.. . . . . . .. pr * pr po * pr p r
rigid spherical particles is present in the fluid. In addition, we———+V, ar +sz(9T =T o T
provide results of simple experiments on the stability of a Pp pPp (2b)
suspension of neutrally buoyant particles in cylindrical Cou-
ette flow. While the stability of the flow of a suspension in a V¥, aNF,  VEVE V¥, nF*

K B ) * pe prYpé * p0_ 6
Taylor—Couette device is a much simpler problem than thatzm * Vo © — = PL oz anps (20)
in a Taylor—Couette reactor cell or in a rotating filtration e
device that have axial flow and other complications, our in-gv* oV* oV* 1 gp* nE*
tent is to provide insight into the stability of the flow in th T P
ent is to provide insight into the stability of the flow in these P Pz g% pp * ooy’

devices.
where (7, ,V5,,Vp,) are the particle velocitiesy, is the
particle density, andy, is the volume fraction of particles.
a; is the volume fraction of the fluid such that+ ap=1.
We consider very dilute suspensiong:$ «,), soa; can be

The conservation equations for the system are based g¥ssumed constant and approximately equal to unity. It there-
the traditional two-fluid formulation, appropriate for a dilute fore does not appear in the fluid phase equations. Note that
concentration of monodisperse r|g|d partic:fggn this for- the volume fraction of particles is related to the number den-
mulation, concentration-weighted forms of the continuity Sity by*°
and Navier—Stokes equations in cylindrical coordinates Nt
(r,0,2) are used for the continuous fluid phase and the dis- 4 = ,
perse particle phase. The flow is assumed to be steady and 6

incompressible. The cylinders are assumed to be infinitel;ovhere¢* is the diameter of the particle. The last term on the

long with the inner cylinder rotating and the outer cylinder right-hand side of the momentum equations for both phases
fixed. For axisymmetric flow, the dimensional form of the is'the Stokes drag and added mass, expressed as

continuity and Navier—Stokes equations for the fluid phase

II. ANALYTICAL FORMULATION

are pim($*)® 9
Fir=3mu¢*(Vi—Vp)+ 1 at_*(V?i =V
1 9 . b
(r* —
& o (Vi) + ——==0, (1a for i=r,0,z (©)]
Nt N Vi AV where . is the dynamic viscosity of the carrier flufd.The
ot Virgex T TR TV gox drag force acting on the particles due to the fluid is equal in
magnitude but has opposite sense to the force acting on the
N . VY] 1 ap* nF¥ fluid due to the particles, thus coupling the fluid phase and
=V o | % g (Vi) |+ 7|~ or arF pp particle phase equations.
b The equations are nondimensionalized by using the fol-
(1b) lowing scheme:
Ny Nio, VitVia o Vi .
g (1 9 ?VF,] nF}
ZV[W—*([_—*M—*(I'*V?B))+W -, (10 er_Vje_ij_ 1 h = f 4
z pi VET VTV o (where j=f,p), (4)
jr j jz
V¥ V¥ IVF 1 9 aVF,\  9*VF§
0t’tz fr 0r’tz Vi 0Z’IZ - V[r_* ar* r ﬁrlz o'?z*fzz b t ¢
pP=—"522 1=_.
priry T
1 9p* nF; o _ )
- p— 797 o (1d) Here, the characteristic length scale is the gap width between
f f

the two cylindersd=r,—r,, wherer, andr, are the inner

In these equations, the asterisk indicates dimensional varand outer radii of the cylinders, respectively. The velocities
ables. V7, ,V§,, Vi, are the fluid velocities in the*, &,

andz* directions, respectively) represents timgy* is the

are nondimensionalized using the characteristic velocity of
rotationQ,r, where(}, is the rotational speed of the inner

pressurep; is the fluid densityn is the number density of cylinder. r=d?/v is the characteristic viscous time scale of
the particles, an@* is defined shortly. The equations for the the problem. Upon nondimensionalizing the continuity and
particulate phase take on a similar form except that the visNavier—Stokes equations the parameters that appear are the
cous terms are absent. The dimensional form of the continudensity ratio, e=p,/p;, and the Taylor number, Ta

ity and Navier—Stokes equations for the particulate phase are (),r,d/v, wherev is the kinematic viscosity of the carrier
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ing Reynolds number, is used because it is simple and co

sistent with the form used in other studfés.

fluid. This form of the Taylor number, often called the rotat- 18A
r(-DD*—kz—O'_(?—F 7

o v
)u(r)+2Tarv(r)

The nondimensional equations are similar to those used o
by Dimas and Kiger to analyze the linear stability of a :Ta(D‘”(r))_(ETJ’T Up(r), (7b)
particle-laden mixing layet® Implicit in this derivation are
the following assumptiong1) The scale of the particle mo- )
tion relative to the fluid motion is very smalR) The particle DD, —k*~o-
Reynolds number is always less than unity, so that the drag
force on the particle is described by Stokes ld@). The :_(&JFA_‘T
particles are spherical and rigi@) The suspension is suffi- $° 2
ciently dilute to prevent hydrodynamic interactions between
pa_rticles.(S) The Faxen <_:orrecti0n tq the S'_to_kes _drag is ne_g( DD, —k?— o+ iz_ (@ &) )W(I’)
ligible. (6) The Bassett history force is negligible in compari-
son to the Stokes drag.

A linear stability analysis is performed by separating the =ik Ta w(r)—
variables into mean and perturbation components such that

where the differential operatof3 andD, are defined as

18A Ao —
?ﬂL > )v(f)—Ta(D*V)U(F)

Up(r)a (70)

8A+0'
9?2

Vi =u'(r,z,1), Vm:V(r)Jrv’(r,z,t), g g L
I D()=g,( ) Dl )=g-( )+ ().

For the case of zero concentratioA=0), these equations
reduce to those for Taylor—Couette flow of a simple ffiid.

A similar treatment of the particulate phase equations
results in expressions fary(r), v,(r), andw,(r) in terms
of the fluid velocity perturbations,

Vpr:u”)(razvt)a Vp0=V(I’)+v;)(I’,Z,t), (5)
Vpz=Wp(r,z,1),

p=P+p'(r,z,t), ap=Atay(r.zt).

2 TavpP
Here, the primed’) variables are the perturbation compo- up(r)={ > 2 0 ]v(r)
nents,A is the concentration of particles in the undisturbed F((o+Po)"+2Ta((VIr)D, V)
state, and the stable velocity profile is given ¥{r)=C,r . Po(o+Pg) :
i u(r
+C,/r, where the constants; andC, are functions of the (o4 Pg)2+2 TR((VI)D, V) (

radius ratio,p=rq/r,.

Next, the perturbations are expressed as normal modes Ta(o+Py) b 8
J— r s
of the form (ot P22 TE((VInD, vy D) 8
v W e - TaP,D,V .
u(r)  o(r)  w(r) p ((6+Pg)2+2 T&((VIr)D,V))
ul; — UF; — Wl; =e(ikz+o’t) (6) 4 P0(0-+ PO) U(r)
Up(r)  vp(r)  wp(r) : ((o+Pg)?+2 T&((VIr)D, V))
/ ' T&D,V
P _ ket ap — glikz+at) { > * ]Dw(r), (8b)
o(r) " oay(r) ' e((o+Pg)2+2 T&((VIr)D,V))
whereu(r), v(r), w(r), up(r), vy(r), wy(r), o(r), and (1) = Po w(r)— ik Ta o) (80
ap(r) are the amplitudes of the corresponding disturbarices, * (oc+Pyp) e(o+Py) ’
is the axial wave number of the disturbance, and o, here
+io; is an amplification factor. The wave number and the"'"e"
amplification factor are nondimesionalized ks k*d and 18 o
o=0"T. PO:E—'—Zl

Equations(5) and (6) are then substituted into the non-
dimensionalized governing equations and the stable flow The particle velocity componen(8) are then substituted
terms subtracted out. Linearization of the equations by disinto (7) and the equations simplified to a set of 12 nonlinear
carding higher order terms results in the final form of thefirst-order ordinary differential equations. This system of
disturbance equations, which for the fluid phase can be writequations was solved using the boundary-value problem soft-

ten as ware packagesupoRT? in combination with the nonlinear
equation solvesnsQE*+*® Computations were performed in
D,u(r)=—ikw(r), (79 double precision. Extensive code testing of HupoRrTpack-
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FIG. 1. Sample of the stability curves for several radius ratis 0.05, A

e=1, ¢=0.004. FIG. 2. Critical Taylor number for several radius ratios as a function of

particle concentratioA for neutrally buoyant particlee=1, $=0.009. (*)
7=0.45,(®) 7=0.65,(A) »=0.75, (M) 7=0.85,(4) 7=0.95.
age with thesNsQEsolver has been previously report®a?®
The eigenvalue problem may be written in the implicit func-
tional form the validity of our procedure. The critical Taylor number
F(TaA, bk, e 7.0)=0. ) and wave number for Taylor—Co_uette flow of a simpl_e fluid
are also recovered far approaching zero, corresponding to
The parameters, ¢, k, €, and » are usually fixed and solu- inertialess particles, further confirming the validity of our
tion of the ordinary differential equations is obtained by it- numerics.
eration on the eigenvalue pair (ta) using the procedure The range of parameters that was considered is consis-
outlined in Ali and Weidmaf®#° Since we seek to find the tent with physically realizable systems. Particle density ra-
neutral stability conditionsg, is set to zero. At fixed radius tios were used that are consistent with gas bubbles in a liquid
ratio », a search is conducted over all wave numlteisfind  (e=0.001), neutrally buoyant particle&=1), heavy particles
the minimum Taylor number, denoted as. Téh sample of in a liquid (e=10), and particles about the density of water in
neutral stability curves for=0.45, 0.65, 0.75, and 0.85 are a gas(e=833). In the case of gas bubbles, we do not account
given in Fig. 1 forA=0.05,e=1, and¢=0.004. For specific for the deformability of the bubbles or the deviation from
values ofA, €, ¢, and », critical conditions Tg, k., and  Stokes drag due to a fluid disperse phase. Particle radius to
(o). are those for which the Taylor number is a minimum. gap widths ranged frong=0.0002(the gap corresponds to
For the example in Fig. 1, T&63.04, 69.75, 79.82, 100.79 5000 particle diameteyg¢o ¢=0.02 (the gap corresponds to
in an ascending order af. In the vicinity of the minimum, 50 particle diametejsAssuming that the velocity difference
the increments inAk were taken to be 0.001. The wave between the particle and fluid is at least one order of magni-
number of the neutral curves in Fig. 1 are 3.172, 3.143tude smaller than the surface velocity of the inner cylinder
3.135, 3.130 in ascending order gf (probably an overestimatethe particle Reynolds number is
To assure the validity of our procedure we compared oualways less than 0.4 justifying the use of the Stokes drag in
results for a simple fluid by assuming zero concentratiorthe formulation. Furthermore, a simple order of magnitude
in the analysis A=0) to previously published resuft§. analysis of the ratio of the Bassett history force to the Stokes
The similarity of the values for the critical Taylor numbers drag goes like, indicating that it is reasonable to neglect
Ta, and critical wave numbets., shown in Table |, confirm the particle history. Particle concentrations upAe-0.05
were considered, noting that our assumptions requiring a di-
lute concentration make our results most dependable at lower

TABLE I. Comparison of critical Taylor number and wave number obtained concentrations than this. Radius ratios fl’0m=0.45 to
for pure Taylor—Couette flow from Rectenwadd al. (Ref. 50 with the B .
7=0.99 were considered.

present study.

n Ta. (Ref. 50 Ta. (present study k. (Ref. 50 k. (present study IIl. RESULTS AND DISCUSSION

0.400  68.2963 68.2965 3.1835 3.183 " "

0500  68.1860 68.1863 31625 3.162 The critical Taylor number for transition from stable cy-
0.600  71.7154 71.7157 3.1483 3.148 lindrical Couette flow to supercritical Taylor vortex flow for
0.700  79.4903 79.4907 3.1389 3.139 a suspension of neutrally buoyant particles is shown in Fig. 2
0.750  85.7760 85.7765 3.1354 3.135 as a function of the particle concentration for radius ratios
8:288 12‘;223 12‘1'.76332 33'.11%68 33113;’; r_angi_ng from#%=0.45 to »=0.95. As the particle concentra- _
0975 260.9483 260.9499 3.1270 3.127 tion increases, the flow becomes less stable. For all condi-

tions studied the critical Taylor number decreases by about
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TABLE II. Critical wave numbers at different concentrations in the range
0=<A=0.05 for several radius ratios. 200

ke (7=0.99 k¢ (#=0.89 Kk (#=0.79 k. (7=0.65 k. (=049
3.127 3.130 3.135 3.143 3.172 150 |

100 |+
7% as the particle concentration increases from zero to th Tac
maximum concentration. This result for spherical particles i<
different from theoretical predictions for rigid fibet3In that 50
case, the fibers stabilize the flow. The differing results coulc
be a consequence of the different shape of the particles or tt

different analytical technique@wo-fluid model versus non- 0
Newtonian rheological coefficients 0 0.01 0.02 003 0.04 0.05 0.06
The critical wave number is not altered by the concen- A

tration of particles. Table Il provides the wave number for . _ B

neutrally buoyant particles for concentrations ranging frqmr':;?m:'r;ir(‘;;iﬁ?i)ofeggf‘ggi(rit')e:’:”l’cz'_“‘ia'_;‘;‘fi’g‘r}‘ff“_l)’ir:fgggs;e(‘ga'
A=0 to A=0.05. This result is independent of density ratio ,.—q 75 (m) »=0.85,(¢) »=0.95.

and particle size ratio.

The effect of the particle density on the critical Taylor
number is shown in Fig. 3 for three radius ratios. It is appardor number based on the bulk effective density and viscosity
ent that the more dense particles have a much greater effeat the suspension. The effective density is readily calculated
on the stability of the flow than less dense particles. As théased on the particle concentration and the density ratio. The
particle concentration increases from 0 to 5%, the decrease gifective density can be as much as 42 times the fluid density
the critical Taylor number is negligible far=0.001, but as for dense particles at the highest concentration considered.
large as 35% foe=10. The destabilizing effect is even more The effective viscosity is more difficult to specify. Several
striking for particles in a gase=833), where the critical correlations, both theoretical and empirical, exist to calculate
Taylor number decreases to only a small fraction of its valughe effective viscosity of a suspensiohEor simplicity, we
as the particle concentration increases. use the Einstein formulation such that.s=u(1+2.54).

The greater effect of heavy particles on the stability mayThus, the effective viscosity can be as much as 12.5% greater
be attributed to their inertia, which results in an increasedhan the fluid viscosity for the concentrations that we consid-
degree of coupling between the fluid and particle phasesred. Figure 4 indicates the dependence of the effective criti-
This effect is most evident if considered in terms of thecal Taylor number, based on the effective bulk density and
Stokes number, defined as viscosity, on the concentration of particles for density ratios

*2r,0 from €=0.001 toe=833 and the three radius ratios that were
St= % shown in Fig. 3. Using the effective critical Taylor number

W

The Stokes number represents the ratio of the viscous relax-
ation time for the particle g, ¢* 2/18u) to the time scale of 200
the flow (d/r,Q4). It indicates the ability of the particles to
respond to the motion of the carrier fIiti>! For small val-
ues of the Stokes number, particles accurately follow the
carrier fluid, whereas for large values the particles do no
closely follow the fluid motion because of their inertia. The
Stokes number foe=833 ranges from 107 to 10" * depend-
ing on concentration and radius ratio, whereas for the lowe
density ratios, the Stokes number is one to six orders 0 (Tay), |
magnitude less. Thus, for the smaller density ratios, the in
ertia of the particles is so small that the particles have little 50
effect on the stability. For the largest density ratio, the par-
ticles interact more strongly with the flow and reduce the

150

100

stability. 0 : 1 L 1 L
This naturally poses the possibility of accounting for the 0 0.01 0.02 0.03 0.04 0.05 0.06
effect of the density ratio in the form of the critical Taylor A

number. The Taylor numbers in Figs. 2 and 3 are based on _
the fluid properties(density and viscosii)y However. the FIG. 4. The effect of particle concentration on the effective critical Taylor

. . . . .number. The effective Taylor number is based on the density and viscosity
presence of particles alters the effective density and viscosityt he suspensiott--) e=0.001(nearly hidden by the solid line(—) e=1,

of the suspension. This suggests the use of an effective Tay--- e=10, () e=833.
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FIG. 5. Critical Taylor number as a function of density ratio for several gig. 6. Experimental results obtained using neutrally buoyant nylon par-
radius ratiogA=0.005,¢=0.009; (®) »=0.65,(A) »=0.75,(H) »=0.85, ticles (=0.824, $=0.0038.
(#) =0.95.

nearly collapses the data for this wide range of density ratioguantity (Agaes=0.00005) of silicon dioxide coated mica
at all three radius ratios. Apparently, the effective suspensiofeflective flakes(Flamenco Superpearl, Mearl Corpvere
density, which plays a much greater role than the effectiveddded to the suspension to make the vortices visible. The
viscosity in the effective Taylor number, accounts for theconcentration of the flakes was a factor of 20-100 times less

degree to which particles follow the fluid flow and thereby than the nylon particle concentration. The temperature in the

affect the stability. annulus was monitored during the experiments to permit
The effect of the density rati@ on the critical Taylor ~temperature correction of the density and viscosity. _
number is shown in Fig. 5 for a single concentrationfof The Taylor number was increased from rest in a stepwise

=0.005 and several radius ratios. The density ratio has littidashion using small incrementaTa~1 near the theoretical
effect on the critical Taylor number until it is quite large. transition point. The system was allowed to equilibrate for
(Values for 16<e<833 were not calculated, since they do atleast 10 min after each change in Ta. Transition was said to
not represent physically realizable systems. occur at the minimum Taylor number where vortices were
Finally, we calculated the critical Taylor number for par- observed to fill the entire annulugdlere we refer to the fluid
ticle sizes of 0.000& $#<0.02 over the range of concentra- Taylor number, not the effective Taylor number, though there
tions and density ratios that were considered. The criticais little difference between them fer=1.) Precursor vortices
Taylor number and critical wave number were independen@ppeared first near the end caps and then in various parts of
of ¢. the annulus slightly below the critical Taylor number, con-
sistent with previous results for simple fluitfsThe Taylor
number was increased until the vortices filled the annulus
and then decreased until they were visible only in parts of the
annulus. In this way, we could bracket the transition from
We performed a limited number of experiments for sus-stable to Taylor—Couette flow to be 98&®a<100.3 for A
pensions of neutrally buoyant particles to determine how= 0. The theoretical value is J& 100.73 for the radius ratio
well the linear stability analysis captures the physics of theof the setup® Although the wavelength of the vortices was
problem. The experiments were conducted using a standarbt measured precisely, it was clearly quite near the expected
Couette cell with a fixed outer cylinder, stepper motor drivenvalue for square vortical cells. When observing transition for
inner cylinder, and fixed end caps such that;24.97 nonzero particle concentrations, a similar method to bracket
+0.013cm, 2,=6.03:0.013cm. The radius ratio was the transition was used to determine the critical Taylor num-
7=0.824 and the aspect ratio wds=H/d=96, whereH ber. The critical Taylor number for transition from Taylor
=50cm, is the height of the column. The concentration ofvortex flow to wavy vortex flow was determined in a similar
the aqueous glycerol solution was matched to the approxiway. Transition to wavy vortex flow was said to occur when
mate density of the nylon particlép=1.1 g/cni). It was  wavy vortices filled the entire annulus. For zero particle con-
difficult to exactly match the density of all particles, due to centration the wavy transition could be bracketed as 1.24
variability in the particles. The 205 um particles(Goodfel-  <Ta/Ta<1.25. Previous experiments show significant vari-
low LS194265, Cambridge, UKwere used in volume con- ability in the transition depending on the aspect ratio and
centrations of 6 A=<0.005. Surfactant in the form of deter- experimental condition The range is 1.15 to 1.28 Tdor
gent was added in very small amour#s1.5 ml/21000 ml of  radius ratios near that in our experiments.
suspensionto assure suspension of the particles. A small  The effect of concentration on transition is shown in Fig.

IV. EXPERIMENTAL RESULTS FOR A NEUTRALLY
BUOYANT SUSPENSION
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6 for A<0.005, concentrations that are much lower than thaevas altered from that used in E@). (5) The linear stability
concentrations in previous figures. Clearly, the presence adnalysis necessarily neglects nonlinear terms. However, it
neutrally buoyant particles stabilizes the flow for both theseems unlikely that a subcritical instability related to these
transition from stable flow to Taylor vortex flow and from terms would occur altering the theoretical resul®. The
Taylor vortex flow to wavy vortex flow. Obviously, the ex- Bassett history force acting on the particles is assumed to be
perimental results differ from the linear stability analysis. negligible based on an order of magnitude analysis. How-
There may be a maximum in the data fo=0.004 for both  ever, a recent study has suggested that the motion of a par-
transitions with a slight downward trend for greater concendicle itself may be unstable when the Bassett history force is
trations that might be consistent with the theoretical predicincluded> The way in which this would impact the two-
tion. Unfortunately, the transition became more difficult to fluid model used here is unclea7) The linear stability
detect visually as the concentration increased, so that it wagnalysis assumes that the stable concentration of particles is
impossible to detect foA>0.005. Thus, it is not clear if the uniform[Ain Eq. (5) is independent of, z, andt]. Given the
maximum vaguely evident in Fig. 6 really occurs or is auniform shear in stable Couette flow, it seems unlikely that
result of the difficulty in identifying the transition to vortical shear-induced diffusion would result in a concentration gra-
flow at high particle concentrations. We further note that thedient, but clearly the wall-exclusion effect results in a non-
experimental results displayed a consistent stabilizing trendniform concentration profile near the walls of the annulus
with increasing concentration even for very low concentra-that was not included in the model. In addition, once vortices
tions (A=0.001). occur the concentration of particles is unlikely to be uniform.
We are confident that our experiments were repeatabl¥ is likely that one of the two latter points, the omission of
and robust. While it was challenging to determine the exachistory term or the assumption of a uniform concentration of
Taylor number for transition by visualizing the flow, the sta- particles in the theory, are the most likely causes of the
bilizing effect was quite clear. Our visual observation of thetheory not capturing the physics to properly match the ex-
first transition coinciding with the predicted theoretical valueperiments.
for a fluid with no nylon particles gives us further confidence
in ou_r_method. Furthgrmore., our visual obs.ervatllon of Fhev_ SUMMARY
transition to wavy vortices with no nylon particles is consis-
tent with previous measurements. We note that it was quite  The results of the theoretical analysis of the stability of a
difficult to match the fluid density to the particle densfy  suspension in cylindrical Couette flow indicate that the flow
small fraction of the particles always sank while a similaris destabilized by the presence of a dispersed species. The
small fraction floated However, the bulk of the particles degree of destabilization depends on the density ratio be-
were neutrally buoyant, so we doubt that density differenceswveen the dispersed phase and the continuous phase. More
affected the results. dense particles result in more of a destabilizing effect. Most
There are some differences between the experiments ari#tely more dense particleuch as solid particles in a gas
the stability analysis that could be speculated as reasons fare less likely to follow the fluid motion, based on the par-
the differing analytical and experimental resultd) Al- ticle Stokes number. This results in a stronger interaction
though our experimental setup had a reasonably large aspdmttween the disperse and continuous phases through the
ratio, end effects, which are not included in the theory, couldStokes drag ternisince the velocity difference is greakelt
play a role. However, this seems unlikely given that endis quite logical to argue that this disrupts the stability more
effects do not alter the critical Taylor number for particle- easily than neutrally buoyant or very light particles. The ef-
free flows except when the aspect ratio is quite sni2liThe  fect of the density ratio can be readily taken into account, at
model assumes monodisperse particles, whereas a reasonalelgst to a first approximation, by converting the calculated
narrow distribution of polydisperse particles were used in thecritical Taylor number, which is based on the fluid properties,
experiments. However, the negligible dependence of théo an effective Taylor number based on the bulk suspension
model results on particle size suggests that this is not a prolwlensity and viscosity. This permits the estimation of a critical
lem. (3) The model assumes spherical particles, whereas th&ylor number that is nearly independent of the density ratio.
experiments included flakgé small concentrationfor vi- Nevertheless, our preliminary experiments with neutrally
sualization and used particles that were not exactly sphericabuoyant particles indicate a stabilizing effect of particles.
Since similar flakes have been used by many researchers Ttis could be argued as a logical result given that the par-
visualize transition to vortical flow without adverse affects, ticles increase the effective viscosity slightly and thereby re-
we can only assume that the small concentration of flakes iquire a larger Taylor number based on fluid properties to
inconsequential4) It is possible that the detergent added tohave the effective Taylor number reach the critical value.
aid in the dispersion of particles affected the stability of theHowever, this effect should be quite small for the experimen-
flow. However, the amount of detergent was so small that théal particle concentrations.
viscosity and density of the fluid were unaffected. Further-  The original motivation for this work was the flow of
more, the experiment at zero particle concentration using theuspensions in Taylor—Couette reactor cells or rotating fil-
water-glycerol-detergent solution matched the theoreticalers. In these devices, the base flow is substantially more
prediction quite well indicating no fluid non-Newtonian ef- complex due to the necessary axial or radial flows to carry
fects. The only possibility is that the detergent altered theahe process fluid into and out of the cell. The results pre-
interaction between phases so that the interfacial force terrsented here provide some insight with regard to these appli-
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cations. In particular, our results suggest that an estimate éfH. B. Winzeler and G. Belfort, “Enhanced performance for pressure-
the conditions for the flow to become unstable may be baseddriven membrane processes: The argument for fluid instabilities,” J.

on the effective Taylor number. However, the differences be,,

Membr. Sci.80, 35 (1993.
R. M. Lueptow and A. Hajiloo, “Flow in a rotating membrane plasma

tween the exp_erimental and theoreti_c_al_ results prevent anyseparator,” ASAIO J41, 182 (1995.
conclusions with regard to the stabilizing or destabilizing?J. R. Hildebrandt and J. B. Saxton, “The use of Taylor vortices in protein
effect of particles in suspension on Taylor—Couette flow. Processing to enhance membrane filtration performanceBiaprocess

Clearly, the effect of particles in suspension on the stability

Engineering Colloquiumedited by R. C. Dean, Jr. and R. M. Nerem
(American Society of Mechanical Engineers, New York, 198fp.

of Taylor—Couette flow remains an open question that hasgsz_gs.

significance in several applications.
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