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Through a combined computational–experimental study of flow in a slowly rotating quasi-two-

dimensional container, we show several new aspects related to the kinematics of granular mixing. In

the Lagrangian frame, for small numbers of revolutions, the mixing pattern is captured by a model

termed “streamline jumping.” This minimal model, arising at the limit of a vanishingly thin surface

flowing layer, possesses no intrinsic stretching or streamline crossing in the usual sense, yet it can

lead to complex particle trajectories. Meanwhile, for intermediate numbers of revolutions, we show

the presence of naturally persistent granular mixing patterns, i.e., “strange” eigenmodes of the

advection-diffusion operator governing the mixing process in Eulerian frame. Through a compara-

tive analysis of the structure of eigenmodes and the corresponding Poincaré section and finite-time

Lyapunov exponent field of the flow, the relationship between the Eulerian and Lagrangian descrip-

tions of mixing is highlighted. Finally, we show how the mapping method for scalar transport can be

modified to include diffusion. This allows us to examine (for the first time in a granular flow) the

change in shape, lifespan, and eventual decay of eigenmodes due to diffusive effects at larger num-

bers of revolutions. VC 2011 American Institute of Physics. [doi:10.1063/1.3653280]

I. INTRODUCTION

Granular flows open a window into a complex, disordered

system far from equilibrium exhibiting both chaotic dynamics

and self-organization,1 amongst a variety of other behaviors.2

Recently, new aspects of the short-time kinematics of granular

flow have been uncovered in three-dimensional containers

slowly rotated about two axes.3 While, in a granular flow in a

rotating tumbler, all stretching (in the sense of continuum

mechanics) occurs in a thin surface fluidized shear layer (the

flowing layer), mixing and complicated particle trajectories

can be observed even when the flowing layer becomes vanish-

ingly thin.3–6 This can be considered an example of complex

dynamics without the “usual symptoms” of chaos and

related3,5,6 to the mathematical concept of a piecewise isome-
try (PWI).7–10 Because such complex dynamics do not arise

from the usual “stretching and folding” mechanism of chaotic

mixing, the new mechanism has been termed3 “cutting and

shuffling,” a tip to the similarity between PWIs and the

“mixing” of a deck of cards.11 However, many questions

remain as to the extent of PWI dynamics in the vanishing-

flowing-layer limit and the implications for mixing and trans-

port in granular (and related) flows.

In the first part of this paper, we focus on the Lagrangian

description of mixing, i.e., on how to understand the motion

of material points in this continuum. In doing so, we extend

the result of Juarez et al.3—that the dynamics under the model

with a vanishingly thin flowing layer represents the “skeleton”

of mixing in experiments—to quasi-two-dimensional (quasi-

2D) non-circular containers with variable fill fractions. In par-

ticular, we present experimental evidence for the underlying

mixing mechanism of streamline jumping,5,6 which has been

studied only theoretically so far, and we relate this description

of the mixing process to previous models of avalanching and

continuous granular flow in a rotating container.

Such dynamics is readily observable in granular mixing

in slowly rotated containers for small numbers of revolutions;3

on longer time scales, however, the effects of Lagrangian

coherent (morphological) structures created by advection can-

not be ignored.12 When diffusive effects are weak, these struc-

tures can give rise to naturally persistent mixing patterns,
sometimes called “strange” eigenmodes, which can be under-

stood in terms of the Eulerian description of mixing. Such

Eulerian coherent structures, first observed in numerical simu-

lation of advective-diffusive transport in idealized flows13 and

subsequently in fluid mixing experiments,14–17 have generated

significant interest in recent years. Mathematically, a strange

eigenmode is just a dominant eigenmode of the advection-

diffusion operator governing the mixing of a passive scalar in

a flow.18 Such eigenmodes can have an intricate spatial struc-

ture that oscillates and persists for long times. At first, this

was unexpected; hence, the reason for having been dubbed

“strange.”
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Recently, Singh et al.19 revisited the issue of strange

eigenmodes using a simple numerical approach to distributive

mixing, originally studied by Spencer and Wiley,20 and found

that the eigenmodes of the advection operator (diffusion is

neglected in this approach) can be obtained from the eigen-

vectors of a so-called mapping or distribution matrix. In the

second part of this paper, we use the simplified mapping

method21 and the spectral structure (i.e., the eigenvalue-

eigenvector pairs) of its distribution matrix to present the first

study of both strange eigenmodes and distributive scalar

transport by the mapping method in the context of tumbling

granular flows in rotating containers. In addition, through an

analysis of the flow based on Lagrangian diagnostics such as

the Poincaré section and the finite-time Lyapunov exponent

(FTLE) field, we relate the spatial organization of the (Euler-

ian) eigenmodes to coherent flow structures such as the

Kolmogorov–Arnold–Moser (KAM) islands that surround

elliptic periodic points, and the invariant manifolds of hyper-

bolic periodic points.

Unlike molecular diffusion in fluid mixing, however,

diffusive effects in granular mixing manifest quickly22 due

to the significant contribution of dissipative inter-particle

collisions in the flowing layer.23 Thus, while studies of

strange eigenmodes in fluids14–17 are mainly concerned with

how a mixing pattern saturates to a particular combination of

eigenmodes, granular mixing adds a new dimension to the

phenomenon: namely, the destruction of naturally persistent

patterns by diffusion. In the third part of this paper, we pres-

ent a novel extension of the mapping method to include dif-

fusion. We use the latter to show that a finite superposition

of dominant advective-diffusive eigenmodes manifest them-

selves in experiments with both monodisperse and bidisperse

granular materials. It is observed that diffusion not only

changes their structure (compared to purely advective

eigenmodes) but also reduces the timescale on which they

can be observed in a tumbled monodisperse granular system.

II. KINEMATICS OF THE FLOW

A. Continuum model of granular flow in a tumbler

Under the original model of Khakhar et al.,22 the (Euler-

ian) velocity field u ¼ ux̂ ı̂ıþ uy |̂̂|, in the moving frame of a

tumbler with arbitrary convex shape (see Fig. 1), takes the

form

uxðx; y; tÞ ¼
2�vxðtÞ 1þ y=dðx; tÞ½ �; y > �dðx; tÞ;
xz½yþ hðtÞ� � _gðtÞ; otherwise;

�
(1a)

uyðx; y; tÞ ¼ �xzx y=dðx; tÞ½ �2; y > �dðx; tÞ;
�xz½xþ gðtÞ� � _hðtÞ; otherwise;

�
(1b)

where a superimposed dot indicates a time derivative, and

xz(> 0) is the clockwise rotation rate. Here,

dðx; tÞ ¼ d0ðtÞ 1� x=LðtÞ½ �2
n o

; �vxðtÞ ¼
xzLðtÞ2

2d0ðtÞ
(2)

are, respectively, the instantaneous flowing layer depth and

the instantaneous depth-averaged flowing layer streamwise

velocity, which is assumed to be independent of x in this

model. The continuum is incompressible and thus $ � u ¼ 0,

as can be verified from Eqs. (1) and (2). In numerical simula-

tions, Eq. (1) is transformed to a rigid coordinate system

(aligned with the walls of the container in its initial orienta-

tion) by the change of variables x! ~x� gðtÞ, y! ~y� hðtÞ,
where g(t) and h(t) are the horizontal and vertical (signed)

distances, respectively, between the center of rotation C and

the midpoint of the free surface O (see Fig. 1).

Here, for a given convex tumbler shape, the maximal

depth of the flowing layer d0(t) and the half-length of the

free surface L(t) are known functions of time (i.e., orienta-

tion) alone and are such that � :¼ d0ðtÞ=LðtÞ can be assumed

to be a constant independent of time.22 This is termed the

geometric similarity of the flowing layer because, physically,

it means that the flowing layer adjusts instantaneously to

changes in the container’s orientation. Thus, the free parame-

ters are the flowing layer’s aspect ratio � and the container’s

fill fraction /. (Once the tumbler’s shape and / are specified,

the time-dependent quantities h, g and L can be determined.)

Finally, the flow period is defined as T ¼ ð2p=xzÞ=n, where

n is the number of sides in the case of a polygonal

tumbler.24,25

B. The vanishing-flowing-layer limit and the
avalanching-to-continuous-flow transition

Four distinct regimes of granular flow in a tumbling

mixer can be identified.26,27 At very small rotation rates, the

flow is in the “avalanching” regime (Fig. 2(a)), for which a

wedge model was proposed by Metcalfe et al.28,29 Mean-

while, at larger (though still small) rotation rates, the flow

enters the “continuous/rolling/cascading” regime (Fig. 2(b)),

which was modeled by Khakhar et al.22,30 As discussed in

FIG. 1. Diagram of a 70% full square quasi-2D tumbler, which has been

rotated backwards by the dynamic angle of repose bd (so that the free sur-

face of the flow is horizontal), showing the coordinate systems and notation.

The out-of-plane thickness of the tumbler is assumed much smaller than its

width and height, so it is not shown. The boundary between the flowing

layer (light gray) and the bulk (dark gray) is represented by a dashed curve.

Adapted, with permission, from I. C. Christov, J. M. Ottino, and R. M. Luep-

tow, “Streamline jumping: A mixing mechanism,” Phys. Rev. E 81, 046307

(2010). VC 2010 American Physical Society.
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Sec. II A, this is the regime we are most interested in. Even

though the transition from intermittent avalanches to contin-

uous flow is quite complicated,31,32 these simple models

describe each case quite faithfully insofar as mixing is

concerned.

At the interface between these two models lies the limit-

ing case of a vanishingly thin flowing layer. The latter, when

framed mathematically as the limit of � � d0ðtÞ=LðtÞ ! 0,

exhibits streamline jumping, and the kinematics can be

described by a nonlinear map that is the composition of iso-

metries.5,6 In this limit, it can be shown that the flowing layer

becomes vanishingly thin (specifically, an interface at the

free surface), while the time-of-flight through the flowing

layer goes to zero because the magnitude of the mean surface

velocity diverges as 1=�. 5,6 Then, streamline jumping becomes

possible: particle trajectories undergoing solid body rotation

can switch their radius from the center of rotation C by jump-

ing across the midpoint of the free surface instantaneously, i.e.,

(x,y)! (�x,y).

To illustrate this, let us move to the fixed frame with ori-

gin at C. Now, consider a material point ð~xm; ~ymÞ> in the

right-half of the infinitely thin flowing layer (coincident with

the free surface in Fig. 1), which is located at some

gðtmÞ < ~xm < LðtmÞ þ gðtmÞ and ~ym ¼ hðtmÞ at time t ¼ tm.

Then, its trajectory returns to the right-half of the flowing

layer at some later time tmþ1 given implicitly by hðtmþ1Þ
¼ r0 sinðh0 � xzðtmþ1 � tmÞÞ, where r0 ¼ ð~x2

m þ ~y2
mÞ

1=2
and

h0 ¼ tan�1ð~ym=~xmÞ. Then, this material point’s trajectory is

the composition of three isometries—a rotation, a reflection

and a translation—and takes the form5,6 (see also Ref. 4):

~xmþ1 ¼ � cosðxz�tÞ~xm � sinðxz�tÞ~ym þ 2gðtmþ1Þ; (3a)

~ymþ1 ¼ � sinðxz�tÞ~xm þ cosðxz�tÞ~ym; (3b)

where �t :¼ tmþ1 � tm. The last term in Eq. (3a) represents

translation. Notice that tmþ1 (and, hence, �t) is implicitly a

function of ~xm and ~ym, making the map described by Eqs. (3)

a nonlinear generalization of the piecewise isometries

(PWIs) from the pure mathematics literature.7–10 Figure 3

illustrates, at two different tumbler fill levels, typical trajec-

tories defined by Eq. (3), including streamline jumping in

Fig. 3(a).

One way to understand physically the type of process

that the limiting system describes is to consider what hap-

pens as the rotation rate xz of the tumbler is increased past

the critical value at which avalanching gives way to continu-

ous flow. The transition has been found to exhibit hystere-

sis31 and intermittency,32 which makes the definition of a

single critical angular velocity impossible. But suppose, for

the sake of argument, that some estimate ðxcrit
z Þ can be

made. Then, as xz ! ðxcrit
z Þ
�

the wedges of the discrete ava-

lanching model28,29 become thinner and avalanche more of-

ten. Eventually, they become infinitely thin (zero area but

finite length) and the flow becomes continuous (as opposed

to intermittent).4,33,34 Then, as xz passes through xcrit
z , a

flowing layer of finite depth develops and the flow becomes

continuous in time.

Put this way, the continuous avalanching of infinitely

thin wedges described above is precisely streamline jump-

ing.5,6 This suggests that the mathematical framework result-

ing from taking the limit of a vanishing-flowing-layer is not

an idealization but a model of granular flow in a specific,

albeit very small, range of rotation rates. Nevertheless, it is a

particularly useful regime to understand, because (as has

been suggested before3,5,6 and is reinforced in Sec. III) it

provides the “skeleton” of mixing when the flowing layer is

thin, as is often the case in real granular flows.27

Finally, just as the wedge-based avalanche model

predicts no mixing for certain 50% full tumblers28,29 (e.g.,

ones with circular or even-sided polygonal cross-sections),

streamline jumping (in continuous flow with an vanishingly

thin flowing layer) is also impossible in these 50% full tum-

blers because the resulting map in Eq. (3) is trivial.5,6 Thus,

the wedge and streamline jumping models are consistent

with one another at the intersection of their respective

applicability.

FIG. 2. Diagrams of two granular flow regimes in a square tumbler. In the

avalanching regime (a), the flow consists of intermittent avalanches. When-

ever the free surface reaches the marginal angle of repose bm, the dark gray

wedge of material upstream flows down the slope becoming the light gray

wedge. Now, the free surface is at the static angle of repose bs<bm. As the

tumbler continues to rotate, the process repeats. In the continuous-flow regime

(b), the flow consists of a thin fluidized surface layer. The free surface remains

almost flat and maintains an angle, the dynamic angle of repose bd, with

respect to the horizontal. The angles bm, bs, and bd are constants that depend

on both the properties of the granular material (e.g., particle size and surface

roughness) and the tumbler (e.g., axial depth and rotation rate) (Ref. 27).

FIG. 3. (Color online) In a 73% full square tumbler (a), a particle initially

on the solid blue streamline can transfer to the dashed red streamline, as the

tumbler rotates from orientation A to B, by jumping across the infinitely thin

flowing layer (light blue arrow). This is because the location of the free

surface’s midpoint is different between orientations A (small diamond) and

B (small triangle). For a 50% full square tumbler (b), however, the midpoint

of the free surface remains fixed and no streamline jumping is possible. Par-

ticle trajectories coincide with the solid-body-rotation streamline they start

on. Adapted, with permission, from I. C. Christov, J. M. Ottino, and R. M.

Lueptow, “Chaotic mixing via streamline jumping in quasi-two-dimensional

tumbled granular flows,” Chaos 20, 023102 (2010). VC 2010 American Insti-

tute of Physics.
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III. THE VANISHING-FLOWING-LAYER LIMIT:
EXPERIMENT AND SIMULATION

Here, for the purposes of illustrating the quasi-2D van-

ishing-flowing-layer dynamics, we use a square tumbler.

However, those features of mixing under this flow that we

elucidate are generic to convex non-circular tumblers (e.g.,

polygonal ones).24,25 Note that, in this section, we study the

mixing process in the Lagrangian frame by seeding an initial

assortment of tracers of different colors and then tracking

their re-arrangement due to the flow.

Figures 4, 5, and 6 show, for three different fill fractions

of the example square quasi-2D tumbler, comparisons

between experiments (see Appendix A) and simulations of

the mixing pattern (see Appendix B) with a flowing layer of

comparable thickness ð� ¼ 0:1Þ, a very thin flowing layer

ð� ¼ 0:01Þ and a vanishingly thin flowing layer ð� ¼ 0Þ. This

illustrates to what extent the � ¼ 0 behavior (streamline

jumping) can be observed in a monodisperse quasi-2D gran-

ular mixing experiment. In the experiments, the flowing

layer has a maximum thickness d0(0) of 6 6 1 particle diam-

eters, consistent with a previous investigation.35 The tum-

bler’s side length and particles’ diameters are, respectively,

S¼ 25 cm (¼ 2L(0)) and d¼ 2.03 6 0.04 mm (combined

uncertainty of black and clear particles, see Appendix A),

hence � � d0ð0Þ=Lð0Þ ¼ 0:1060:02. Noting that the model

is not sensitive to small changes in this parameter,6 we take

� ¼ 0:1 in the numerical simulations of the case with a flow-

ing layer of realistic thickness.

From Fig. 4, it is immediately clear that for a fill fraction

/¼ 0.5, the � ¼ 0 dynamics is trivial and periodic. Indeed,

at this fill fraction, streamline jumping (the mechanism of

mixing for � ¼ 0) is impossible and all particles remain on

their initial streamlines.5,6 By comparing the simulations

with a thin (but non-zero thickness) flowing layer to the

experiment, it is evident that a finite-thickness flowing layer

leads to the interface between the black and clear particles

becoming slanted. This does not, however, lead to mixing of

the black and clear particles even after 10 flow periods (quar-

ter revolutions of the container). (The impact of granular dif-

fusion becomes noticeable when comparing the simulation

with � ¼ 0:1 to the experiments, particularly on the left side

of the tumbler, though the interface between black and clear

FIG. 4. (Color online) A 50% full quasi-2D square tumbler, rotated back-

wards by the dynamic angle of repose, after n quarter-revolutions. At this fill

fraction, the dynamics corresponding to � ¼ 0 (the “skeleton” of mixing) is

trivial. Simulations with a finite-thickness flowing layer (the dashed curve

evident for � ¼ 0:1) and the experiment likewise show that the region of

black particles deforms somewhat, yet no significant mixing occurs.

FIG. 5. (Color online) A 35% full quasi-2D square tumbler rotated back-

wards by the dynamic angle of repose. The initially segregated pattern is

“cut and shuffled” into a collection of intricate structures. Simulations with a

finite-thickness flowing layer show the effects of stretching due to shear are

negligible, and that streamline jumping (the � ¼ 0 dynamics) is the primary

stirring mechanism in the flow for low numbers of flow periods.
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particle remains distinct and fairly sharp.) Therefore, we can

conclude that the lack of streamline jumping is readily

observable at this stage of the process. The � ¼ 0 behavior in

this case is analogous to the p/2 – p/2 PWI map in the half-

full three-dimensional blinking spherical tumbler.3

In Fig. 5, for /¼ 0.35, complex behavior can be

observed. Although it is clear that the � ¼ 0 dynamics is the

“skeleton” of the flow, by n¼ 4 the simulation with a realis-

tic flowing layer ð� ¼ 0:1Þ and the experiment look some-

what different. As we show in Sec. V B, the diffusive effects

of inter-particle collisions in the flowing layer are quite sig-

nificant in this case, since at such low fill fractions the par-

ticles go through the flowing layer more often than at higher

fill fractions. At n¼ 10, the granular material in the experi-

ment appears well-mixed, which is not surprising given the

degree of mixing in the simulations together with granular

diffusion. However, it is still remarkable that to a large

extent the vanishing-flowing-layer dynamics can be observed

in the finite-thickness flowing layer simulations and the

experiments for the first few periods.

Finally, the case of /¼ 0.75 is illustrated in Fig. 6. For

such fill fractions greater than 0.5 (specifically, those such

that h� d0> 0), it is expected that overall mixing is reduced

because of the existence of an unmixed core, which consists

of particles that never pass through the flowing layer.28 At

this fill fraction, it is quite easy to distinguish the three funda-

mental mixing processes in the granular flow:36 streamline

jumping (a mechanism related to PWIs5,6 and cutting and

shuffling3), stretching and folding (due to shear in the flowing

layer1,22), and diffusion (due to inter-particle collisions in the

flowing layer23). Streamline jumping leads to the initially rec-

tangular regions of black and clear (more precisely, light gray

in the simulation plots) particles becoming intricate, curved

regions with sharp edges. Stretching and folding is initially

very weak in this case, even for � ¼ 0:1, but leads to certain

parts of the black/clear particle interface becoming slanted

(evident at n¼ 1,2,3 and similar to the case of /¼ 0.5 in

Fig. 4). Note that thin filamentary structures are observed

even for � ¼ 0 because streamline jumping leads to spreading

of material points and complex patterns even in the absence

of stretching (in the sense of shear strain) within the flowing

layer.6 Diffusion can also be observed in the experimental

images as parts of the interface become “fuzzier” with each

iteration, though the diffusive effects are relatively weak for

small n. Even at n¼ 10, some of the � ¼ 0 dynamics can be

distinguished in the experimental image. Thus, the minimal

model represented by streamline jumping provides the skele-

ton of the mixing pattern in a (monodisperse) granular flow.

IV. ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT

A. Mathematical setting

So far we have only considered the mixing problem

from the Lagrangian viewpoint: tracking the advection of

passive tracer particles of different colors to determine what

occurs in a tumbled granular system. A complementary

approach is the Eulerian viewpoint, whereby one studies the

spatiotemporal evolution of the concentration c, on some

two-dimensional domain X � R2, under the advection-

diffusion equation

@c

@t
þ u � $c ¼ 1

Pe
$2c; x 2 X; t > 0; (4a)

n̂ � $c ¼ 0; x 2 @X; t > 0; (4b)

where Pe is the Péclet number, n̂ is the outward unit normal

to the boundary @X, and the velocity field is assumed sole-

noidal and time-periodic: $ � u ¼ 0 and u ¼ u x; tð Þ
¼ u x; tþ Tð Þ8t. In what follows, c can be either the concen-

tration of black or clear particles, depending on the particular

situation under consideration.37 The Péclet number is defined

as the ratio of the advective to the diffusive time scales, i.e.,

Pe : ‘U/D, where ‘ is the characteristic length of the do-

main, U is a characteristic velocity of the flow, and D is the

diffusivity of the tracer. In addition, there is the initial condi-

tion c(x,0)¼ c0(x), which we suppose is such thatÐ
X c0ðxÞ dx ¼ M, where M is a given constant (the “mass” of

the tracer). Moreover, due to the no-flux (Neumann) bound-

ary condition in Eq. (4b):38

FIG. 6. (Color online) A 75% full quasi-2D square tumbler rotated back-

wards by the dynamic angle of repose. Due to the presence of an unmixed

core at this fill fraction, the effect of streamline jumping on the initially

(unmixed) pattern is easy to observe. Simulations with a finite-thickness

flowing layer show that the effects of stretching in the flowing layer are neg-

ligible, with the � ¼ 0 dynamics being the primary feature of the flow for

many periods. Once again, the experimental results show the role of diffu-

sion becomes apparent by n � 10.
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ð
X

cðx; tÞ dx � M 8t � 0; (5)

i.e., the “mass” of the tracer is conserved.

For any bounded velocity field with general time depend-

ence, Liu and Haller18 have shown that the concentration pro-

file quickly converges to a (finite-dimensional) inertial

manifold spanned by, say, N dominant eigenmodes of the

advection-diffusion operator L � �u � $þ Pe�1$2. These

dominant eigenmodes are the building blocks of the naturally

persistent patterns39 that were termed strange eigenmodes.13

The spectral theory of linear operators40,41 and Floquet theory

for partial differential equations18 have provided significant

insight into the structure of naturally persistent mixing pat-

terns. Numerical simulations have shown even more contexts

in which they exist, e.g., in electro-hydrodynamic flow

induced in droplets,42 in the mixing flows of certain non-

Newtonian fluids,39,43 in periodically reoriented potential

flows,44 and in heat transfer during mixing.45

Thus, we may express46 the concentration field as the

linear superposition

cðx; tÞ � M

jXj þ
XN�1

k¼1

akukðx; tÞekkt; (6)

where jXj is the area of the domain, ak is the kth expansion

coefficient determined from the initial condition, and uk(x;t)
is the kth eigenfunction with corresponding eigenvalue kk

defined as

L½ukðx; tÞ� ¼ kkukðx; tÞ; k ¼ 0;…;1: (7)

Following Singh et al.,19 the kth eigenmode is defined as

ûkðx; tÞ ¼ ukðx; tÞekkt. Note that, due to the time dependence

of u, the eigenfunctions depend on time as a parameter with

uk x; tð Þ ¼ uk x; tþ Tð Þ8t. Clearly, those eigenmodes that

have a kk with a small real part decay the slowest with t;
hence, they are termed “most dominant” or “most

persistent.” Note that Refkkg 	 0 for all k since the Eq. (4a)

is dissipative,40 i.e., there are no eigenmodes that grow with-

out bound in time. Also, the summation in Eq. (6) starts at

k¼ 1 because fu0,k0g¼ fM/jXj,0g is always an eigenfunction-

eigenvalue pair due to the no-flux (Neumann) boundary

condition.

Since we are dealing with a time-periodic flow, it is

helpful to shift the discussion to discrete-time quantities. To

this end, we introduce the Floquet operator F 19,40 defined

through

F½cðx; tÞ� ¼ cðx; tþ TÞ 8t: (8)

Then, the Floquet eigenfunctions wk(x) are defined as

F½wkðxÞ� ¼ lkwkðxÞ; k ¼ 0;…;1: (9)

The analog of Eq. (6) in terms of these quantities is

cðx; nTÞ � M

jXj þ
XN�1

k¼1

bkwkðxÞln
k ; (10)

where c is a discrete-time quantity now, i.e., it can be eval-

uated only at multiples n of the flow period T. As before, the

kth eigenmode is defined as ŵkðx; nÞ ¼ wkðxÞln
k , and the

expansion coefficients fbkgN�1
k¼1 are determined from the ini-

tial condition c0(x). Writing the eigenmodes this way, it is

clear that each has a repeating spatial structure as given by

wk, and this structure can oscillate in time and decay in ac-

cordance with jlkjn. Those eigenmodes with jlkj closest to

unity are the most dominant ones, and jlkj 	 1 for all k, since

the concentration profile cannot grow without bound with n.

Again, it is easy to see that fw0,l0g¼fM/jXj,1g is

always an eigenfunction-eigenvalue pair due to the conserva-

tion of mass. Hence, if Eq. (5) is to be satisfied, then from

Eq. (10) we must have that
Ð
X wkðxÞ dx ¼ 0 for any k> 0.

Thus, the constant eigenmode ŵ0ðx; nÞ � ln
0w0ðxÞ ¼ w0ðxÞ

is referred to as the “homogeneous” one, while the remaining

eigenmodes (ŵk for k> 0) are referred to as “inhomogeneous.”19

For finite Pe, l0 is the only eigenvalue of F that can equal

one in magnitude because the equation is dissipative. Finally,

though some of the eigenvalues can be complex, they must

come in conjugate pairs since F is a real-valued operator.

Hence, the concentration profile in Eq. (10) is always a real

quantity.

B. Numerical implementation via the mapping method

The mapping method for scalar transport was initially

developed to circumvent the issue of high-precision tracking

of material lines (a difficult numerical problem47) when study-

ing the transport properties of a stirring flow. For the time

being, we restrict to the case of vanishing diffusion (i.e.,

Pe!1), meaning we consider purely distributive mixing as

done by Singh et al.19 An accurate mapping matrix can be

constructed by discretizing the domain into a regular grid (see

Fig. 7) and then tracking how much of the material in each

cell is transported to every other cell, say over a single period

of the flow.48–50 Recently, an efficient way of computing the

distribution matrix from Lagrangian trajectories has been

developed,21 leading to a faster and more versatile implemen-

tation suitable for the optimization of micromixers.51

In a tumbled granular system, the domain X changes in

time since the container is rotating. Therefore, a faithful

approximation of the partial differential Eq. (4a) appears to

be difficult, though methods for (stationary) curved geome-

tries have been developed.42 Indeed the standard mapping

method (based on interfacial tracking) is known to fail for

FIG. 7. Illustration of how the filled portion of the example quasi-2D square

tumbler is discretized. Here, Nx¼Ny¼ 4 and 32 tracers are seeded in all cells

before the tracking begins. From Eq. (11), we see that Uij¼ 2/9 in this

example. Note that the cells are rectangles when Nx¼Ny (and /= 0 or 1),

and this is the case for all numerical simulations presented in what follows.
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mixers with complicated geometries.21,39,43 Additionally,

Galerkin methods developed40 for approximating the Floquet

operator in Eq. (8) that are based on Fourier series do not

readily extend to our problem. The simplified mapping

method in Fig. 7, on the other hand, requires only the knowl-

edge of where Lagrangian particle trajectories start and end

over one period of the flow. This kind of particle tracking

can be easily implemented for granular flows in a

tumbler.6,24

To this end, the domain X (assuming that X at t¼ 0

coincides with X at t¼ T) is divided into a grid of cells, each

one with a certain number of passive tracers uniformly dis-

tributed throughout its area. The passive tracers are advected

from t¼T back to t¼ 0 (see the discussion in Appendix B),

whence the components of the distribution matrix U are

Uij ¼
number of tracers in cell j that came from cell i

total number of tracers seeded in cell j
:

(11)

Denoting by c the vector of mean values of c over the cells

of the discretized domain, the concentration grid function cn

after n periods is computed recursively from the previous

one(s):

cn ¼ Ucn�1 ¼ � � � ¼ Unc0: (12)

For computational efficiency, powers of the matrix are not

computed (since U is sparse but its powers are, generally,

not). Instead, the matrix is applied repeatedly. Here, U is an

(NxNy)
 (NxNy) matrix, where Nx and Ny are, respectively,

the number of cells in x and y directions, and cn is an

(NxNy)
 1 vector. Henceforth, for simplicity, we let

N¼NxNy be the total number of cells of the grid, which is

also the number of eigenmodes that can be resolved on it.

Then, the distribution matrix U constitutes a discrete approx-

imation (for Pe¼1) of the Floquet operator F defined in

Eq. (8) and cn
j � c xj; nT

� �
, where xj are the centers of the

cells and cn
j is the jth component of cn.

C. A modification of the mapping method that
includes diffusion

Applying the Marchuk–Yanenko operator splitting

scheme (see, e.g., Sec. 30 in Ref. 52) to Eq. (4a), it can be

formally discretized in time (taking a time step equal to the

period) as

c� � cn

T
¼ Lh

1c�;
cnþ1 � c�

T
¼ Lh

2cnþ1; (13)

where c* is an intermediate quantity, and we have used the

fact that L can be decomposed into the sum of L1 ¼ �u � $
and L2 ¼ Pe�1$2; an h superscript denotes that the operator

has been discretized in space. Here, T is the flow period

made dimensionless by the advection timescale as dictated

by the non-dimensionalization of Eq. (4a); we return to the

issue of timescales in Sec. V B. The solution of the first

equation is precisely the goal of the mapping method

described above, i.e., c*¼Ucn. Then, the second equation in

(13) can be rewritten as

I� TLh
2

� �
cnþ1 ¼ Ucn; (14)

and its solution is readily obtained:

cnþ1 ¼ I� TPe�1Dh
� ��1

Ucnð Þ; (15)

where we take Dh to be the standard 5-point finite-difference

approximation to the Laplacian modified for zero Neumann

boundary conditions (see, e.g., Sec. 1.2 in Ref. 53), and I is

the identity matrix. Defining eU ¼ ðI� TPe�1DhÞ�1U, the

analysis by Singh et al.19 of the spectral structure of the

advection-diffusion (not just the pure advection) problem

and the strange eigenmodes can be immediately carried out.

Clearly, in the limit of Pe ! 1 the usual mapping matrix

and method are recovered (i.e., limPe!1 eU ¼ U).

Formally, the unconditional stability of the implicit treat-

ment of the diffusion and advection54 operators allows us to

take the time step equal to the period T, though if we were to

solve the PDE in Eq. (4a) in such a manner we would commit

a large splitting error. Here, we only use the conceptual
framework of operator splitting to motivate our approach; we

make no claims this is a highly accurate method for solution

of PDEs. Moreover, even though no numerical analysis of the

purely advective mapping method has been performed in the

literature, the method has been quite successful. We argue

this is also likely to be the case for our modification of the

mapping method to include diffusion. In fact, the initial

work13,55 on the subject successfully employed a similar

approach of applying one period of an advection operator,

followed by one period of a diffusion operator.

It is important to note that, for granular flows in tum-

blers, operator splitting with a time step of one period T
makes sense physically because only material in the flowing

layer is subject to diffusion at any given time. The material

in the bulk of solid body rotation is in static equilibrium and

does not experience diffusion. However, during one period

of the flow, most material goes through the flowing layer,

thereby experiencing the effects of diffusion. Hence, taking a

time step equal to T ensures the advection-diffusion model in

Eq. (4a) is consistent with the physics of this granular flow.

As we demonstrate below through comparisons with

experiments, eU is a numerically accessible analogue of

Eq. (8) at finite Pe. For the purposes of exploring, the quali-

tative nature of eigenmodes, this numerical approach is suffi-

ciently accurate when enough cells are used in constructing

the grid, and enough tracers are seeded in each cell; conver-

gence is checked by doubling the grid size and ensuring the

structure of the eigenmodes remains unchanged.

V. EIGENMODE ANALYSIS OF GRANULAR FLOW IN A
SQUARE TUMBLER

A. Existence and structure of advective (Pe 5 ‘)
granular strange eigenmodes

First, it is important to stress that the eigenmodes are

generic features of advection-diffusion in the presence of the

underlying velocity field as given in Eq. (1) (the “normal

modes” of the process, so to say), and they are independent of

the initial condition used in a mixing simulation/experiment.
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As we show below, they manifest themselves in both simula-

tions and experiments.

To better understand the structure of eigenmodes of

granular flow in a rotating tumbler, it is first helpful to exam-

ine the underlying kinematic transport features of the flow

under the paradigm of chaotic advection.56 To this end, we

consider the dynamical system generated by the velocity field

in Eq. (1)5,6 and present two kinds of computational results.

First is the finite-time Lyapunov exponent (FTLE) fields,

or maximum local length stretch,57 shown in Fig. 8(a) for the

three fill fractions in the model square tumbler. Ridges (a type

of locally–maximizing curve) of the FTLE field have been

proposed as both indicators58 for and possibly a definition59 of

Lagrangian coherent structures (LCS),60 which are material

surfaces of maximum (or minimum) stretching in the flow.

Under certain mathematical restrictions on the flow, such LCS

can represent finite-time approximations of the unstable mani-

folds of hyperbolic points.58 However, to properly identify an

LCS in a flow of arbitrary time dependence one must show

that further conditions (beyond being a ridge of the FTLE

field) are satisfied.61 For the time-periodic flow we study, the

highest ridges (darkest curves in the plots in Fig. 8(a)) are the

invariant unstable manifolds of hyperbolic periodic points.

This can be verified by comparing to the manifold traces in

Fig. 12 of Meier et al.25 It is important to stress that not all

ridges are part of the unstable manifolds;6 some may be the

result of strong shear rather than hyperbolicity.62

Second, we consider long-time Poincaré sections of the

dynamical system (i.e., stroboscopic maps in which the loca-

tion of tracer is plotted after every period of the flow), as

shown Fig. 8(b). These reveal the global transport dynamics,

specifically KAM islands surrounding elliptic periodic points

(i.e., regions of regular dynamics, punctuating an otherwise

chaotic domain, that persist thanks to the KAM theorem57).

Both the FTLE fields and the Poincaré sections are Lagran-

gian diagnostics of the flow, and (as shown below) they play

an important role in interpreting (in a sense, a roadmap to)

the Eulerian coherent structures represented by eigenmodes.

Figures 9 and 10 show the eigenstructure of two tumbled

granular systems. Each eigenmode’s normalization is arbi-

trary, so a color scale is not shown. It suffices to note that the

absolute value is plotted, meaning what is presented is the

“intensity” of the eigenmode. For complex-conjugate pairs

of eigenmodes, the absolute values of the real and imaginary

FIG. 8. (Color online) Transport diagnostics of granular flow in a square

tumbler with a flowing layer (dashed curves) of realistic thickness ð� ¼ 0:1Þ
at the three example fill fractions we study.

FIG. 9. (Color online) Representative purely advective (Pe¼1) eigenmo-

des ŵkðx; 0Þ of the concentration field of the granular flow in a quasi-2D

tumbler with /¼ 0.35 and � ¼ 0:1 (flowing layer is the dashed curve) shown

in Fig. 5, as approximated by the eigenvectors of the mapping matrix U.

FIG. 10. (Color online) Representative purely advective (Pe¼1) eigenmo-

des ŵkðx; 0Þ of the concentration field of granular flow in a quasi-2D tumbler

with /¼ 0.75 and � ¼ 0:1 shown in Fig. 6, as approximated by the eigenvec-

tors of the mapping matrix U.
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parts are plotted. Consequently, white regions correspond to

ŵk � 0, while in the dark regions ŵk is non-zero. Following

Singh et al.,19 let us also introduce the following terminol-

ogy: regions where ŵk 6� 0 that contribute to the evolution

are termed active, while those regions where ŵk � 0 and

those with ŵk � const: that do not contribute to the evolution

are termed inactive.

It is useful to make the distinction between eigenmodes

that comprise chaotic regions and those that comprise chains

of KAM islands. By Conjecture 3 of Singh et al.,19 chaotic

and KAM regions must be “spatially disconnected” from

each other, making the corresponding eigenmodes easy to

pick out visually. Furthermore, a period-p structure (e.g., pe-

riod-p KAM island chain) will be composed of the eigenvec-

tors corresponding to eigenvalue clusters of the form

jlkþ mjeipm/p for m¼ 0,…, p� 1, where eipm/p are the pth

roots of unity and jlkþ mj ¼ jlkj for m¼ 0,…, p� 1 in the ab-

sence of diffusion. These are the so-called subharmonic
eigenmodes.18

In Fig. 9(a), the leading (ordered by the magnitude of

jlkj) two eigenmodes of the flow in a 35% full tumbler are

shown. As suggested by the theoretical analysis, l0¼ 1, and

the corresponding eigenmode is homogenous. The next

most-dominant eigenmode, ŵ1, has a real eigenvalue and its

active region delineates a number of KAM islands seen in

the Poincaré section in the left panel of Fig. 8(b). This is the

naturally persistent pattern we would expect to observe in an

experiment. Indeed, in the mixing simulation shown in Fig. 5

with � ¼ 0:1 and n¼ 10, this pattern is beginning to emerge.

In the experiment, however, this pattern cannot be distin-

guished visually because diffusion has led to significant

decay of this eigenmode’s amplitude. We consider the

effects of diffusion on eigenmodes in Sec. V B.

Furthermore, notice that the lighter regions of ŵ1 (where

this eigenmode would be termed “less active”) clearly fore-

shadow Fig. 9(b). In the latter, a triplet of eigenmodes, which

corresponds to the KAM island chain revealed by the Poin-

caré section in the left panel of Fig. 8(b) and observed in the

mixing simulations in Fig. 5, is shown. The third roots of

unity are
�

1;� 1
2
þ

ffiffi
3
p

2
i;� 1

2
�

ffiffi
3
p

2
i
�

, and in Fig. 9(b), we

observe the eigenvalues l3, l4, and l5 are precisely these

roots, but with their overall magnitude damped by a factor of

approximately 0.98 to 0.99. This is an artifact of “numerical

diffusion.”63 Nevertheless, it is clear this is a persistent fea-

ture of the mixing pattern in the absence of diffusion. It is

interesting to note that the complex pair (ŵ4 and ŵ5) of this

triplet is clearly active only in the KAM island chain while

the remaining eigenmode (ŵ3), which has a corresponding

real eigenvalue, is “leaky,” i.e., its active region delineates

other island chains beyond the period-3 one it belongs to, in

contrast to Conjecture 5 (“The active zones of all eigenvec-

tors…combined demarcate the invariant region occupied by

the entire period p group…”) of Singh et al.19 This could be

a manifestation of aliasing in the numerical method, as all

such period- p eigenmodes have one real positive eigenvalue

near 1, so the eigenmodes corresponding to these eigenval-

ues can, in a sense, be aliasing each other.

Figure 10 shows some representative eigenmodes for

the 75% full tumbler. The group of eigenmodes with eigen-

values � f1,i,�1,�ig (with magnitude slightly less than one

due to numerical diffusion) in Fig. 10(a) represents the per-

sistent unmixed core observed in experiments at this fill frac-

tion (recall Fig. 6 for n¼ 10). It is easy to see that this must

be a period-4 structure by noting the four locations of tracers

in the core part of the Poincaré section shown in the right

panel of Fig. 8(b).

A period-3 KAM island chain can also be easily distin-

guished in the Poincaré section shown in the right panel of

Fig. 8(b) by observing the red (see online version for color)

tracer’s trajectories on the lower main diagonals of the tumbler

and in the center of the flowing layer. The corresponding triplet

of eigenmodes is shown in Fig. 10(b). Again, we observe that

the eigenmode with real eigenvalue in this group is “leaky” as

was the case for the similar one in the 35% full tumbler.

Then, in Fig. 10(c), a pair of eigenmodes from a period-

8 cluster in the chaotic region of the flow are depicted. (We

know this is the chaotic region of the flow by consulting the

corresponding Poincaré section in Fig. 8(b).) The eighth

roots of unity are
�

1; 1ffiffi
2
p þ 1ffiffi

2
p i; i;� 1ffiffi

2
p þ 1ffiffi

2
p i;�1;� 1ffiffi

2
p

� 1ffiffi
2
p i;�i; 1ffiffi

2
p � 1ffiffi

2
p i;

�
, and we can check that the angles of

l12 and l14 match those of � 1ffiffi
2
p þ 1ffiffi

2
p i and � 1ffiffi

2
p � 1ffiffi

2
p i

(accounting for numerical diffusion). However, the active

region of this pair of eigenmodes is very small, barely visible

along the left wall and the bottom for ŵ12 and symmetric

with respect to the vertical centerline for ŵ14. Diffusion has a

significant effect on them, as we show in Sec. V B. Finally,

Fig. 10(d) shows that there exists an additional non-decaying

eigenmode (i.e., one with eigenvalue equal to 1). This is

because, in the absence of diffusion, the unmixed core at this

fill fraction persists forever. Therefore, for t ! 1, the as-

ymptotic advection pattern cannot be simply the homogene-

ous state, but some combination of it and the eigenmode in

Fig. 10(d).

Finally, notice that the eigenmodes in the right panels of

Figs. 10(b)–10(d) fit together, and the curves along which

they fit are precisely the darkest ones in the FTLE plot in the

right panel of Fig. 8(a), i.e., the finite-time traces of unstable

manifolds. Similarly, the different regions in which the

eigenmode in the right panel of Fig. 9(a) is active are clearly

delineated by the corresponding highest FTLE ridges (with

the eigenmode’s least intensity being along them) from the

left panel of Fig. 8(a). These are approximations of invariant

curves across which there is no transport. Therefore, it makes

sense that active regions of eigenmodes align with curves of

largest local stretching, rather than cross them; on each side

of these curves, the dynamics is different and the character

of different dynamics is represented by different eigenmodes

as we have argued above. This was also observed by Popo-

vych et al.64 for a stochastic time-periodic sine flow.

B. Effects of diffusion (finite Pe) on the structure of
granular strange eigenmodes

Using the modification of the mapping method intro-

duced in Sec. IV C, we can study the effects of tracer diffu-

sivity on the existence and structure of eigenmodes from

Sec. V A. As an introductory example, consider the real

103302-9 From streamline jumping to strange eigenmodes Phys. Fluids 23, 103302 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



eigenmode (in the left panel of Fig. 10(b)) from the triplet

corresponding to a period-3 KAM island chain. Figure 11

shows the effect of decreasing Péclet number (i.e., increasing

significance of diffusion) on this eigenmode. Diffusion

destroys the fine-scale features of the eigenmode as Pe

decreases from1 to 1000. The unmixed core and an outline

of the extent of the period-3 islands, which this eigenmode

corresponds to in the advection-only limit, are a persistent

feature for all Pe shown. In addition, the eigenvalue corre-

sponding to this eigenmode decreases with Pe to almost half

its value at Pe¼ 1000 compared to Pe¼1. We elaborate on

these observations in the remainder of the paper.

Figure 11 clearly shows that the effects of diffusion on the

structure of an eigenmode and the magnitude of its eigenvalue

can be quite significant. Therefore, it is important to determine

the proper Péclet number corresponding to typical granular

flow laboratory experiments (such as those discussed in Sec.

III). To this end, it is convenient to re-write the Péclet number

explicitly as a ratio of timescales: Pecoll ¼ ð‘2
d=DÞ=ð‘a=UÞ

¼ ‘2
dU=ð‘aDÞ, where ‘a and ‘d are the advective and diffusive

length scales, respectively, and D is the collisional diffusivity.

To reconcile this re-definition of Pe with the one from Sec. IV A,

where only a single length scale (the advective one) can be

used, we note that Pecoll ¼ ð‘d=‘aÞ2ð‘aU=DÞ ¼ ð‘d=‘aÞ2Pe.

Since diffusive effects in a granular flow manifest themselves

primarily as fluctuations in the depth (y-position) of particles

due to their collisions as they pass through the flowing layer,

it is natural to take the length scales to be22,27 ‘a¼ L(0) and

‘d ¼ d0 0ð Þ ) ‘d=‘að Þ2¼ �2. The characteristic velocity is

then U ¼ �vxð0Þ, i.e., the maximum depth-averaged stream-

wise velocity defined in Eq. (2). Consequently, the expression

for the flow period in Sec. IV C is T ¼ 1
4
ð2p=xzÞ=ð‘a=UÞ

¼ p=ð4�Þ. Defining the collisional diffusivity D is more diffi-

cult, however it can be done by matching the free parameter

in Savage’s model65 of granular self-diffusion to experimen-

tal data.22 This gives D � 0:025d2 _c, where d is the particle

diameter and _c is the shear rate, for a quasi-2D monodisperse

granular flow of glass beads with solid volume fraction of

� 55%, as in our experiments. Finally, the streamwise shear

rate _c can be taken to be its maximum value at the free sur-

face, i.e., _cðx ¼ 0; t ¼ 0Þ ¼ xzLð0Þ2=d0ð0Þ2 as computed

from Eq. (1a). Thus, we arrive at

Pecoll �
d0ð0Þ2 xzLð0Þ2=½2d0ð0Þ�

n o
Lð0Þ0:025d2 xzLð0Þ2=d0ð0Þ2

n o ¼ 20
d0ð0Þ3

Lð0Þd2
: (16)

This gives Pecoll¼ 70 6 35 for the granular flows considered

herein. Noting the approximate nature of Eq. (16) and that

the eigenmode analysis is insensitive to the specific value of

Pe, we use the order-of-magnitude estimate Pecoll

� 100) Pe ¼ ��2Pecoll � 10; 000 for the simulations in

this subsection. Although this is a fairly large Péclet number,

it suggests diffusion still plays a role in our granular mixing

experiments, unlike many other engineering applications

where Pe is even larger. For this reason, as was evident in

Sec. III, it is difficult to obtain sharp experimental images af-

ter a large number of revolutions; granular diffusion blurs

the boundaries between the two colors of particles being

mixed.

With regard to the eigenmodes of a tumbled granular

system, Fig. 12 is the equivalent of Fig. 9 but with

Pe¼ 10,000 instead of1. First, in accordance with the theo-

retical considerations from Sec. IV A, we confirm that the

homogeneous eigenmode ŵ0 with eigenvalue l0¼ 1 persists

in the presence of diffusion. However, the next most domi-

nant eigenmode from Fig. 9(a) has been displaced by the

complex-conjugate pair of eigenmodes shown in Fig. 12(b).

We can see that precisely this pair of eigenmodes has been

excited in the mixing experiment shown in Fig. 5 by noting

where the clear particles go from n¼ 3 (showing ŵ2) to

n¼ 4 (showing ŵ3). Their location corresponds approxi-

mately to the active region (dark) of the pair of eigenmodes

from Fig. 12(b). Finally, in Fig. 12(c), the effects of diffusion

on the period-3 KAM island chain from Fig. 9(b) can be

seen. The KAM islands have become “leakier” as diffusion

allows a flux through the previously invariant66 unstable

manifolds (recall Fig. 8(a)) that separate the chaotic from

regular regions of the flow. Moreover, the magnitude of the

eigenvalue cluster corresponding to the period-3 KAM island

chain has been damped by diffusion, shortening the

“lifespan” of these eigenmodes.

Similarly, for the 75% full tumbler, Fig. 13 is the equiv-

alent of Fig. 10 but with Pe¼ 10,000. Once again we observe

FIG. 11. (Color online) A progression (decreasing Péclet number from left

to right) illustrating the effect of diffusion on one eigenmode from the

period-3 cluster shown in the left panel of Fig. 10(b) (with /¼ 0.75 and

� ¼ 0:1), as approximated by the appropriate eigenvector of the modified

mapping matrix eU.

FIG. 12. (Color online) Advective-diffusive eigenmodes ŵkðx; 0Þ of the

35% full tumbler with � ¼ 0:1, whose purely advective (Pe¼1) eigenmo-

des are depicted in Fig. 9, approximated by the eigenvectors of the modified

mapping matrix eU with Pe¼ 10,000.
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a much “leakier” chaotic region of the period-3 eigenmodes

in Fig. 13(b) as compared to Fig. 10(b). What is more strik-

ing, however, is the extent of the active zones of the two

eigenmodes from a period-8 chain depicted in Fig. 13(c). For

Pe¼1 in Fig. 10(c), the active zone is barely distinguish-

able, while at Pe¼ 10,000 it extends through a significant

portion of the domain. Another observation is that ŵ19 shown

in the third panel of Fig. 13(a) is now one of a pair of

complex-conjugate eigenmodes (we have shown only one of

them), compared with ŵ5 in the third panel of Fig. 10(a). As

suggested by Singh et al.,19 this is a numerical artifact, which

disappears as N !1, and the pair of computed eigenmodes

corresponds to a single physical eigenmode. Finally, note

that the eigenmode in Fig. 10(d), which represents the as-

ymptotic state of an unmixed core, is no longer dominant.

This is because, under Eq. (4a) with finite Pe, the asymptotic

state cannot contain an unmixed core. The amplitudes of the

eigenmodes corresponding to the core must eventually decay

completely due to diffusion, leading to a homogeneous con-

centration distribution c(x,nT)! M/jXj 8x 2 X as n!1.

C. Dominant exponents and their asymptotic scalings

The characteristic decay time of the kth eigenmode is

defined as19

sk ¼ �
T

ln jlkj
: (17)

Note that we assume k> 0 here because we always have

l0¼ 1 for the homogeneous eigenmode, which is not

“strange.” Clearly, sk!1 as jlkj! 1 and sk! 0 as jlkj! 0.

Thus, for good mixing, it is desirable that the spectrum of

the Floquet operator F (or of its discrete approximation eU)

has as few eigenvalues close to the unit circle as possible, so

that the “lifespan” of the dominant eigenmodes is as short as

possible.

Cerbelli et al.40,41 define an analogous quantity: the

(most) dominant exponent K, which we can write in terms of

the characteristic decay time from Eq. (17) as

K ¼ 1

maxk sk
: (18)

This is a convenient quantity to use in studying the depend-

ence on (finite) Péclet number of the eigenvalues of the

advection-diffusion operator, as shown by Giona et al.67 for

the idealized time-periodic sine flow. However, the eigen-

mode with largest sk may not necessarily oscillate in time (as

did the original strange eigenmodes13) if Imflkg¼ 0. There-

fore, it is useful to introduce an analogous quantity to the

dominant exponent, denoted by K*, for which the maximum

in Eq. (18) is taken over all k for which Imflkg= 0. Since

complex eigenvalues originate from advection (in the case of

pure diffusion, the operator L is self-adjoint and the Floquet

operator F inherits this property40), quantifying the decay

time of the most dominant oscillatory eigenmode using K*

gives a measure of the influence of advection on the mixing

process. We expect that as Pe!1, we always have K! 0,

since in this limit, it is possible to have sk !1 for some

k= 0 (i.e., there exist non-decaying inhomogeneous eigenm-

odes). Similarly, K* ! 0 as Pe ! 1 is only possible when

there is a pair of permanent eigenmodes with complex conju-

gate eigenvalues lkþ1 ¼ lk such as those corresponding to a

KAM island chain.

Although Eq. (16) shows that the Péclet number and the

maximal flowing layer thickness d0(0) (equivalently, the

flowing layer’s aspect ratio � � d0ð0Þ=Lð0ÞÞ are not inde-

pendent quantities in an experiment, it is nevertheless in-

structive to suppose � is fixed but we can vary Pe. That is,

given a granular flow with some specified velocity field

(with / and � known and fixed) as in Eq. (1), we would like

to know what is the effect of Pe on the characteristic decay

time of eigenmodes.

To this end, Fig. 14 shows the scaling of K and K* with

Pe for granular flow in a square tumbler at the three chosen

fill fractions / as the flowing layer’s aspect ratio � is varied.

The plots suggest that the scaling is relatively independent of

/ and �, and it is described by

fK;K�g � Pe�a (19)

for over six orders of magnitude in Pe. Furthermore, a
� 0.75 for K at higher fill fractions, while a � 0.5 for K*.

This is similar to the separation of scalings observed for the

branches of real and complex eigenvalues of the Floquet op-

erator corresponding to the idealized time-periodic sine

flow.67

Note that we have excluded the case of � ¼ 0 in middle

panel of Fig. 14(b) because there are no complex eigenvalues

for this choice of (/, �). The modified mapping matrix eU
only has two distinct eigenvalues: 1 and �1. Therefore, K*

does not exist for this choice of / and �. Furthermore, the

advection part of this advection-diffusion process is trivial as

FIG. 13. (Color online) Advective-diffusive eigenmodes ŵkðx; 0Þ of the

75% full tumbler with � ¼ 0:1, whose purely advective (Pe¼1) eigenmo-

des are depicted in Fig. 10, approximated by the eigenvectors of the modi-

fied mapping matrix eU with Pe¼ 10,000.

103302-11 From streamline jumping to strange eigenmodes Phys. Fluids 23, 103302 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



shown by the rightmost column of Fig. 4. For these same rea-

sons, whenever the mapping matrix is modified due to diffu-

sion, we then observe “perfect” Pe�1 scaling for this (/, �)
pair in middle panel of Fig. 14(a), unlike what is seen for

other values of � and /¼ 0.5.

Another way to frame the results in Fig. 14 is that advec-

tion, which is always at least partially chaotic for the parame-

ters considered here, generates strange eigenmodes

(specifically, ones with complex eigenvalues), and the result-

ing complicated spatial structure allows diffusion to “work

faster” leading to convection-enhanced diffusion68 and the

Pe�1/2 scaling for K* in a granular flow. To make this clear,

note that if fK,K*g�Pe-a, then their respective fsk;s�kg � Pea.

Therefore, s�k �
ffiffiffiffiffi
Pe
p

< Pe � sk (when Pe> 1), meaning the

lifespan of the strange/oscillatory eigenmodes generated by

advection is shorter than any purely diffusive ones. Further-

more, for the real branch of eigenvalues, the dominant expo-

nent K scales closer to Pe�1/2 at the lower fill fraction (35%)

than at the higher fill fractions (50%, 75%). This can be

explained by noting that for /< 0.5, all material in the con-

tainer goes through the flowing layer (where stretching occurs),

and particles make a complete circuit through the filled portion

more times per period than at higher fill fractions. In turn, this

can lead to more filamentary structures and intermaterial inter-

faces and, hence, the enhancement in the scaling observed.

D. Lifespan of a granular strange eigenmode

In this section, we present an exploratory analysis on the

connection between eigenmodes of the Floquet advection-

diffusion operator stemming from Eq. (4), with the velocity

field given by Eq. (1), and granular mixing and segregation

patterns in a rotating tumbler. Figure 15 shows a comparison

between the evolution of a bidisperse mixing experiment

(left column, see Appendix A), a monodisperse mixing

experiment (second column, in fact, the one from Fig. 6 for

larger n) and direct sums of two dominant eigenmodes from

Fig. 13 (third and fourth columns). First, we note that no

attempt is made to combine the eigenmodes so as to repro-

duce a specific pattern or initial condition. Rather, we have

chosen ones that are excited in the experiments and are

FIG. 14. Scaling of the dominant exponents of eU with the Péclet number

for /¼ 0.35 (top), /¼ 0.5 (middle), and /¼ 0.75 (bottom).

FIG. 15. (Color online) At moderate numbers of revolutions, beyond those

considered in Fig. 6, the excited most dominant period-3 and period-4

eigenmodes can be observed in both bidisperse (first column) and monodis-

perse (second column) granular mixing experiments. To illustrate their

periodicities and decay, the third column is a direct superposition of two

dominant eigenmodes from Fig. 13 (/¼ 0.75, � ¼ 0:1, and Pe¼ 10,000),

specifically jŵ4ðx; nÞ þ ŵ10ðx; nÞj. Meanwhile, the fourth column is an ad-
hoc modification, i.e., jŵ4ðx; nÞ þ inŵ10ðx; 0Þj, to account for the persistent

unmixed core in the experiments. Color scale for the eigenmodes is normal-

ized with respect to their magnitude at n¼ 0. At n¼ 32, the magnitude of

the eigenmodes in the third column has decayed to 5% of the initial one, so

the pattern is barely visible. Meanwhile, because we modified the eigenvalue

l10 in the fourth column, the magnitude of the eigenmode related to the

unmixed core does not decay.
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immediately identifiable visually. Specifically, a period-4

eigenmode in the solid core and a period-3 eigenmode

related to the KAM islands (located on the main diagonals of

the tumbler at this fill fraction) are superimposed. The latter

is particularly easy to observe at n¼ 8 and 9 because its

active region has a protrusion reaching out towards the tum-

bler wall, as noted by the arrows in Fig. 15. This is also

where particles in the experiment migrate.

In Sec. V C, we argued that diffusion makes the lifespan

of even the most dominant (inhomogeneous) strange eigenm-

odes finite. Indeed, Fig. 15 shows that by n¼ 32, the inten-

sity of the combination of the eigenmodes shown in the third

column has decayed to the point of being indistinguishable.

Similarly, in the monodisperse experiment, the granular ma-

terial appears well-mixed, aside from the solid core. Note

that the core never goes through the flowing layer and thus

does not experience the same kind of granular diffusion as

the rest of the material. Although it is slowly eroded at

higher numbers of periods,69 one way to properly account

(through Eq. (4a)) for its “different” diffusion characteristics

might be to introduce an inhomogeneous diffusion coeffi-

cient D¼D(x), whose construction would require further

modeling assumptions. Alternatively, for illustration pur-

poses, we can modify the eigenvalue of the eigenmode corre-

sponding to the period rotation of the core from

l10¼�0.0184þ 0.888i to l10¼ i. This ad-hoc modification

makes the eigenmode corresponding to the persistent

unmixed core non-decaying, as illustrated in the fourth col-

umn of Fig. 15.

Unlike fluid-fluid mixing experiments, granular mixing

presents the possibility of segregation in a bidisperse

mixture.1,2,24–27 As the first column of Fig. 15 shows, it is

possible to use segregation to force a few dominant eigenmo-

des indefinitely, in a sense approximately “canceling out”

the effect of diffusion on their lifespan.

Such a connection between the kinematic scalar trans-

port description, which requires only the specification of the

velocity field in the tumbler, can predict a priori the types of

segregation patterns one can expect. The connection

becomes clearer when one recalls the observation of Voth

et al.15,16 (and a similar one for turbulent velocity fields70,71)

that the spatial gradient of a strange eigenmode tends to align

with the ridges of the stretching (FTLE) field, which the dis-

cussion in Sec. V A corroborates. The curves of largest local

stretching, in turn, can be shown to be parts of the unstable

manifold(s) of hyperbolic periodic point(s) of the dynamical

system generated by the velocity field (Eq. (1)) of the flow

under consideration. Finally, finite-length traces of unstable

manifolds of hyperbolic periodic points have been shown to

outline the segregation pattern because they are barriers to

transport once segregation has taken place.25

Here, the eigenmode picture of segregation has an

advantage: it can describe the internal structure of the pattern

not just its outer boundary. Unlike experiments on strange

eigenmodes in fluids,14,17 due to the prominent effect of gran-

ular diffusion, we cannot observe the concentration profile

saturating to a long-lived combination of eigenmodes in a

monodisperse experiment. However, as a comparison of the

segregation pattern in the bidisperse experiment at n¼ 32 in

the left column of Fig. 15 and the combination of eigenmodes

in the third and fourth columns at n¼ 8 (to account for perio-

dicities) makes clear, eigenmodes can be permanently excited

using a bidisperse mixture that is capable of segregating.

To give further insight into the lifespan of eigenmodes,

we present in Fig. 16 plots of the eigenvalues of the modified

mapping matrix eU in the complex plane, for (a) purely ad-

vective and (b) advective-diffusive transport. In the case of

pure advection, the spectrum fills most of the unit disk (to

which all eigenvalues are restricted). This implies the exis-

tence of a large number of strange eigenmodes, i.e., ones

with complex lk of large magnitude. These will persist for

long times, impeding complete homogenization of the mate-

rial. However, when diffusive effects (finite Pe) are consid-

ered, the spectrum shrinks significantly in Fig. 16(b)

becoming “squished” into an elliptical shape (prominently

seen for /¼ 0.35 and /¼ 0.5 in Fig. 16(b)), which is quite

similar to Fig. 3 of Cerbelli et al.40 for the case of the ideal-

ized time-periodic sine flow. Thus, the majority of eigenval-

ues are now within the disk lkj j. 0:5. The corresponding

eigenmodes will decay rapidly in time without affecting mix-

ing significantly. Specifically, the number of periods required

for an eigenmode to lose half its initial magnitude is n such

that jlkjn¼ 0.5jlkj0¼ 0.5, or n¼ ln(0.5)/lnjlkj, which gives n
� 1 for jlkj � 0.5.

Nevertheless, from the spectrum plot, a few strange

eigenmodes are still expected. For example, most of the

eigenvalues for Pe¼ 10,000 and /¼ 0.75 are distributed

along the real and imaginary axis, which would correspond-

ing to period-4 structures (the fourth roots of unity being

f1, i,�1,�ig). In Sec. V B and Fig. 13, we observed that the

period-4 eigenmodes that correspond to the unmixed core

present in the tumbler at this fill fraction remain dominant in

the presence of diffusion. Similarly, for the case of pure

advection in Fig. 16(a), the clustering of eigenvalues along

the real and imaginary axes correlates with the noticeable

number of period-4 orbits in the corresponding Poincaré sec-

tion in Fig. 8(b).

FIG. 16. Spectra of eU, the mapping method approximation to the Floquet

operator F , in the complex plane for (a) Pe¼1 and (b) Pe¼ 10,000 and

three different fill fractions: /¼ 0.35 (left), /¼ 0.5 (center), and /¼ 0.75

(right). Diffusion shrinks the spectrum significantly leaving only a small

number of dominant strange eigenmodes. The flowing layer aspect ratio is

� ¼ 0:1 for all cases.
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Finally, we have been unable to find parameters (i.e., a fill

fraction / for a given �) for our granular flow that significantly

shrink the spectrum of the pure-advection mapping matrix as

was done by Singh et al.19 for the idealized time-periodic sine

flow (see, e.g., Fig. 4 therein). This highlights the importance

of diffusion in granular mixing. The stirring induced by tum-

bling is itself insufficient to lead to thorough mixing because

KAM islands are generic in this granular flow.

VI. CONCLUSIONS AND OUTLOOK

The present work has focused on three aspects of granu-

lar flow in slowly rotating tumbling mixers: the short-time

vanishing-flowing-layer kinematics, the presence of strange

eigenmodes generated by the underlying velocity field in the

tumbler, and the effects on the latter due to diffusion from

inter-particle collision in the flowing layer. Our analysis also

emphasized the unity between the Lagrangian and Eulerian

descriptions of granular mixing by relating the features of

Lagrangian flow structures to those of Eulerian eigenmodes,

strengthening previous results on this connection for two-

dimensional fluid mixing experiments.15,16

Specifically, we have provided experimental evidence that

streamline jumping, that is the mechanism of mixing in the ab-

sence of stretching and folding or diffusion in the flowing layer,

can be readily observed as the skeleton of the mixing pattern in

experiments for low numbers of revolutions. We have shown

that strange eigenmodes are excited in granular mixing experi-

ments, though diffusion leads to a much faster decay of their

amplitudes than in fluid mixing experiments, leading to quick

homogenization (outside of the unmixed core present at fill lev-

els & 50%) of the material. The latter is done through a simple

modification of the mapping method for scalar transport that

makes it possible to study, computationally, the change in struc-

ture and lifetime of granular strange eigenmodes. Finally, we

have established that segregation can lead to permanent excita-

tion of dominant eigenmodes. Thus, it appears that the

“internal” Eulerian structure of segregation patterns can be

understood through eigenmode analysis, much like their shape

(outline) can be understood from manifold analysis.

Much remains to be done, however. In the future, it

would be useful to develop further the numerical approxima-

tion properties of our modification of the simplified mapping

method, and of the simplified mapping method itself. Specifi-

cally, comparing such particle-based methods to those72 that

directly approximate the partial differential equation (4a). In

addition, it would be useful to establish to what extent the

modified mapping matrix eU constitutes a discrete approxima-

tion of some abstract operators from dynamical systems

theory, e.g., the Ulam transfer operator,73–75 the Perron–

Frobenius operator64,74–76 or the Koopman operator.77,78 In

fact, while our discussion is grounded in the language of con-

tinuum mechanics, others have recently presented mathemati-

cal studies of idealized flows in which eigenmodes are

referred to as “almost-invariant”73,74 or “almost-cyclic”75 sets,

with the Lagrangian and Eulerian descriptions being termed

the “geometric” and “probabilistic” ones, respectively.74

Another important question to be addressed is whether

one should consider the pseudospectra79 of the advection-

diffusion Floquet operator F rather than its proper spectrum.

The operator F is not self-adjoint, and its numerical ana-

logue eU studied here is not even a normal matrix. Although

we have obtained good results that match the experimental

data, depending on how “far from normal” eU is, its eigenval-

ues and eigenvectors may or may not be a good representa-

tion of the behavior of eUn, which (as we have argued) is an

approximation to n periods of the time-periodic advection-

diffusion granular mixing process.
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APPENDIX A: EXPERIMENTAL METHODS

We used the same apparatus as in Refs. 24 and 25 with a

tumbler of side length S¼ 25 cm and thickness in the axial

direction W¼ 12 mm. The tumbler was attached to a

computer-controlled stepper motor and was rotated clock-

wise about the geometric centroid of its face at 1 revolution

per minute (RPM), nearly the slowest possible rotation rate

(of this apparatus) before switching from continuous flow to

avalanching. Images of the tumbler were taken with a digital

camera. For the monodisperse experiments, 2 mm

(2.02 6 0.05 mm) black and 2 mm (2.03 6 0.05 mm) clear

glass beads with equal densities were used. Meanwhile, for

the bidisperse experiments, 2 mm (2.03 6 0.05 mm) black

and 1 mm (1.06 6 0.08 mm) clear glass beads dyed red with

equal densities were used. To produce a half-and-half initial

condition, a divider was placed down the centerline of the

tumbler and equal volumes (¼ 0.5/D2, where / is the fill

fraction) of particles poured on each side. The divider was

carefully removed so that particles underwent minimal

rearrangement.

APPENDIX B: COMPUTATIONAL METHODS

The numerical simulations presented in Sec. III were

performed as follows. We simulated granular flow in a con-

vex tumbling container by advecting a fine uniform grid of

tracer particles (material points of the continuum) backwards

in time by a given number of flow periods, then we colored

the initial uniform grid based on whether the x-coordinate of

the point after the backward iteration was positive or nega-

tive. This is because we chose the initial condition in all sim-

ulations and experiments to be such that x< 0 corresponds to

light gray/clear material, while x� 0 corresponds to black

material. In this manner, the spacing between particles in the

final plot is uniform, which would not be the case if we first
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assigned a color to them and advected them forward in time

for the given number of flow periods. A total of 44,100

(210
 210, uniformly distributed in the x- and y-directions

within the filled area of the tumbler) passive tracers (half

gray, half black) were advected (see Refs. 6 and 24 for

details of the numerical procedure) over 10 flow periods.

For the eigenmode analysis of the advection-diffusion

problem in Secs. V A and V B, we used a grid with

Nx¼Ny¼ 100 cells (except for generating Fig. 16, where

Nx¼Ny¼ 50 was used). In each cell, 102 particles were seeded

and tracked in order to build the mapping matrix. Eigenvalues/

vectors of the modified mapping matrix eU were computed

with MATLAB’s eigs function, which uses ARPACK’s Arnoldi-

based iterative solvers, to solve the generalized eigenvalue

problem Uwk¼lk(I�TPe�1Dh)wk. By doing so, we avoided

having to perform the possibly computationally intensive ma-

trix inversion in Eq. (15), which could have led to a worse-

conditioned, though normal, eigenvalue problem.
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