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We present an accurate and efficient computational method for solving the advection-
diffusion equation in time-periodic chaotic flows. The method uses operator splitting,
which allows the advection and diffusion steps to be treated independently. Taking
advantage of flow periodicity, the advection step is solved using a mapping method,
and diffusion is “added” discretely after each iteration of the advection map. This
approach results in the construction of a composite mapping matrix over an entire
period of the chaotic advection-diffusion process and provides a natural framework
for the analysis of mixing. To test the approach, we consider two-dimensional time-
periodic sine flow. By comparing the numerical solutions obtained by our method
to reference solutions, we find qualitative agreement for large time steps (structure
of concentration profile) and quantitative agreement for small time steps (low error).
Further, we study the interplay between mixing through chaotic advection and mixing
through diffusion leading to an analytical model for the evolution of the intensity of
segregation with time. Additionally, we demonstrate that our operator splitting map-
ping approach can be readily extended to three dimensions. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4803897]

I. INTRODUCTION

At the heart of most mixing phenomena is the advection-diffusion equation, which describes
the physical process of a passive scalar quantity (species) diffusing while simultaneously being
carried along (and stirred) by a flow.1 In the absence of diffusion, there are many ways to solve
the advection equation, which is both hyperbolic and time-reversible. Thus, even in complicated
domains and in the presence of chaotic velocity fields, determining how a scalar is advected can
be accomplished quite efficiently. One way of doing so is a class of techniques known as mapping
methods. By decomposing the domain into a grid, and computing the proportion of each grid cell
that is transported to any other, the dynamical problem of advection can be reduced to multiplication
by a mapping matrix.
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Spencer and Wiley2 proposed such an approach in 1951 for studying the coarse-grained mix-
ing properties of a flow. The idea is also popular in dynamical systems: Hsu3 developed a cell-
to-cell mapping that approximates the behavior of a nonlinear dynamical system, Wang et al.4

proposed a cell-map method for approximating the Poincaré section of time-periodic chaotic dy-
namics, and Froyland et al.5, 6 used mapping matrices (“transfer operators” in their language) to
detect coherent and invariant structures in geophysical flows7 (see also Ref. 8 for an overview).
Anderson and co-workers9–11 have successfully used the mapping method of Spencer and Wiley2

to study realistic mixing flows by advecting the boundaries of grid cells and then projecting the
deformed grid onto the original one to obtain the mapping matrix that solves the purely advective
problem.

Thus, while different types of mapping methods and their applications have been studied,3–11

the main research effort has focused on purely distributive mixing by advection. However, even
a small amount of diffusion leads to a governing equation that is parabolic and, thus, irre-
versible, which has significant implications for chaotic flows.12 Irreversibility and the presence
of both first and second-order spatial derivatives make it more difficult to solve the govern-
ing equation numerically. How to effectively exploit the simplicity of mapping methods for
the full advection-diffusion problem remains an open question that we address in the present
work.

One drawback to mapping methods is that, like any numerical discretization, they introduce arti-
ficial (numerical) diffusivity13, 14 even for purely advective problems.15 Recently, it has been proposed
that the inherent numerical diffusion in the mapping method can be considered analogous to molecu-
lar diffusion, and thus the mapping method can be used to solve some advection-diffusion problems.16

While seemingly attractive, there are, however, several challenges associated with this approach. To
start with, numerical diffusion is controlled by the spatial resolution rather than imposed indepen-
dently of it by the physics of the problem. Yet, choosing the correct spatial resolution corresponding
to a given diffusivity requires prior knowledge of the flow. Furthermore, numerical diffusion does not
necessarily have the same physical behavior as molecular diffusion (i.e., it may not take the form of a
Laplacian).17

The importance of incorporating diffusion in a physically realistic manner becomes apparent
when considering time-dependent flows. Molecular diffusion, when coupled with mixing, is highly
anisotropic in such problems; most mixing takes place normal to the direction of strong stretching.
Time-dependent flows can give rise to chaotic advection, which leads to the creation of thinning
striations through stretching and folding, while diffusion mixes efficiently across these concentration
gradients.18 Such details become important when studying mixing of chemically reactive species
because the reaction rate is highly dependent on both the diffusivity of the reactants and, if the diffu-
sivity is small, the interface between the two reactants.19 The interplay between small-scale mixing
and reactions is important for very fast non-premixed reactions such as in combustion and flames.20, 21

Hence, both the diffusive and advective time scales need to be properly resolved to obtain accurate
simulations.

To this end, we study the effectiveness of several mapping-based numerical techniques for
advection-diffusion in time-periodic sine flow,22, 23 a two-dimensional flow consisting of the peri-
odic application of orthogonal sinusoidal velocity profiles in a plane. Time-periodic sine flow is a
convenient model system in which to test approaches to solving the advection-diffusion equation
because the velocity field and tracer trajectories (on which the mapping method is based) can be
found analytically. Moreover, time-periodic sine flow provides a well-characterized chaotic velocity
field under which we study mixing of a scalar. Specifically, through a simple analytical model, we
relate the evolution of the quality of mixing to the striation thickness distribution produced by the
flow and to the size of unmixed islands in the flow field.

This paper is organized as follows. In Sec. II, we present and benchmark our method for
solving the advection-diffusion equation using operator splitting in conjunction with a map-
ping method. In Sec. III, we employ our numerical method to study the interplay between
chaotic advection and diffusion in time-periodic sine flow. Finally, in Sec. IV, we demon-
strate how the numerical method can be applied to a three-dimensional advection-diffusion
problem.
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TABLE I. Names and abbreviations of the numerical methods for solving the advection-diffusion equation (1) considered
in this work, presented in order of complexity.

Method Abbr. Description

Particle tracking method PT Tracer trajectories are computed in the absence of diffusion.
Numerical diffusion
(mapping) method16

ND Numerical diffusion is assumed to mimic physical diffusion; can be
used to calculate quality of mixing, but cannot resolve fine structures in
the concentration field.

Modified mapping method
with �t = T 28

MM Mapping method with operator splitting, time step equal to one period;
easy to implement, but splitting error cannot be controlled because the
time step is fixed by T.

Modified mapping method
with �t < T (Section II A)

MM Mapping method with operator splitting, time step less than one period;
easy to implement and more accurate than MM method with �t = T,
but can exhibit increased numerical diffusion on coarse grids.

Galerkin spectral method29, 30 GS GS solution is very close to the exact one if enough modes are taken;
difficult to implement in complex geometries.

II. MAPPING METHOD WITH DIFFUSION

Our goal is to solve the advection-diffusion equation for the unsteady concentration profile
c(x, t) of a species in a domain �. In dimensionless variables, the governing equation is24

∂c

∂t
+ u · ∇c = 1

Pe
∇2c, x ∈ �, t > 0, (1)

where u(x, t) is the given divergence-free (∇ · u = 0) advective velocity vector field, t is time, and
Pe = UL/D is the Péclet number, where U is a characteristic velocity, L is a characteristic length
scale, and D is the diffusivity of the tracer. Typically, Neumann (no flux) or periodic boundary
conditions are imposed, which ensures that the total species mass within the domain,

∫
�

c(x, t)dx,
remains constant in time.25 In applications, a wide range of Péclet numbers are encountered: for
example, Pe ∼ 102 for laminar flames,26 Pe ∼ 103 to 105 for molecular dyes in typical microfluidic
water/glycerol solutions,27 Pe ∼ 105 for granular materials in rotating tumblers,28 and Pe ∼ 1010 for
turbulent reactive flows.26

To solve Eq. (1), we propose a mapping method based on the original concept of Spencer
and Wiley,2 but modified to include diffusion using the operator splitting approach introduced by
Christov et al.28 We extend the latter method to allow for small splitting time steps, which improves
the method’s accuracy. We compare the results using both small and large splitting time steps against
the solution found by a spectral method, which we use as the reference (“exact”) solution. A summary
of the various methods used in the paper is given in Table I.

A. Modified mapping (MM) method

Because tracking material lines (cell boundaries), as is done in a number of mapping methods,9–11

advected by complex flows is a difficult numerical problem,31 Singh et al.32 developed a simplified
mapping method in which the mapping matrix is constructed by advecting a group of tracer particles
placed in each grid cell, instead of tracking the deformation of the cell. This simplified approach has
been used to optimize micromixers,33 and to find eigenmodes of mixing in fluid15 and granular28

flows.
To implement the method (in two dimensions), the domain � is divided into an Nx by Ny grid

(NxNy total cells). For simplicity, we assume that � is rectangular and that Nx and Ny can be chosen
such that each grid cell is a square. Next, n2 tracer particles are uniformly distributed inside each
cell (we use n = 100) at a given initial time t0. Each tracer particle is then advected from t = t0 to
t = t0 + �t by solving the set of ordinary differential equations dx(t)/dt = u(x(t), t), with x(t0) as
the specified initial location of the particle, and the cell in which it is located at t = t0 + �t is then
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cell j

flow

(a) t = t
0
 (b) t = t

0
 + Δt

cell i

FIG. 1. Illustration of the simplified mapping method32 and the construction of the mapping matrix. Tracer particles are
distributed uniformly in cell j at (a) t = t0 and advected by the flow up to (b) t = t0 + �t. Then, the distribution of particles
is projected onto the original grid to obtain the proportion of each cell that was transported to any other. In this example, 5
of the 16 tracer particles from cell j are advected to cell i, so �

(i, j)
t0→t0+�t = 5

16 .

determined (see Figure 1). This allows for the calculation of the entries in the matrix �t0→t0+�t :

�
(i, j)
t0→t0+�t = number of tracers from cell j that end in cell i

total number of tracers that started in any cell (= n2)
. (2)

Therefore, �t0→t0+�t is an NxNy by NxNy matrix that determines how the material in the domain is
redistributed by the advective velocity field u. We implement forward particle tracking (i.e., seed
the tracers at t = t0 and advect them forward), although backward particle tracking (i.e., seed the
tracers at t = t0 + �t and determine where they originate) can also be used.4, 34 While backward
particle tracking leads to a better visual representation of the effect of the flow (because particles are
uniformly distributed at the final, instead of the initial, time), we use enough tracer particles (i.e., n
= 100) so that the difference (both visual and quantitative) between the two methods is negligible.35

We define c(t) to be a column vector in which the entry in row j represents the concentration in
cell j, with the cells being enumerated from 1 to NxNy. The given initial concentration distribution
provides c(t0), hence the concentration after a time of �t has elapsed is (approximately) given by
c(t0 + �t) = �t0→t0+�t c(t0). If the flow is periodic with period T (i.e., u(x, t) = u(x, t + T )), then

�t0→t0+T = �t0+mT →t0+(m+1)T ≡ �t0,T (3)

for any integer m, and the subscript “t0, T” is shorthand notation for “t0 → t0+ T.” Thus, the
concentration profile after m periods takes the form

c(mT ) = (
�0,T

)m
c(0), (4)

where we have set t0 = 0.
We incorporate diffusion into the mapping method via operator splitting36 of the advection-

diffusion problem as implemented by Christov et al.28 Separating the advection-diffusion problem
into individual advection and diffusion steps, each of which is simpler to solve than the original
problem, has been used in the literature in an ad hoc manner in a number of contexts ranging from
diffusion of magnetic field lines in fast dynamos37, 38 to tracer microstructure in turbulent flows.39

In the present work, we show that these phenomenological approaches can be formalized using the
mathematical idea of operator splitting, which is an efficient approach to simulating scalar mixing,40

and we quantify the error committed in performing such splitting. More recently, Gorodetskyi et al.41

proposed an alternative approach, similar to that of Jones,42 that includes diffusion in a mapping
method by adding a stochastic forcing term to the equations for the advection of tracer particles.

Following Christov et al.,28 we include the effects of diffusion in the mapping method described
above using Marchuk–Yanenko operator splitting43 for the advection-diffusion equation (1) with
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splitting time step �t = T for a T-periodic flow. To evolve the concentration from t = mT to
t = (m + 1)T using this operator-splitting scheme, we first solve the advection problem

∂c∗

∂t
= −u · ∇c∗, t ∈ [mT, (m + 1)T ], (5)

for c∗((m + 1)T) using c(mT) as the initial condition. Next, we solve the diffusion problem

∂c

∂t
= 1

Pe
∇2c, t ∈ [mT, (m + 1)T ], (6)

for c((m + 1)T) using c∗((m + 1)T) as the initial condition. Equation (5) is solved with the mapping
method yielding c∗((m + 1)T ) = �0,T c(mT ). To solve Eq. (6), we use a backward Euler time
discretization (as in the classical Marchuk–Yanenko operator splitting43) with time step �t = T and
c∗((m + 1)T ) as the initial condition at t = mT, arriving at

c((m + 1)T ) − c∗((m + 1)T )

T
= 1

Pe
∇2

h c((m + 1)T ). (7)

The subscript h indicates that the Laplacian operator is discretized in space (using here the standard
5-point formula defined on the same grid as the mapping method), meaning that ∇2

h is a matrix.
Finally, as in Christov et al.,28 from Eq. (7) we obtain a modified mapping matrix for a time-

periodic advective-diffusive process:

c((m + 1)T ) = �̃0,T c(mT ), where �̃0,T =
[

I − T

Pe
∇2

h

]−1

�0,T . (8)

Computing c using Eq. (8) is what we refer to as the “modified mapping method” (MM method)
with �t = T. Note that it is possible to take an arbitrarily large splitting time step because Marchuk–
Yanenko operator splitting is unconditionally stable thanks to the implicit time discretization in
Eq. (7) and the fact that the mapping matrix has spectral norm ‖�0,T ‖ < 1.15 However, Marchuk–
Yanenko operator splitting is formally first-order accurate in time, so the error is O(�t), where �t
= T in this case.44

The discretized Laplacian ∇2
h is a banded matrix and �0,T is sparse for most flows, so the matrix

manipulations in Eq. (8) are computationally efficient. As a result, the MM method is relatively cheap
and simple to implement. However, there are still some drawbacks. Most importantly, the method is
derived for a time-periodic flow (with period T) and a splitting time step �t = T. The latter makes
the calculation quite simple, since the flow domain is the same after every iteration of the mapping
matrix, meaning �0,T and ∇2

h can be constructed once and used for any number of periods of the
process. However, this means that the effects of diffusion are incorporated only once at the end of
every advection period, instead of being accounted for continuously with advection during this time.
In practice, this works well, for example, for granular flow,28 however the splitting error incurred
and its accumulation over time must be quantified, as we do in Sec. II D.

Naturally, there is also “numerical diffusion” (due to both the approximation of the advection
operator by �t0→t0+�t and the diffusion operator by ∇2

h), which becomes negligible as Nx, Ny → ∞.
Similarly, the O(�t) splitting error vanishes as �t → 0. However, in the description of the scheme
above, we set �t = T, which is typically not small. To improve on this, here we generate a family
of mapping matrices, each corresponding to a different portion of the period of the flow.45 For
example, we could construct four mapping matrices �0→T/4, �T/4→T/2, etc., and then apply Eq. (8)
for each of the four time increments �t (i.e., the MM method with �t = T/4). However, this
requires more matrix multiplications by an appropriate �t0→t0+�t , which could lead to increased
numerical diffusion and computational time. As a result, there is a trade-off between the number of
time increments (T/�t) used and the problems of numerical diffusion and computational time. In
Sec. II D we investigate this issue both qualitatively and quantitatively.

B. Galerkin spectral (GS) method

As an independent check of the MM method described above, we compare our numerical results
to those obtained by a Galerkin spectral (GS) method. Following the approach of Cerbelli et al.29, 30
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(see also Ref. 46), we first define the set of basis functions {ψk(x)} as the solutions of the associated
eigenvalue problem ∇2ψk + λkψk = 0 with the same boundary conditions as the advection-diffusion
equation (1). Depending on the dimension of �, k could be a multi-index (e.g., in two dimensions
k = (k1, k2)). From the Sturm–Liouville theorem, the set {ψk(x)} forms an orthogonal basis of L2(�)
(the set of square integrable functions on �).47 Thus, the concentration c(x, t) can be approximated
by a linear combination of the basis functions ψk(x) with time-dependent coefficients φk(t):

c(x, t) =
∑

k

φk(t)ψk(x). (9)

Substituting this expression into the advection-diffusion equation (1), multiplying through by the
complex conjugate of ψ p(x) (denoted by an overline), integrating over the domain �, and using the
orthogonality relation for the eigenfunctions gives

dφ p

dt
=

∑
k

C( p;k)φk − λ p

Pe
φ p, where C( p;k) = −

∫
�

ψ̄ p [u · ∇ψk] dx∫
�

∣∣ψ p

∣∣2
dx

. (10)

We note that ψk can be a complex-valued function only because it is convenient to represent the
eigenfunctions of ∇2 on rectangular domains as complex exponentials. To compare with the spatially
discrete mapping methods, the concentration (as given by Eq. (9)) is averaged across 25 points evenly
distributed in each grid cell (similar to Figure 1(a)).

The GS method reduces solving the advection-diffusion equation (1) to a problem of solving
a coupled system of ordinary differential equations. If the basis functions ψk are known explicitly,
then all the coefficients can be determined, thus putting the system in the form dφ(t)/dt = A(t)φ(t),
where φ(t) is a column vector containing the values of φk(t) and A(t) is the matrix representing
the action of the right-hand side of the first equation in (10).29, 30, 46 Note that A may depend on t
because u can be a function of t.

In contrast to the MM method, the GS method does not require decoupling of the advection
and diffusion subproblems. The source of error in the GS method is the truncation of the expansion
at a finite number of modes and the discretization of dφ(t)/dt = A(t)φ(t) in time. In general, the
time-discretization error can be made arbitrarily small by taking small time steps and/or using a high-
order integration scheme. The main advantage of the GS method is that, under suitable conditions,
the coefficients φk in the expansion in Eq. (9) decrease in magnitude exponentially with |k| (if the
boundary conditions are periodic), thus highly accurate solutions are obtained with a small number
of modes.48 In the rest of this paper, the set of modes indexed by k are such that −N ≤ k1, k2 ≤ N,
giving a total of (2N + 1)2 modes in two dimensions.

The main disadvantages of the GS method are (i) the need to have a domain � for which
the eigenfunctions ψk can be found analytically, and (ii) the need to evaluate the integrals in the
definition of C in Eq. (10). Another drawback is that the GS method is not immediately applicable
if only trajectories of tracers (instead of a smooth velocity field) are known. Meanwhile, mapping
methods can be applied with only the knowledge of the trajectories of tracers obtained from, say,
experimental observations (see Figure 1). Additionally, C(k; p) is not necessarily sparse for a generic
velocity field u, which could make solving dφ(t)/dt = A(t)φ(t) inefficient. Conversely, in the MM
method, the matrices appearing in Eq. (8) will almost always be sparse.

C. Time-periodic sine flow (TPSF)

For the advective velocity field, we choose time-periodic sine flow (TPSF), shown schematically
in Figure 2. It is a particular type of “eggbeater flow,” i.e., a velocity profile that alternates between
unidirectional orthogonal components.22 TPSF has been studied by Liu et al.23 in quantifying
chaotic mixing in aperiodic flows (by randomly modulating the period of TPSF). More recently,
TPSF has been used as a canonical example of laminar chaotic mixing49 and for evaluating mapping
methods.15, 16, 41 The velocity field of TPSF, which is defined on the unit square (0 ≤ x, y ≤ 1) with
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0 1
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0 mod(t, T ) < T/2

0 1
0
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y

T/2 mod(t, T ) < T< <

FIG. 2. Schematic of the velocity field of time-periodic sine flow (TPSF).

periodic boundary conditions, is

u(x, y, t) =
{

sin (2πy) x̂, 0 ≤ mod(t, T ) < T
2 ,

sin (2πx) ŷ, T
2 ≤ mod(t, T ) < T,

(11)

where mod(t, T ) = t − qT with q being an integer such that 0 ≤ t − qT < T. The period of the
flow T can be any positive number, and T/2 represents how long the flow acts in one direction before
switching to the orthogonal one.

While TPSF is difficult to produce experimentally, it is relevant for the present study because it
is simple and periodic while still being nonlinear. The mapping method for TPSF is convenient in
that an exact analytic solution for the trajectories of tracers can be found in the absence of diffusion.
This permits the comparison of results using the MM method with the addition of diffusion both
once every period and several times per period, without the need to worry about error introduced
in the integration of tracer trajectories. Since the domain is square, we can also set Nx = Ny for all
our calculations. Furthermore, this flow allows efficient implementation of the GS method because
most of the coefficients C( p;k) from Eq. (10) are zero, resulting in a tridiagonal matrix A (see
Ref. 29 for details).

Depending on the period T of the flow, tracer trajectories in TPSF can exhibit either regular or
chaotic behavior. We consider two cases: T = 1.6 and T = 0.8. Shorter periods result in too little
stretching to obtain significant mixing, while longer periods do not increase mixing substantially.
Final concentration states of TPSF with Pe = ∞ (no diffusion) after 1 and 5 periods are shown in
Figure 3. In this, and all of our subsequent simulations, half of the domain (x > 1/2) initially has
a concentration of 1 (white), while the other half has a concentration of 0 (black), as shown in
Figure 3(a). For T = 1.6 the flow is fully chaotic throughout the entire domain, while for T = 0.8 the
flow is partially chaotic having both chaotic and regular regions (four Kolmogorov–Arnold–Moser
(KAM) islands). In Figures 3(c) and 3(e), there are some gray areas (concentration not equal to either
0 or 1) due to numerical diffusion. Because this is a purely advective case (Pe = ∞), there should
be no diffusive mixing and the concentration should be either 0 or 1 (black or white) throughout the
entire domain. However, the striations of pure material quickly become thinner than the grid size,
especially in the completely chaotic case (T = 1.6). As a consequence, cells receive particles from
both the initially white and the initially black domains, resulting in the gray regions in the figure, an
example of unintended numerical diffusion.
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(a) Initial Condition (b) T = 0.8, Period=1

 

(c) T = 0.8, Period=5

 

(d) T = 1.6, Period=1

 

(e) T = 1.6, Period=5

 

FIG. 3. Spatial concentration profiles under TPSF without diffusion (Pe = ∞) calculated using the MM method with
�t = T and Nx = 180.

D. Numerical results

To assess the accuracy of the MM method, we use the reference (or “exact”) solution from an
appropriate method that is known to be accurate. For Pe = ∞, we use a particle tracking (PT) method
instead of the GS method as the reference solution. This is because the initial concentration profile
(Figure 3(a)) is discontinuous and so, in the absence of diffusion, remains discontinuous for t > 0.
Thus, the spectral expansion (9) suffers from the Gibbs phenomenon. However, for any Pe < ∞,
the concentration profile will be continuous for t > 0 and the GS method (with enough modes)
will be sufficiently accurate. For the PT method, 100 points are uniformly distributed in each cell
(as in Figure 1(a)) and tracked backwards in time4, 34 to determine their initial cell and, hence, the
corresponding concentration value (i.e., 0 or 1). The concentration in each cell is the average of the
concentration at those 100 points. We found that 100 points provide a nearly exact result for the grid
used here.

To begin, we compare the MM method in the absence of diffusion (Pe = ∞) for T = 0.8 and for
three values of the time step. First, we consider a time step �t equal to the period T. That is, particles
are mapped a full period forward, which is the approach used by Singh et al.32 and Christov et al.28

For the other two cases, we consider time steps of �t = T/4 and �t = T/8, which correspond to
mapping the solution incrementally through each period. The error is calculated as the L2 difference
of the spatial concentration states with respect to the PT solution. Specifically, let cM M and cR be
the vectors that gives the concentration at each grid point from the MM method and the reference
PT method, respectively. Then, the error associated with the mapping method is defined as

Error(cM M |cR) = 1

max(cR) − min(cR)

√√√√√ 1

Nx Ny

Nx Ny∑
j=1

[
c( j)

R − c( j)
M M

]2
. (12)

Figure 4(a) shows that the error, which in this case is a result of numerical diffusion from
the mapping method, increases with the number of periods. This is because numerical diffusion is
compounded with each multiplication of �t0→t0+�t . Using �t = T results in less numerical diffusion
than �t < T because only one multiplication by a mapping matrix is required to advance the
concentration by one period. The error saturates after several periods because the mixture becomes
mostly homogenized in the chaotic region (see Figure 3(c)). Note that computing the solution at
t = T using the MM method with �t = T is, in fact, equivalent to computing it with the PT
method with forward particle tracking. This explains why the error in Figure 4(a) for �t = T
is very low initially (over the first period) since, with sufficiently large n, backward and forward
particle tracking are equivalent. Additionally, Figure 4(b) shows that numerical diffusion (as inferred
through the error in the solution) decreases as Nx increases, as expected.

Since the PT method cannot be used for Pe < ∞, we now use the GS method (with a large
number of modes) as the reference solution. To ensure that the number of modes (2N + 1)2 is
sufficient, we calculate the difference between the final states (after five periods) of the GS solution
with N and 2N. We require that the difference be orders of magnitude smaller than the difference
between the GS method (with N) and the MM method to ensure that the GS solution is sufficiently
close to the exact solution. For TPSF, the appropriate value of N depends only on Pe. For our
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FIG. 4. Plots of the error for the MM method with �t = T (circle), �t = T/4 (triangle), and �t = T/8 (square) as (a) a
function of time for Nx = 200 and (b) a function of Nx after five periods, compared to the reference PT solution. TPSF with
T = 0.8 and Pe = ∞.

simulations, we set N = 75 for Pe = 103 and N = 150 for Pe ≥ 104. For these values of N, the
maximum concentration difference between final states with N and 2N modes is on the order of
10−11 after five periods. Given that the concentration range is 0 ≤ c ≤ 1, these values of N are
more than adequate. At higher Péclet numbers, the final states have finer structure (striations), which
requires more modes to accurately resolve.

Next, to demonstrate the effect of physical diffusion on mixing, Figure 5 shows the final states
of TPSF with T = 0.8 after five periods for various values of Pe. These figures were obtained using
the MM method with �t = T/8 (�t = T for Pe = ∞). Diffusion washes out the thin concentration
striations and even parts of the regular (KAM) regions that exist at Pe = ∞. Qualitatively, these
concentration profiles look nearly identical to the results for both the GS method and the MM
method with �t = T, which are not shown. However, there are subtle differences, as shown in
Figures 6 and 7.

In Figure 6, the concentration along a typical vertical slice is shown for the GS method and the
MM method with �t = T and �t = T/8. The qualitative behavior is very similar regardless of the
computational approach, but the MM method with �t = T/8 is more accurate than the MM method
with �t = T when compared to the GS method. In particular the MM method with �t = T does
not resolve the local extrema as well as the MM method with �t = T/8. There are several other
anomalies for �t = T as well, such as the deviation from the smooth curve around y = 0.47 in
Figure 6(a) and the variation at y = 0.18 and y = 0.67 in Figure 6(d).

In Figure 7, the differences between the concentration after five periods computed by the MM
method (with �t = T/8) and the GS method are shown, and the maximum and average relative errors

(a) Pe = ∞ (b) Pe = 104 (c) Pe = 103

FIG. 5. Final states after five periods of TPSF with T = 0.8 and (a) pure advection and (b, c) advection-diffusion. Calculated
using the MM method with Nx = 180 and �t = T/8 (�t = T for Pe = ∞ in (a)).
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(a) T = 0.8, Pe = 103 (b) T = 0.8, Pe = 104

(c) T = 1.6, Pe = 103 (d) T = 1.6, Pe = 104

FIG. 6. (a)–(d) Typical vertical slice (at x = 0.25) of the concentration profile, shown after five periods and computed with
the MM method with �t = T (lighter gray, green), the MM method with �t = T/8 (darker gray, red), and the GS method
(black). For all three methods, Nx = 160. Note vertical scale changes between plots.

are presented in Table II. In Figure 7, the white areas of the domain correspond to the maximum
relative error (as given in Table II), and the black areas of the domain correspond to an error of 0. Both
the maximum and average relative error are normalized by the difference between the maximum and
minimum concentration in the domain after five periods. It appears that, as is the case in Figure 6,
most of the error occurs near extrema in concentration, which is most easily seen when comparing
Figure 7(b) to Figure 3(c). While not shown in Figure 7, the error in the solution by the MM method
with �t = T looks very similar to the case with �t = T/8 (for the same T and Pe), except that the
�t = T case has slightly blurrier features and a larger maximum error (as indicated in Table II).
The maximum error in Table II may seem somewhat large for �t = T/8 (around 3.6% in one case),

(a) T = 0.8, Pe = 103 (b) T = 0.8, Pe = 104 (c) T = 1.6, Pe = 103 (d) T = 1.6, Pe = 104

FIG. 7. (a)–(d) Relative error (with respect to the GS solution) in the final concentration profile after five periods for the
MM method with �t = T/8 and Nx = 200. White corresponds to the maximum relative error (as given in Table II), while
black corresponds to an error of 0.
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TABLE II. Maximum and average relative errors in the final concentration state after five periods for the MM method with
Nx = 200, where the relative error is determined by normalizing the error by the difference between the maximum and
minimum concentration across the entire domain.

T = 0.8 T = 0.8 T = 1.6 T = 1.6
Pe = 103 Pe = 104 Pe = 103 Pe = 104

�t = T Maximum relative error 0.102 0.103 0.106 0.138
Average relative error 0.0287 0.0265 0.0397 0.0279

�t = T/8 Maximum relative error 0.0185 0.0357 0.0207 0.0281
Average relative error 0.00468 0.00975 0.00666 0.00519

but the error is very small when averaged across the entire domain. This is consistent with Figure 6
in which the curves match very well almost everywhere. For higher spatial resolution and smaller
�t, the maximum error approaches 0, suggesting the convergence of this numerical method. For
instance, the maximum error for T = 0.8 and Pe = 104 with �t = T/40 and Nx = 700 decreases to
1.3% with an average error of 0.37%.

Next, we consider how to minimize the error in the solution computed with the MM method,
using the GS solution as the reference solution in Eq. (12). Figure 8 shows how the error depends
on the spatial resolution, as quantified by Nx. For �t = T, there is little change in the error as Nx

increases. This is because, even for Nx = 50, the operator splitting error associated with taking �t
= T is much greater than the error due to the given spatial resolution. For �t < T, increasing Nx

reduces the error. For Nx small, �t = T/8 has a larger error than �t = T/4, since �t = T/8 requires
more matrix multiplications per period and thus compounds the numerical diffusion. However, as
Nx is increased, the error for �t = T/8 eventually becomes smaller than the error for �t = T/4
as the numerical diffusion inherent in each mapping matrix multiplication is negligible compared
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FIG. 8. (a)–(d) Dependence of the error on the number of grid cells Nx at t = 4.8 (i.e., 6 periods for T = 0.8 and 3 periods
for T = 1.6) for the MM method with �t = T (◦), �t = T/4 (), and �t = T/8 (�).
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to the error due to operator splitting. For Pe = 103 (Figures 8(a) and 8(c)), the error no longer
decreases above a certain spatial resolution because, as for �t = T, the error at this point is almost
entirely due to operator splitting, so increasing the number of grid cells has little effect overall. For
T = 0.8 and Pe = 104 (Figure 8(b)), a spatial resolution above which the error no longer decreases
is never reached for �t < T, though we expect that at a sufficiently large Nx this will occur as well.
Pe = 104 requires higher spatial resolution to minimize numerical diffusion because the structure of
the concentration profile at such a large Pe is dominated by chaotic advection, which produces fine
striations and lamellar structures in the flow that require more grid cells to resolve.

III. MIXING

One application of our efficient and, as we have shown above, accurate numerical approach
to advection-diffusion in chaotic flows is addressing the interplay between chaos and molecular
diffusion, a topic of considerable ongoing interest.39, 42, 50 To quantify the amount of mixing in the
domain, we recall that c(t) denotes the vector of concentration values in each of the NxNy grid cells,
and we use the discrete intensity of segregation51 (level of “unmixedness”) as our metric,

Id (c) = 1

Nx Nyc̄(1 − c̄)

Nx Ny∑
j=1

[
c( j)(t) − c̄

]2
, (13)

where c̄ is the spatial average of the concentration. Note that Id is a function of time since c is a
function of time. For our simulations, c̄ = 0.5 (recall Figure 3(a)), although it has been shown that
different initial conditions will result in the same long-time mixing rate of the system.52–55 Because
of this, Id = 1 at t = 0. For a completely mixed system, Id = 0.

A. Degree of global mixing

Consider Id as a function of time for several different Péclet numbers and computed using
both the MM method (with �t = T and �t = T/8) and the GS method. As shown in Figure 9, Id

decays exponentially with time, with the smallest Pe resulting in the sharpest slope (best mixing),
as expected. More importantly, the MM method (with both values of �t) and the GS method give
nearly identical results, with the GS method yielding a slightly smaller degree of mixing. This is
because numerical diffusion in the MM method induces additional mixing that is not physically
present in the flow. However, this can be minimized with a sufficiently fine grid so that essentially
all diffusional mixing is from physical diffusion and not numerical diffusion. Since the curves for all
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FIG. 9. Degree of advective-diffusive mixing (as measured by Id in Eq. (13)) as a function of time in TPSF with
(a) T = 0.8 and (b) T = 1.6 for Pe = 103, 104, and 105 as computed by the MM method with �t = T (lighter gray,
green), the MM method with �t = T/8 (darker gray, red), and the GS method (black). Nx = 400 for both the MM and GS
methods.
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three methods match closely, it is clear that the choice of splitting time step �t in the MM method
is not critical for this gross measure of mixing, i.e., the splitting error does not significantly affect
the value of Id.

B. Comparison to the numerical-as-molecular diffusion mapping method (ND method)

It is instructive to compare the operator splitting approach of incorporating diffusion (the
MM method from Sec. II) to the recently proposed approach of interpreting numerical diffusion as
molecular diffusion in the mapping method (ND method of Gorodetskyi et al.16). The latter approach
suggests that the advection-diffusion problem (1) for a given Péclet number can be solved using the
purely advective mapping method (Eq. (4)) with a properly chosen spatial resolution. To obtain the
correct “amount” of diffusion, it has been shown both numerically16, 41 and analytically56 that, in
two dimensions, the number of grid cells NxNy should grow linearly with Pe.

In Figure 10, we compare the MM solution to the ND solution by considering Id for TPSF with
T = 1 and Pe = 1.4 × 105. The ND method requires Nx = Ny = 100 for Pe = 1.4 × 105,16 while
we use Nx = Ny = 400 for the MM method to minimize the effect of numerical diffusion. There is
good agreement in the evolution of mixing as computed by these two methods, indicating that both
can accurately describe the overall mixing characteristics of the flow.

While the ND method accurately describes the quality of mixing in this flow, it is unable to
resolve the details of the concentration profile. The final concentration profiles computed by the ND
method and the MM method with �t = T/10 for TPSF with T = 1 and Pe = 1.4 × 105 are shown in
Figure 11. Again we note that the ND method16 fixes the number of grid cells (at Nx = Ny = 100)
when the Péclet number is specified to be 1.4 × 105, while higher spatial resolution can be used for
the MM method at this same Péclet number. The concentration profile is not well resolved by the
ND method, resulting in the coarse appearance of Figure 11(a). The low spatial resolution and loss
of fine structure is more evident in a close-up of a portion of the domain (Figure 11(c)), especially
when compared to the fine structures resolved using the MM method (Figure 11(d)), although the
finite spatial resolution still results in non-smooth variation of the concentration at this level of
magnification. Clearly, the MM method allows us to set the spatial resolution independently of the
Péclet number in order to better resolve the fine structures.

C. Interplay between chaotic advection and diffusion

Now, we shift our focus to mixing in TPSF in the presence of diffusion and the interplay
between mixing through chaotic advection and mixing across striations through diffusion. This
interplay is crucial when considering certain physical situations, such as chemical reactions that
can only occur when the reactants are in exact stoichiometric ratios.19 For example, if a process
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FIG. 10. Intensity of segregation as a function of time for TPSF with T = 1 and Pe = 1.4 × 105; computed using the MM
method with �t = T/10 and Nx = Ny = 400 (�) and the ND method with Nx = Ny = 100 ().
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(a) ND method

(c) zoom of (a)

(b) MM method with Δt = T /10

(d) zoom of (b)

FIG. 11. Comparison of spatial concentration profiles computed by the ND and MM methods. In (a-b), spatial concentrations
for TPSF with T = 1 and Pe = 1.4 × 105 after three periods. In (c-d), close-ups of (a-b) in the box 0.4 < x, y < 0.6. For the
ND method, Nx = Ny = 100 is set by the Péclet number; for the MM method, Nx = Ny = 300.

is diffusion dominated (low Pe), the reaction occurs quickly regardless of the underlying flow.
However, if diffusivity is low, the chemical reaction only occurs at the interface between reactants,
and the reaction rate will be primarily governed by the length of that interface, which depends on
the degree of stretching and folding in the flow. Properly resolving a wide distribution of striation
thicknesses is also important in atmospheric chemistry, which is often dominated by free radicals,
where there is a spectrum of reactions with widely different rates and the interplay may involve a
range of length scales.57

To begin, consider close-up views of the striations shown in Figure 12 for different conditions.
For Pe = ∞, the boundaries between white and black striations would be sharp if we were to solve
Eq. (1) exactly. However, numerical diffusion from the MM method at the finite spatial resolution
used for the simulations causes some fuzziness and jaggedness at the interfaces in Figure 12(a).

(a) Pe = ∞,
*= 0

(b) Pe = 2x104,
*= 0.014

(c) Pe = 5x103,
*= 0.028

(d) Pe = 103,
*= 0.063

FIG. 12. (a)–(d) The role of diffusion is evident in close-up views (0.424 < x < 0.62 and 0.584 < y < 0.78) of striations in
TPSF with T = 1.6 after one period for various Pe calculated using the MM method with Nx = 400 and �t = T/8 (�t = T
for Pe = ∞). For each Pe, the diffusional length scale 	∗ for t∗ = T/2 is indicated (see text).
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Nevertheless, the striations are reasonably sharp, and the narrow black striations have a thickness of
about 	b = 0.019. As we decrease Pe in Figures 12(a)–12(d), the blurring of the interface between
the striations increases due to the increased efficacy of diffusion. For Pe = 2 × 104 (Figure 12(b)),
the two narrow black striations are virtually unaffected by diffusion. Conversely, for Pe = 103

(Figure 12(d)), the two narrow black striations are almost completely washed out after just one
period.

A simple analysis of diffusion for a single striation of fixed width can be based on an analytic
solution to the diffusion equation (i.e., Eq. (1) with u = 0). Consider an initial condition like that
in Figure 3(a), where the box has width 2	 (so each striation has width 	), and the white and
black regions have concentrations of 1 and 0, respectively. Using periodic boundary conditions, the
concentration profile is given by58

c(x, t) = 1

2
−

∞∑
p=0

2

(2p + 1)π
sin

(
(2p + 1)π

x

	

)
exp

(
−(2p + 1)2π2 t

	2Pe

)
, (14)

where x is the coordinate in the horizontal direction (with the concentration profile being identical
in every horizontal cross-section), and the origin is located in the lower left corner of Figure 3(a).
Equation (14) suggests that all modes decay as exp (−a2t/	2Pe), where a = π for the dominant (p
= 0) mode. We define 	∗ to be the diffusional length scale, meaning that striations of thickness less
than 	∗ will “wash out” in a characteristic time t∗. A similar analysis for reaction-diffusion equations
was presented by Muzzio and Ottino54 where a reaction (between the two reactants) across a lamella
(striation) would occur only if the lamella is of width less than 	∗. Based on the decay of the dominant
mode in Eq. (14), a concentration striation of thickness 	∗ will decay by a factor of 1/e2 in a time t∗

that satisfies

	∗ ≈ π

√
t∗

2Pe
. (15)

Using Eq. (15), the value for 	∗ that causes the dominant mode to decrease by a factor of 1/e2

in half a period (t∗ = T/2) can be estimated for each Pe as indicated in Figure 12.59 As expected, a
striation of thickness 	b = 0.019 at Pe = ∞ is nearly washed out between Pe = 2 × 104 and
Pe = 103, for which this value of 	b is between the corresponding values of 	∗. Although
Eq. (14) cannot completely describe diffusion across striations since the striations are continu-
ously narrowing due to stretching and folding, Eq. (15) indicates that striations on the order of 	∗

are quickly homogenized by diffusion.
In comparison, Figure 13 shows the role of chaotic advection in the mixing process under TPSF

with T = 1.6 and Pe = 105, a case where the flow is chaotic and diffusion is weak. Again using
Eq. (15) with t∗ = T/2, we obtain 	∗ = 0.0063 at this Pe. In Figure 13(b), the narrowest striation has
length ≈0.0056, which is very close to 	∗, indicating that diffusion begins to wash out the striations
after ≈1.5 periods. Indeed, from 1.5 periods to 2 periods (Figures 13(b) and 13(c)), many individual
striations go from being distinct to nearly washed out.

D. Evolution of the intensity of segregation

Based on our observations, we propose a heuristic model for the mixing metric as a function of
time,

Id (t) =
{

e−βt , 0 ≤ t ≤ τ,

e−βτ
[
(1 − B)e−α(t−τ ) + Be−γ (t−τ )

]
, t > τ,

(16)

where B, τ , β, α, and γ are parameters that depend on T, Pe, or both. In general, we expect there
to be little mixing from t = 0 to t = τ , since initially the striations are too wide for diffusion to
effectively mix across them. After a time τ has elapsed, the narrowing of the striations resulting
from stretching and folding begins to play a role. Similar to reaction-diffusion systems,54 for short
times (t < τ ) mixing (or a chemical reaction) is localized at the initial interface between black and
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(a) 1 period (b) 1.5 periods (c) 2 periods (d) 2.5 periods

FIG. 13. (a)–(d) The effects of striation stretching by chaotic advection on mixing is evident in close-up views of striations
for T = 1.6 and Pe = 105; calculated using the MM method with �t = T/8 and Nx = 800. During periods 1 and 2, the close-up
box is 0.424 < x < 0.620 and 0.584 < y < 0.780; for periods 1.5 and 2.5, 0.804 < x < 1.000 and 0.473 < y < 0.669. For
this case, the diffusional length scale 	∗ = 0.0063 (see text).

white material, while at long times (t > τ ) a distribution of striation thicknesses is generated by the
flow, and global mixing becomes possible. For t > τ , we divide the domain into chaotic and regular
regions, as suggested by Toussaint and Carrière,60 where the parameter B represents the ratio of the
area of the regular regions to the total area of the domain, and 1 − B represents the ratio of the area
of the chaotic region to the total area of the domain. The mixing metric has exponential decay in
each region because diffusion always leads to exponential decay of the eigenmodes.61 Initially, Id

evolves as exp (−βt) due to slow diffusional mixing localized at the initial interfaces between black
and white material. After this initial transient of duration τ , Id decays exponentially at a rate α in
the chaotic regions, while it decays exponentially at a different rate γ in the regular regions (KAM
islands), which is likely smaller than α because mixing in the regular regions is localized to the
edges of the islands (see also Refs. 62 and 63).

Fits of Eq. (16) to Id(t) computed from the concentration profiles from the MM method sim-
ulations are shown in Figure 14. To obtain the parameter values used in Eq. (16), a nonlinear
least-squares regression was implemented in MATLAB. First, for T = 1.6 and a given Pe, the pa-
rameters τ , β, and α were simultaneously fit according to Eq. (16) with B = 0, since there are no
islands in this case. Then for T = 0.8 and T = 1, the parameters B, α, and γ were fit to Eq. (16)
using the same β and τ from the T = 1.6 case, since β and τ are independent of T (see subsequent
discussion). This procedure was repeated for each Pe. Thus, β and τ depend only on Pe, while B,
α, and γ depend on both Pe and T (although it will be shown that B only depends weakly on Pe). It
is evident from Figure 14 that Eq. (16) captures the evolution of the quality of mixing fairly well.
Similar results were obtained for other values of T and Pe.

Looking more closely at the model parameters, τ represents the time at which the striations
become narrow enough that diffusion washes them out. For example, considering the case of T = 1.6
and Pe = 105 in Figure 13, after one period (Figure 13(a)) the striations are not yet narrow enough
for diffusion to be effective at such a large Péclet number. However, in Figures 13(b) and 13(c), they
are narrow enough for diffusion to effectively work across them. This means that the thickness of
most striations is less than 	∗ = 0.0063, the diffusional length scale at Pe = 105. Therefore, in this
case, τ should be between 1 and 1.5 periods. In Figure 14(a), specifically the inset in the lower left
corner, it is clear that, for these conditions, there is very little mixing for t < 1.9, which is indeed
between 1 and 1.5 periods for T = 1.6. It is also evident from the inset in Figure 14(a) that τ and
β are both independent of the period T. For β, this occurs because, in the beginning of the mixing
process (from t = 0 to t ≈ 2), the length of the interface between black and white (in the absence
of diffusion) is similar for all T (not shown). Thus, since the striations are initially large, diffusional
mixing is confined to the short interface between black and white material, and the initial mixing
rate β is independent of T.

To further elucidate the crossover from mixing localized near the initial interfaces to mix-
ing throughout the entire domain, the median of the striation thickness distribution 	m (based on
considering 100 horizontal cuts through the domain after each period in the absence of diffusion) is
plotted in Figure 15(a) as a function of time for several different values of T. The median striation
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FIG. 14. (a) Intensity of segregation Id vs. time in TPSF for Pe = 105 and T = 0.8 (◦), T = 1 (�), and T = 1.6 (). (b) Id

vs. time for T = 1 and Pe = 103 (◦), Pe = 104 (�), and Pe = 105 (). In both panels, all data points were calculated using
the MM method with �t = T/40 and Nx = 600. For each Pe and T, data are fit (solid curves) according to Eq. (16). Higher
temporal resolution plots for 0 < t < 2 are shown in the lower left corner inset in each plot.

thickness is nearly independent of T with 	m ∼ exp (−1.6t), indicating that the striation thickness
distribution is similar for all T (except for the presence of islands, which will not affect the median
of the striation thickness distribution). Self-similarity of striation thickness distributions is seen in
other systems as well.55 This implies that τ is independent of T since the thickness of striations will
become comparable to 	∗ at the same time for all T. The values of τ (calculated for T = 1.6, but
used for all T) are shown in Figure 15(b) as a function of Pe. Since significant mixing across the
striations occurs after t = τ (when most striations have thickness less than 	∗), 	∗ ∼ exp (−1.6τ ).
Equation (15) indicates that 	∗ ∼ 1/

√
Pe, so eτ ∼ Pe−3.2, which agrees reasonably well with the

trend in Figure 15(b).
Higher Pe values result in slower mixing, as shown in Figure 14(b) for T = 1 and several values

of Pe. For small Pe, diffusion quickly penetrates the regular regions, which leads to the steady decay
of Id, even at large times. For larger Pe, the decay of Id appears to saturate as time goes on because
even after the chaotic region is (nearly) homogenized, mixing remains hindered by the presence of
islands. Furthermore, mixing in the chaotic region does not always occur at the same rate. From
Figure 14(a), we see that the α’s (slopes of Id on the log-linear plot for t slightly larger than τ ) for
T = 1 and T = 1.6 are similar and both are larger than α for T = 0.8, yet TPSF with T = 1 has larger
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FIG. 15. (a) Median striation thickness 	m for Pe = ∞ is plotted vs. time for T = 0.8 (◦), T = 1 (�), and T = 1.6 (). (b) τ

from Eq. (16) is plotted vs. Pe (•) where the solid line shows the predicted slope (see text).
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FIG. 16. The parameters α (lighter gray, green), γ (darker gray, red), and β (black) used to fit Eq. (16) to the simulation
results plotted as functions of Pe for T = 0.8 (◦), T = 1 (�), and T = 1.6 (). T = 1.6 is not shown for γ because in this case
B = 0 and γ drops out of Eq. (16). Since β is independent of T, it is only plotted once.

islands than TPSF with T = 0.8 (compare Figure 11 to Figure 5). Therefore B for T = 1 is larger
than B for T = 0.8, and Id for T = 1 decreases slower at later times than Id for T = 0.8, as expected
from Eq. (16).

As a result of β and τ being independent of the period T of TPSF, the impact of different T on
the mixing metric can only be observed after the initial transient and depends on the interaction of
chaotic advection, diffusion, and the presence of islands, which are reflected in the parameters α, γ ,
and B. Turning first to B, the ratio of the area of the regular regions to the total area, it is evident that
B depends on T but only weakly depends on Pe (not shown). While there is slight variation in B with
Pe (as diffusion erodes the boundaries of the islands), the values of B closely match the actual area
of the islands, as calculated from the final states in the absence of diffusion (Pe = ∞).64 Specifically,
for T = 1, B (as estimated by fitting Eq. (16) to simulation results) decreases from 0.31 to 0.17 for
Pe between 103 and 3 × 105, while the actual area of the islands is Bexact ≈ 0.22 at Pe = ∞. For T
= 0.8, B increases from 0.06 to 0.11 for the same range of Pe, while Bexact ≈ 0.08.

As shown in Figure 16, β, α, and γ are all smooth monotonically decreasing functions of Pe.
Because both β and γ are related to mixing along limited interfaces (inter-material boundaries at
the initial time for β, and the interfaces at the periphery of regular regions for γ ), they are the same
order of magnitude. Meanwhile, α is a measure of diffusion enhanced by chaotic advection, which
generates narrower and narrower striations having more and more interface length, so α > γ ∼ β in
general.

The evolution of the quality of mixing in TPSF, which is governed by the interplay between
chaotic advection and diffusion, can be accurately described by Eq. (16). The size of regular regions
and the striation thickness distribution in the domain are determined by the advective velocity
field. On the other hand, diffusion, which ultimately leads to complete homogenization in this
system, controls the rate β of mixing at the initial interfaces between black and white material,
determines the diffusional length scale 	∗, and homogenizes striations that are less than O(	∗) thick
at rate α. The median of the striation thickness distribution can be compared to 	∗ to determine
when (i.e., the time t = τ in our approach) diffusional mixing of the striations dominates the
stretching and folding of striations by TPSF. Once diffusion homogenizes all striations in the chaotic
region, mixing is dominated by the presence of regular regions, which can slow down the rate of
homogenization.
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(a) Pe = ∞ (b) Pe = 104 (c) Pe = 103

FIG. 17. (a)–(c) Concentration profiles for ABC flow computed using the MM method (with Nx = Ny = Nz

= 150 and �t = 0.1) at t = 5 for different Péclet numbers.

IV. APPLICATION TO 3D CHAOTIC MIXING

Advection-diffusion in 3D chaotic flows has been of interest recently,65, 66 as increasingly
powerful computational resources have allowed for integration of these flows. The MM method we
described in Sec. II A can be applied to the three-dimensional version of Eq. (1). To demonstrate
this, consider a standard 3D chaotic flow, the Arnold–Beltrami–Childress (ABC) flow,

u(x, y, z) = (A sin z + C cos y) x̂ + (B sin x + A cos z) ŷ + (C sin y + B cos x) ẑ (17)

defined in the cube 0 ≤ x, y, z ≤ 2π with periodic boundary conditions. This velocity field, originally
proposed in 1965 by Arnold,67 is a Beltrami flow, i.e., u × (∇ × u) = 0, and is an exact solution
of the three-dimensional steady state Euler equations of inviscid fluid flow.67, 68 It was also studied
independently by Childress69 (with A = B = C = 1) as an example of the kinematic dynamo effect.
Hénon70 showed numerically that for A = √

3, B = √
2, and C = 1, this flow exhibits partially

chaotic dynamics, so we use these values as well. In generalizing the MM method to 3D, the
mapping matrix �t0→t0+�t becomes an NxNyNz × NxNyNz matrix, and we seed n3 tracer particles
uniformly in each grid cell (similar to Figure 1(a)).

In Figure 17, the concentration profiles are shown at t = 5 for Pe = ∞, 104, and 103. Initially, half
the domain (x < 1/2) is black (concentration 0) and the other half (x > 1/2) is white (concentration
1). For these simulations, �t = 0.1 and Nx = Ny = Nz = 150. It is evident in Figure 17 that both
chaotic and regular regions are present, with the unmixed regions taking the form of KAM tubes,
which are 3D analogs of KAM islands.71, 72 For smaller values of Pe, diffusion causes mixing across
the KAM tube boundaries and erodes what would otherwise be unmixed regions.

Looking more closely at mixing in ABC flow, Figure 18 shows the intensity of segregation Id

as a function of time for three values of Pe. In three dimensions, Eq. (13) becomes

Id (c) = 1

Nx Ny Nzc̄(1 − c̄)

Nx Ny Nz∑
j=1

[
c( j)(t) − c̄

]2
, (18)

where, as before, c̄ is the spatial average of the concentration and c(t) denotes the vector containing
the concentration values in each of the NxNyNz grid cells. As in Figure 9, Id decreases exponentially
with the best mixing occurring for the smallest Pe. Like the results for two-dimensional TPSF shown
in Figure 14(b), diffusion dominates for small Pe, penetrating the regular (KAM) regions, while for
large Pe the decay of Id is slowed by the presence of regular regions that hinder diffusion.

V. SUMMARY AND FUTURE WORK

Mapping methods have shown promise as simple and effective numerical approaches for study-
ing chaotic advection. In the present work, we have shown that diffusion can be easily incorporated
into these methods, extending their reach to advection-diffusion problems. Specifically, we bench-
marked the MM method of Christov et al.28 and incorporated subperiod splitting time steps. This
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FIG. 18. Degree of advective-diffusive mixing (as measured by Id in Eq. (18)) as a function of time in ABC flow for
Pe = 103 (o), Pe = 104 (�), and Pe = 105 () calculated using the MM method with �t = 0.1 and Nx = Ny = Nz = 150.

numerical method is able to accurately capture both the concentration profiles and the quality of
advective-diffusive mixing (measured via Danckwerts’ intensity of segregation) in chaotic flows. The
MM method, with a splitting time step smaller than the period of the flow, results in a quantitatively
accurate solution, while a time step equal to the period (convenient for many problems and also
less computationally expensive) provides qualitatively accurate results. Thus, the modified mapping
method allows us to incorporate diffusion into the mapping framework in a relatively simple way
that is still physically accurate, which, in general, can be difficult using other methods.

Using the MM method, we conducted a detailed study of the interplay between chaotic advection
and diffusion in mixing under TPSF, a canonical two-dimensional chaotic flow. By considering the
evolution of striations in the concentration profile, we showed that it is possible to determine
qualitatively when the evolution of the concentration profile is dominated by stirring due to chaotic
advection versus mixing by diffusion. It is also possible to study when diffusion and chaotic advection
complement each other to produce faster mixing. An analytic expression for the quality of mixing
in the domain as a function of time was proposed. This expression quantitatively captures the
interplay between chaotic advection and diffusion, describing the rate and quality of mixing as the
concentration profile evolves over both short and long time scales.

We also showed that the modified mapping method extends directly to three dimensions, using
an ABC flow as an example. It is a straightforward exercise to benchmark and validate the method
in 3D as we have done above for 2D. Furthermore, it is of interest to determine whether our analysis
of the interplay between chaotic advection and diffusion, as modeled by Eq. (16), generalizes to
three dimensions and if it also fits experimental results. Finally, extending these ideas beyond
advection-diffusion of passive scalars to active scalars is another avenue for future work.
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