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Interaction between Ekman pumping and the centrifugal instability
in Taylor–Couette flow
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The endwalls in a Taylor–Couette cell introduce adjacent boundary layers that interact with the
centrifugal instability. We investigate the interaction between the endwall Ekman layers and the
Taylor vortices near transition from nonvortical to vortical flow via direct numerical simulation
using a spectral method. We consider a radius ratio ofh50.75 in a short annulus having a
length-to-gap ratio ofG56. To analyze the nature of the interaction between the vortices and the
endwall layers, three endwall boundary conditions were considered: fixed endwalls, endwalls
rotating with the inner cylinder, and stress-free endwalls. Below the critical Taylor number, endwall
vortices for rotating endwalls are more than twice the strength of the vortices for fixed endwalls.
This trend continues well above the transition to vortical flow, consistent with a simple force balance
analysis near the endwalls. Stress-free endwalls result in endwall vortices that are similar in strength
to those for rotating endwalls above the critical Taylor number. The endwall conditions significantly
change the bifurcation diagram based on the radial velocity near the center of the annulus. For
stress-free endwall conditions, the bifurcation is quite sharp, although only one fork of the
bifurcation results unless the initial conditions are specifically set to favor the other fork. For
rotating and fixed endwalls, there is a continuous transition from a featureless flow to a vortical flow
due to the endwall vortices. ©2003 American Institute of Physics.@DOI: 10.1063/1.1534108#
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I. INTRODUCTION

The Taylor–Couette system of shear flow between a
tating inner cylinder and a concentric, fixed outer cylinder
a canonical system that provides valuable insight into
centrifugal stability of rotating flows as well as low
dimension bifurcation phenomena. Typically, the effects
the endwalls on the flow are avoided theoretically by assu
ing infinitely long cylinders, experimentally by using lon
cylinders~compared to the gap between the cylinders!, and
computationally by using periodic boundary conditions at
axial extrema of the computational domain. In this way,
centrifugal instability is considered without the interferen
of the confining endwalls. However, the endwalls are an
portant influence on the flow throughout the Taylor–Coue
cell. Consequently, we consider the interaction between
boundary-driven flows at the endwalls and the centrifu
instability inherent in the Taylor–Couette configuration.

Away from the endwalls in cylindrical Couette flow, th
stable flow is geostrophic. In other words, the centrifu
force due to the azimuthal velocity~or equivalently, the in-
ertia related to the centripetal acceleration! is balanced by the
pressure gradient force. No radial flow occurs when the R
nolds number is small enough so that viscosity suppre
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the centrifugal~Taylor! instability. However, this geostrophi
flow is upset at the endwalls where the no-slip bound
condition results in an azimuthal velocity near the endw
that is different from that far from the endwall. The imba
ance between the pressure gradient force near the end
which is similar to the pressure gradient imposed by the fl
far from the endwall, and the centrifugal force near the e
wall, which is driven by the azimuthal velocity due to th
rotation of the endwall, results in a force near the endwa
that drives a radial flow in a boundary layer on the endwa
Depending on the nature of the endwall boundary conditi
the boundary-driven flow at the endwall can be conside
either a Bo¨dewadt flow, where the endwall is fixed and th
fluid is rotating, or an Ekman flow, where the endwall a
fluid are rotating at different angular velocities. These en
wall flows are part of the larger family of flows includin
Bödewadt, Ekman, and von Ka´rmán ~BEK! boundary layer
flows.1 For BEK flows, the thickness of the boundary lay
scales with (n/V)1/2, wheren is the kinematic viscosity and
V is an angular velocity scale.

The transition from stable cylindrical Couette flow
Taylor vortex flow is described by a pitchfork bifurcatio
when the cylinders are infinitely long to avoid endwall e
fects. However, the presence of the endwalls upsets the
mal pitchfork bifurcation. This leads to one branch having
continuous transition from a featureless stable flow to a v
tical flow with the rotation of the vortex adjacent to the en
wall defined by the radial boundary flow. For fixed endwal

e:
© 2003 American Institute of Physics
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the rotation of the endwall vortex associated with the c
tinuous branch is such that the flow adjacent to the endw
is radially inward. For endwalls rotating with the inner cy
inder, the rotation of the endwall vortices is such that
flow adjacent to the endwalls is outward. A second bran
which is disconnected from the first branch, correspond
rotation of vortex near the endwall opposite that defined
the endwall boundary flow.2 This second branch could b
considered an ‘‘anomalous’’ branch, since the rotation of v
tices near the endwall is opposite that normally expec
based on the endwall boundary layer flow. In most cases
flow follows the continuous branch, although it is possible
generate flows corresponding to the anomalous branch u
certain conditions.3,4

The continuous transition from featureless flow to vor
cal flow along the continuous branch is quite evident b
experimentally and computationally.5–10 Below the critical
Reynolds number for transition from nonvortical to vortic
flow, a single vortex driven by the flow in the endwa
boundary layer first appears near each endwall. These
wall vortices are often referred to as Ekman vortices.6–8 The
vortical structures are not an instability but instead are dri
by the boundary layer flow at the endwalls. Because
equations of motion are elliptic, these endwall effects p
etrate to some extent over the entire flow.11

As the Reynolds number is gradually increased, m
vortices appear with a counter-rotating sense, such that
strength of the vortices decays exponentially with dista
from the endwalls.8 Although they are unrelated to the ce
trifugal instability of Taylor vortex flow, these counte
rotating vortices appear quite similar to Taylor vortices ha
ing an axial extent that is approximately equal to the g
between the cylinders. Once the transitional Reynolds n
ber is reached, the vortex structure is driven by the Tay
centrifugal instability in addition to the boundary layer flo
Vortices fill the annulus, but the sense of rotation of t
vortical structure is maintained so that the endwall vortic
continue with the same sense as the original Ekman vorti
Thus, the endwall vortices that appear well below the tran
tion to Taylor vortex flow excite the unstable Taylor vortic
and subsequently determine the rotation of the entire vo
structure above the critical speed for the appearance of
lor vortices, even for relatively long cylinders.12 If the Rey-
nolds number is impulsively increased from subcritical
supercritical instead of being increased gradually, the in
face between the vortical motion near the endwalls and
stable flow propagates from the endwalls into the bulk of
annulus, eventually filling the annulus with vortices. Fro
experimental and computational results, the time for the fr
to propagate one annular gap width is of the ordert
5d2/2pn, whered5r o* 2r i* is the gap between cylinders o
radius r o* and r i* .8,13 @The viscous time scalet can be de-
rived from the characteristic time scale for spin-up of a flu
between a pair of rotating disks,Ek21/2V21, where Ek
5n/VL2 is the Ekman number,V is the rotational speed
andL is a typical length scale of the flow.14 Using L5d as
the characteristic length scale, this spin-up time scale ca
rewritten as the product of the viscous time scale and
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time scale of rotation so thatEk21/2V215(tT)1/2, where
T52p/V is the period of rotation.#

Consequently, the endwalls play a significant role in t
nature of the Taylor vortex flow. This is most easily evide
for short cylinders, since the vortices are never far from
endwalls. For short cylinders, the transition to nonwavy v
tical flow occurs at a slightly lower rotational speed,15 pre-
sumably because of the perturbation by the endwall vortic
Furthermore, the subsequent transition to wavy vortical fl
occurs at a higher rotational speed than in the case of
nitely long cylinders,15 most likely because the endwall vo
tices related to the endwall boundary layers alter the vort
structure to minimize the tendency toward waviness. In
dition, the distance between the endwalls can strongly in
ence the axial wave number. In the case of infinite cylinde
the azimuthal wave number is such that nearly square vo
cal cells occur. For aspect ratios that are even integers,
axial wavelength of the vortex pair is nearly that predict
by theory for identical endwall conditions. However, odd
noninteger aspect ratios results in vortices near the endw
that stretch or compress to accommodate the proper vor
rotation required by the endwall conditions.15 Anomalous
vortex structures~along the disconnected branch of the bifu
cation diagram! can be brought about most readily in sho
cylinders,3,4,16 but can also occur for long cylinders upo
impulsive startup.17

From the discussion above, it is clear that the flow in t
endwall boundary layers in Taylor vortex flow strongly in
fluences the centrifugal instability and the resulting flo
field. This interaction is the topic of this paper. We consid
the flow in a short Taylor–Couette cell to investigate how t
endwall boundary layers interact with the vortical structu
related to the Taylor centrifugal instability. By using fixe
endwalls, endwalls rotating with the inner cylinder, a
stress-free endwalls~modeling a free surface!, we investigate
how the interaction between the endwall boundary layer
the centrifugal Taylor instability affects the transition fro
nonvortical flow to steady, axisymmetric vortical flow an
the nature of the final flow field.

II. A SIMPLE PREDICTION SCHEME FOR THE
BOUNDARY LAYER FLOW

When the inner cylinder is rotating and the outer cyli
der is stationary, the direction of the radial flow in the en
wall layer is easy to predict. For endwalls rotating with t
inner cylinder, centrifugal viscous pumping causes an o
flow at the endwalls, which is similar to a von Ka´rmán
boundary layer for a disk rotating in an otherwise quiesc
fluid. For endwalls fixed to the stationary outer cylinder, t
imbalanced pressure gradient and centrifugal forces nea
endwalls result in an inward flow, which is similar to
Bödewadt layer for a stationary disk and a rotating fluid.

The situation can be approached more quantitatively
considering a force balance on a cylindrical element tha
dz* 3r * du3dr* , or, equivalently, from considering th
boundary layer approximation for the radial Navier–Stok
equation, which results in
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2
]p*

]r *
1

]tzr*

]z*
52r

vu*
2

r *
, ~1!

where p* is the pressure,tzr* is the shear stress,r is the
density, and (v r* ,vu* ,vz* ) are the velocities in the (r * ,u,z* )
directions. In the geostrophic region, the gradient of
shear is zero, so the radial pressure gradient is balance
the centrifugal force

]p*

]r * U
geostrophic

5r
vu*

2

r *
, ~2!

wherevu* (r * ) is the exact solution for cylindrical Couett
flow. Thus, there is no force driving a radial flow~at least
when the flow is centrifugally stable!. Because of the no-slip
condition at the endwall, the azimuthal velocity,vu* , near the
endwall is different from that away from the endwall. Th
azimuthal velocity very near the endwall can be appro
mated asvu* 5r * Ve , whereVe is the angular velocity of the
endwall. In addition, to a first approximation, the radial pre
sure gradient in the geostrophic portion of the flow is i
posed on the fluid very near the endwall. This geostrop
pressure gradient can be found from the exact solution
cylindrical Couette flow based on Eq.~2!. Using this and the
estimate for the azimuthal velocity near the endwall in E
~1! results in

]tzr*

]z*
'

]p*

]r * U
geostrophic

2rVe
2r * . ~3!

We specify an approximate equality here because the ang
velocity of the fluid near the endwall is not exactlyVe , but
only approaches this value. In addition, the geostrophic p
sure gradient on the right side of the equation is only
estimate for the local pressure gradient based on the e
solution in Eq. ~2! for stable cylindrical Couette flow fa
from the endwalls. Furthermore, the pressure gradient in
tical flow is modified by the presence of the endwall vortic
Nevertheless, Eq.~3! provides an estimate of the imbalan
between the centrifugal force and the pressure gradient fo
which drives the radial endwall flow. Of course, the visco
stress forming the left side of the equation, opposes mo
of the fluid. As a result, when the right side of the equation
positive, the flow is inward at the endwall; when the rig
side of the equation is negative, the flow is outward at
endwall. This boundary layer flow at the endwalls det
mines the rotation of the vortices that appear near the e
wall well below the critical speed for Taylor vortices, an
upon transition to unstable flow, the rotation of the vortic
for the entire unstable flow field. However, we must note t
due to the nonlinear nature of the flow, anomalous mo
may exist having vortex rotation at the endwall opposite t
predicted using this simple scheme.11

Equation ~3! can also be used to predict the relati
strength of the endwall vortices. For instance, Mullin a
Blohm considered a situation with the inner cylinder rotati
and the outer cylinder fixed for a cylinder length (2h) to gap
ratio of G52h/d53.18 The upper endwall was fixed and th
lower endwall rotated with the inner cylinder. Their comp
tational and experimental results showed a much stron
Downloaded 16 Jul 2003 to 129.105.69.153. Redistribution subject to A
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vortex adjacent to the rotating endwall than near the fix
endwall. As they increased the rotational speed, the vo
nearest the rotating endwall grew larger, eventually elimin
ing the other vortices in the cell. Applying Eq.~3! to their
geometry indicates that the maximum force driving the o
ward radial flow at the rotating endwall was more than tw
as large as the maximum force driving the inward flow at
nonrotating endwall. Apparently, this effect was so stro
that as the rotational speed was increased, the recircula
flow driven by the lower endwall boundary flow dominate
the centrifugal instability resulting in a single vortex in th
cavity.

Later in this paper, we use the estimate of the fo
imbalance near the endwall in Eq.~3! to aid in interpreting
computational results for a wide range of endwall conditio
The advantage, of course, is that Eq.~3! allows thea priori
prediction of the ‘‘strength’’ of the Ekman vortices as w
ascertain the role of the endwall flow in its interaction wi
the centrifugal instability.

III. GEOMETRY AND NUMERICAL METHOD

The configuration that is considered is an annular cav
between two concentric cylinders of inner and outer radiir i*
and r o* , with the inner cylinder rotating atV i and the outer
cylinder fixed. The flow is described by the incompressib
Navier–Stokes equations written with cylindrical coordina
(r * ,z* ,u) in an absolute frame of reference, according
the velocity-pressure formulation. Parameters charac
istic of the physical problem are the Reynolds number
5Viri*d/n, the radius ratioh5r i* /r o* , and the aspect ratio
G52h/d. The scales for the dimensionless variab
of space, time and velocity ared or h, V i

21, and V i r i* ,
respectively. The dimensionless radial and axial coor
nates arer 5(2r * 2r o* 2r i* )/d, r P@21;1#, and z5z* /h,
zP@21;1# to allow the use of Chebyshev polynomials.

On the cylindrical boundaries, the dimensionless vel
ity (v r ,vu ,vz) obeys the no-slip condition

v r5vz50, vu51, at r 521, zP@21;1#,
~4!v r5vz50, vu50, at r 51, zP@21;1#.

Three endwall conditions are considered, depending on
angular velocity of the endwall,Ve : ~1! Stationary endwall
(Ve50); ~2! rotation of the endwall with the inner cylinde
(Ve5V i); and ~3! a stress-free boundary condition on th
endwall ~designatedVe5F). In this last case, the free su
face is assumed flat, and surface tension is neglected, so
the surface is a pure slip boundary. The boundary conditi
on the endwalls are complicated by the difficulty in handli
the singularity in the azimuthal velocityvu at the corner
where the cylinder has a different rotational speed than
endwall. This occurs atz561 and:~1! r 521 for Ve50;
~2! r 51 for Ve5V i . To handle this, the profiles at the upp
and lower endwalls are set so that the velocity is that of
endwall except very near the singularity, where velocity e
ponentially changes to that of the adjacent cylinder. Thus,
dimensionless form of the boundary conditions for the a
muthal velocity atz561 are
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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v r5vz50, vu5
e2ar2e2a

ea2e2a , for Ve50,

v r5vz50, vu5
~12h!r 111h

2h
•

e2ar2e2a

ea2e2a ,

for Ve5V i , ~5!

vz50,
]v r

]z
5

]vu

]z
50, for Ve5F.

The location of the region in which the velocity chang
from that of the cylinder to that of the endwall depends
the sign of the decay coefficienta. The width of the region is
set to about 0.05d by adjusting the magnitude ofa. This
small distance is consistent with the size of the gap betw
a rotating cylinder and an endwall rotating at a differe
speed that would be necessary in an equivalent experime
system.

Since we consider axisymmetric flows, the incompre
ible, dimensionless Navier–Stokes equations are solved
a two-dimensional version of the code used by Cza
et al.19 This code uses a pseudo-spectral Chebyshev coll
tion method taking advantage of the orthogonality proper
of Chebyshev polynomials and providing exponent
convergence.20 The time scheme is semi-implicit and secon
order accurate. It is a combination of the second-order ba
ward implicit Euler scheme for the time term, an explic
Adams–Bashforth scheme for the nonlinear terms, and
implicit formula for the viscous diffusion term.21 An im-
proved projection algorithm allows velocity-pressu
coupling.22 The mesh grid is defined by the Gauss–Loba
collocation points along (r ,z) with N561 andM5121 be-
ing the number of points in the radial and axial directions
the spatial mesh. The high grid resolution in the axial dir
tion is helpful in avoiding any predisposition to a particul
number of vortices appearing due to a particular grid sp
ing.

Preliminary computations for a fixed outer cylinder (h
50.83) were undertaken to compare our results to that
pected for three aspect ratios: 16, 32, 48. In all cases Ta
vortices were obtained with the axial wavelength and criti
Reynolds number (Recrit) in good agreement with theory.23

Perhaps a more challenging test is to directly comp
our numerical results with experimental results in a situat
where the effect of endwalls is specifically addressed. So
lik et al. measured the velocity gradients at the station
outer wall using a three-segment electrodiffusion probe
G59.85 andh50.9 with fixed endwalls (Ve50).10 In this
case, the critical Reynolds number for transition to vorti
flow for infinitely long cylinders is Recrit5138.23 Figure 1
shows a comparison of our axisymmetric computational
sults for one-half of the length of the annulus with the me
surements for the case where«5Re/Recrit51.00. The com-
putations~bold curve! match the experimental results~data
points10! fairly well, although the maxima in the computa
tions are as much as 7% higher than the measurements.
ertheless, the match can be considered quite good for
reasons. First, the precise value of the Reynolds numbe
which experimental data is obtained can usually only be
Downloaded 16 Jul 2003 to 129.105.69.153. Redistribution subject to A
n
t
tal

-
ith
y
a-
s
l
-
k-

n

o

r
-

c-

x-
or
l

e
n
o-
y
r

l

-
-

ev-
o
at
s-

timated to within a few percent due to minor errors in me
suring the viscosity, rotational speed, and diameter of
cylinders. In fact, Soboliket al. indicate that their critical
Reynolds number differed by as much as 3% from the th
retical value.10 Changing the Reynolds number for the com
putations by only 1% to«50.99 ~shown as the fine curve in
Fig. 1! brings the computations very close to the experim
tal results. Second, the electrodiffusion method has some
herent experimental error in it. Although Soboliket al. do
not provide an error analysis, their data for the directio
characteristics of the probe suggest that an error of sev
percent would not be unreasonable. We have compared
computational results to their experiments at other Reyno
numbers, both above and below the critical Reynolds nu
ber, and find agreement similar to that shown in Fig. 1. Th
we conclude that our computational results faithfully rep
duce experimental results for a geometry that is very sim
to those that we study.

IV. RESULTS

We consider the steady, axisymmetric flow near the tr
sition from stable flow to vortical flow for an aspect ratio
G56 and a radius ratio ofh50.75. The aspect ratio an
radius ratio were chosen to match our previous computat
for counter-rotating cylinders.19 In addition, the small aspec
ratio assures that the effect of the endwall condition is
quickly near the midpoint of the length of the annulus. F
infinitely long cylinders, the transition from nonvortical t
vortical flow at this radius ratio occurs at Recrit585.8.23 We
examine the character of the flow as the Reynolds numbe
varied from below this transition Reynolds number to w
above it for all three endwall conditions. In all cases~such as
that shown in Fig. 2!, the velocity vectors in a meridiona
plane (v r , vz) at r 50 ~midway between the inner and oute
cylinders! are plotted. The inner cylinder is the left vertic
line, and the outer cylinder is the right vertical line. Th
vectors are scaled withr i* V i at Recrit to permit comparison
of the magnitudes of the velocities as the Reynolds num
is increased and to evaluate the differences in the var
endwall conditions.

FIG. 1. Radial gradient of the azimuthal velocity: • experimental data a«
51.00; ~Ref. 10! bold curve: computations at«51.00; fine curve: compu-
tations at«50.99.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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A. Fixed endwalls

Consider first the case of endwalls fixed (Ve50),
shown in Fig. 2. Even well below the transition to Tayl
vortex flow («,1), the inward flow at the endwalls induce
a strong endwall vortex. The vortices near the center of
annular length are substantially weaker. As« increases for
«,1, the endwall vortex remains nearly the same, but
vortices near the center grow in strength. All of the vortic
for «,1 are induced by the endwall boundary flow—th
are not due to the centrifugal instability. As the Reyno
number is increased above the Reynolds number for tra
tion («.1), the vortices near the center of the annulus c
tinue to grow in strength, eventually growing somewh
stronger than the endwall vortex driven by boundary la
pumping for«.1.04. On the other hand, it is interesting th
the magnitude of the velocity in the endwall vortex just b
low the transition to vortical flow is similar to that for th
Taylor vortices near the center of the annulus just above
transition, in spite of the very different mechanisms resp
sible for the appearance of the vortices. In both situatio
the maximum radial velocity is about 3% to 4% of the su
face speed of the inner cylinder. This suggests that while
mechanism that generates the vortices is quite different in
two cases, the geometry of the situation~most likely the gap
width, d) and the inherent velocity scale in the proble
(r iV i) determine the magnitude of the velocity for the vo
tices.

The situation at the endwall vortex is quite interestin
One might expect that the velocity near the endwall mi
increase substantially at the transition from nonvortical
vortical flow due to the combined effect of the bounda
driven flow and the centrifugal instability. However, the vo
tex strength only continues to very gradually increase wit«
around the transitional Reynolds number. This situat

FIG. 2. Velocity vectors midway across the gap near transition from n
vortical to vortical flow forG56, h50.75,Ve50 ~endwalls not rotating!.
The inner cylinder is the left vertical line; the outer cylinder is the rig
vertical line.
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again suggests that the magnitude of the velocity in a vo
is determined by the inherent length and velocity scales
the situation, not the mechanism that causes the vortical
tion.

The thickness of an endwall boundary layer should sc
asdE /L;Ek1/25(n/VL2)1/2 according to the theory for Ek
man layers.14 Using the radii of one of the cylinders,r i or
r o , or the gap width,d, for the length scale,L, provide
similar results, so we choose to used to be consistent with
the length scale used for the spin-up time, discussed in
introduction. Based on this, one would predict an endw
boundary layer thickness of 0.19d. The endwall boundary
layer thickness can be estimated using the distance from
endwall to the position of the first maximum in the radi
velocity midway across the gap. In the case of Fig. 2,dE

ranges from 0.23d for «,1 to 0.29d for «.1, based on the
computational grid location where the maximum radial v
locity near the endwall occurs. Although these results se
somewhat high compared with the predicted value, the d
nition of the thickness of the endwall boundary layer
somewhat ambiguous in this case. We arbitrarily measu
the thickness as the distance to the maximum radial veloc
but the thickness could have been defined in other ways
addition, the vortical motion near the endwall clearly affec
the thickness of the layer. For instance, the maximum ra
velocity occurs at a much larger distance from the wall wh
measured nearer one of the cylinders rather than mid
between them.

B. Rotating endwalls

Next, consider a similar sequence for the endwall rot
ing with the inner cylinder (Ve5V i), shown in Fig. 3. The
endwall flow is outward, which is opposite that for fixe
endwalls, and is much stronger. This is a direct conseque
of the force balance in Eq.~3!. Figure 4 compares the theo

-
FIG. 3. Velocity vectors midway across the gap near transition from n
vortical to vortical flow forG56, h50.75,Ve5V i ~endwalls rotating with
the inner cylinder!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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retical and computed force imbalance,FI , for both fixed and
rotating endwalls as a function of radial position.@For the
ordinate in Fig. 4, the left hand side of Eq.~3! is nondimen-
sionalized so that force imbalance isFI5]tzr8 /]z8, where
tzr8 5tzr* /rr i

2V i
2 andz85z* /r i* . This nondimensionalization

scheme results in 0<FI<1 for the case where the endwal
are fixed. However, data for the theoretical model are om
ted at the inner or outer cylinders where singularities occ#
When FI.0, the force imbalance generates an inward fl
at the endwall; whenFI,0, the force imbalance generates
outward flow at the endwall. The force imbalance,FI , is
calculated just below transition to vortical flow at«50.96 in
three ways for each case:~1! Using Eq.~3!, which is based
on the theoretical pressure gradient with no endwalls and
velocity of the endwall itself;~2! using the computed pres
sure gradient at the center of the gap (z50), which is very
similar to the theoretical pressure gradient with no endwa
and the fluid’s azimuthal velocity at computational grid l
cations very near the endwall (z50.991, which is equivalen
to 0.027d from the endwall!; and~3! based on the compute
pressure gradient and the fluid’s azimuthal velocity, both
computational grid locations very near the endwallz
50.991).

From Fig. 4, it is quite clear that no matter how the for
imbalance is calculated, its magnitude is greater for the c
of the endwall rotating with the inner cylinder than for
fixed endwall, thus explaining the stronger endwall lay
flow when the endwall rotates with the inner cylinder. O
course, the direction of the endwall motion in Figs. 2 and 3
also consistent with the prediction based on the force im
ance. The force imbalance calculated based on the ra
pressure gradient at the center of the annulus and the
muthal velocity near the endwalls is very similar to that p
dicted by Eq.~3!. This is quite reasonable, given the assum
tions in deriving Eq. ~3! that the geostrophic pressu
gradient~which is that far from the endwalls! is used in the
calculation. However, when the force imbalance is calcula
based on the local pressure gradient at computational

FIG. 4. Force imbalance near the endwall forVe50 ~open symbols! and
Ve5V i ~filled symbols!. Eq. ~3!; circles are data based on pressu
gradient at the center of the annulus; squares are data based on pr
gradient near the endwall.
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locations very near the endwalls, its value is less than
predicted by Eq.~3!. This is a consequence of the flow a
justing to the force imbalance by generating the radial e
wall boundary flow. Nevertheless, the direction and relat
magnitude of the endwall flow is consistent with the pred
tion of Eq. ~3!.

In spite of the stronger endwall vortices in the case
rotating endwalls, the vortical structure away from the en
walls is similar for both fixed and rotating endwalls, exce
for the sign of the velocity, as shown in Figs. 2 and 3. Ho
ever, careful examination of the radial velocity at the ax
midpoint of the domain shows that it is somewhat weaker
rotating endwalls than that for the case of fixed endwalls
«.1. This is because the radial outflow is stronger than
radial inflow in Taylor vortex flow.24–29 This effect is quite
evident for the vortices away from the endwalls in both Fig
2 and 3. Above transition, the radial outflow~rightward! is
always stronger than the radial inflow except at the endwa
In the case of fixed endwalls, the radial outflow coincid
with the axial midpoint of the domain, so the radial flow
the midpoint is greater in this case. In addition, note that
flow is symmetric with respect to the midpoint of the ann
lus, as would be expected for an aspect ratio that is an e
integer value. We note that the flow with rotating endwa
may become asymmetric for aspect ratios of 4 or less.30

Again the thickness of the endwall boundary layer c
be determined based on the location of maximum radial
locity near the endwall. For rotating endwalls,dE is 0.15d
both above and below the transition Reynolds numb
Again, given the uncertainty in defining the endwall boun
ary layer thickness, this value is consistent with the predic
value of 0.19d.

Returning now to the force imbalance indicated in F
4, an interesting aspect is that the magnitude of the imb
ance is greatest near the inner cylinder for fixed endwa
and it is greatest near the outer cylinder for rotating e
walls. This suggests that the boundary layer flow might
stronger near the inner cylinder for fixed endwalls and n
the outer cylinder first for rotating endwalls. This is inde
the case as is evident in Fig. 5, which depicts the veloc
vectors for the boundary-driven vortex for«50.98 in both

sure

FIG. 5. Comparison of the velocity vectors near the upper endwall a«
50.98 for ~a! Ve50; and ~b! Ve5V i . Vectors are scaled identically in
both cases. The inner cylinder is the left vertical line; the outer cylinde
the right vertical line.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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cases. For the case of fixed endwalls, the strongest ra
motion near the endwall is closer to the inner cylinder,
shown in Fig. 5~a!. The strong inward radial flow near th
inner cylinder leads to a very strong axial flow downwa
along the inner cylinder compared to the upward flow alo
the outer cylinder. This results in an asymmetric vortex w
its center offset from the midpoint of the annular gap.
addition, the endwall vortex is somewhat elongated axia
so that it does not have the square aspect ratio like that f
Taylor vortex, consistent with previous work.5,9,10The length
of the endwall vortex is 1.30d. In the case of rotating end
walls, the strongest radial flow at the endwall is nearer
outer cylinder, as shown in Fig. 5~b!. The consequence is
strong downward axial flow at the outer cylinder, just t
opposite of what occurs for fixed endwalls but still resulti
in an asymmetric vortex. In this case, the vortex is elonga
in the axial direction, but not as much as for the case of fix
endwalls—the length of the vortex is only 1.17d. The reason
for the difference in the elongation of the endwall vortices
not clear. It may simply be related to the stronger drivi
force for the rotating endwall generating a stronger vor
that is more compact.

Above the transition to Taylor vortex flow at«51.05,
the situation near the endwall is similar, as shown in Fig
for both endwall conditions, even though the centrifugal
stability in addition to the endwall boundary flow drives th
vortex. One might expect that the Taylor centrifugal instab
ity at this supercritical Reynolds number might cause
vortex to ‘‘even out’’ to a nearly uniform cell, but it does no
do so for either endwall case. Apparently, the endwall bou
ary layer continues to drive a strong enough endwall flow
continue to affect symmetry of the endwall vortex structu
However, the endwall vortex for fixed endwalls has a sligh
reduced axial extent of 1.27d. The axial extent of the end
wall vortices remains at 1.17d for rotating endwalls. The
vortex centers are still offset from the midpoint of the ann
lar gap. For the fixed endwall condition, the vortex cen
~estimated from the location where the radial and axial
locities appear to vanish! is 0.47d from the inner cylinder,
whereas for the rotating endwall the vortex center is at 0.5d
from the inner cylinder.

FIG. 6. Comparison of the velocity vectors near the upper endwall a«
51.05 for ~a! Ve50; and ~b! Ve5V i . Vectors are scaled identically in
both cases.
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C. Stress-free endwalls

Although it is challenging to achieve experimentally, th
case of stress-free boundary conditions at both endwalls
be readily modeled computationally. The appearance of
flow, as shown in Fig. 7, is quite different from the previo
cases with the no-slip condition at the endwalls. The vorti
do not appear at all below the critical Reynolds numb
When the vortices first appear at«51, they are nearly uni-
form in their strength along the length of the annulus. T
flow near the stress-free endwall is nearly identical to tha
the other vortices in terms of its amplitude, with the highe
velocity right at the endwall. The radial velocity at the ou
flow boundaries between vortices increases more quic
with increasing« than the velocity at the inflow boundarie
To accommodate this, the width of the outflow region d
creases slightly, while the width of the inflow regions i
creases correspondingly.

The endwall vortex in this case is quite different fro
cases for which there is a no-slip boundary condition at
endwall, as shown in Fig. 8 in comparison with Fig. 6.
fact, the appearance of the vortex is very similar to that o
Taylor vortex away from an endwall boundary. With a stre
free endwall condition, the axial flow along the inner a
outer cylinder walls is nearly the same. In addition, the e
wall vortex is not axially elongated as with the vortice
driven by either no-slip endwall condition. The axial leng
of the endwall vortex is 0.99d, resulting in a square vortica
cell like that for a Taylor vortex with the vortex center a
proximately midway between the inner and outer cylinders
0.49d from the inner cylinder.

The computations for stress-free endwalls converged
an outflow at the endwalls beginning from a quiescent fl
initial condition. However, we were able to obtain a soluti
with an inflow at the stress-free endwalls at a particular va
of « by using the solution for fixed endwalls at that« as the
initial condition. An example is shown in Fig. 7 for«
51.049. The flow is similar to that obtained at the sam
Reynolds number with stress-free endwall conditions, exc
that vortices are shifted byd and the velocity at the endwa

FIG. 7. Velocity vectors midway across the gap near transition forG56,
h50.75,Ve5F ~stress-free at the endwalls!. The far right image shows the
flow when the initial condition is fixed endwalls instead of quiescent flo
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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is slightly smaller. This clearly shows how the initial cond
tions determine the final state. The nature of the converge
for the case of stress-free endwalls is also quite differ
from the other two cases. The flow takes about 100 tim
longer to computationally develop and converge for
stress-free endwall condition than for the no-slip endw
condition. This result amplifies how important the endw
vortices are as precursors to Taylor vortex flow.

The final case that we consider is that for a mixed e
wall condition having a stress-free upper endwall and a
tating lower endwall, shown in Fig. 9. The development
the flow near the upper stress-free boundary is very simila
that for a stress-free boundary at both endwalls, shown
Fig. 7. Likewise, the development of the flow near the rot
ing lower boundary is very similar to that for a rotatin
boundary at both endwalls, shown in Fig. 3. The penetra
of the vortices from the lower endwall into the annulus b
low the critical Reynolds number is quite clear. Below t

FIG. 8. Velocity vectors near the endwall at«51.05 forVe5F. Vectors are
scaled identically with those in Figs. 5 and 6.

FIG. 9. Velocity vectors midway across the gap near transition from n
vortical to vortical flow forG56, h50.75,Ve5F at the upper endwall and
Ve5V i at the lower endwall. Arrows mark the predicted penetration de
according to Eq.~6!.
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transition to vortical flow, the penetration depth,D, of end-
wall vortices from the endwall into the bulk of the annulus
given by8

D'0.65u«21u21/2d. ~6!

Using this relation, the estimated penetration depth is 1d
and 3.1d for «50.874 and 0.956. These locations, which a
marked on Fig. 9, are consistent with our computational
sults.

V. DISCUSSION

It is clear from the results so far that the axial length
the endwall vortex depends on both the Reynolds num
and the nature of the endwall boundary condition. Figure
displays the endwall vortex length,Le , estimated from vec-
tor plots like those shown in Figs. 5, 6, and 8. Of course,
measurement of the length of the endwall vortex somew
subjective, because the velocity is only available at discr
grid locations and the precise boundary between vortice
not always clearly defined. At low«, the endwall vortices fill
the length of the annulus, so that there are two vortices
the symmetric no-slip endwall conditions (Le /d53) and a
single large vortex for the mixed endwall condition (Le /d
56). As « increases, more vortices appear in the annu
reducing the length of the endwall vortex. At the transiti
Reynolds number,«51, vortices of lengthLe /d50.99 ap-
pear for the stress-free endwall condition, and the endw
vortex length has been reduced to 1.17<Le /d<1.29 for the
cases of no-slip endwalls. With increasing«, the endwall
vortex length remains atLe /d50.99 for the stress-free end
wall condition and asymptotes toLe /d51.17 for the fixed
endwall case (Ve50). However in the case of the endwal
rotating, either both endwalls or for the mixed endwall co
dition, the length of the endwall vortex increases sligh
with increasing«. The origin of this increase in size is no
clear, although it may be related to the flow of energy in
the endwall vortex due to the endwall rotation. Howev
because the aspect ratio,G, is an even integer, this last resu

-

h

FIG. 10. Dependence of the length of the endwall vortex on the Reyn
number,«5Re/Recrit , n Ve50; h, Ve5V i ; s, Ve5F both endwalls;* ,
value at rotating endwall for mixed endwall conditions.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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indicates that the Taylor vortices away from the endwalls
somewhat reduced in size at the expense of the endwall
tices whenLe /d>1, similar to the results with a larger as
pect ratio.5,9,31

At this point, it is useful to examine the dependence
the radial velocity in the endwall layer, which is a measure
the strength of the endwall boundary layer, on the Reyno
number and endwall condition. The maximum radial veloc
near the endwall halfway across the annular gap normal
by r iV i is shown in Fig. 11 for all of the endwall condition
that have been considered, including the values for the m
mum radial velocity at each of the two endwalls for t
mixed endwall case.~Note that since the vortex is not ne
essarily centered in the annular gap as shown in Figs. 5
6, the radial velocity may have a somewhat larger value
radial locations other than the center of the gap. Never
less, the maximum radial velocity at the center of the ga
used here to provide a consistent measure of the radia
locity in the endwall boundary layer.! For the cases in which
the no-slip condition is imposed on the flow, the endw
velocity changes smoothly as the Reynolds number
creases. Even at the transition to Taylor vortex flow a«
51, the curve is quite smooth with no hint of a change
slope. The magnitude of the maximum radial velocity
larger for rotating endwalls than for fixed endwalls, since
driving force is larger, as was shown in Fig. 4.

One branch of the pitchfork bifurcation that is expect
for stress-free endwalls is evident at«51. In this case, the
transition from nonvortical flow to vortical flow results in
sharp increase in the radial velocity near the endwall. T
lower branch of the bifurcation is not plotted in this figu
because our simulations converged to the solution for a
dial outflow at the stress-free endwall. A radial inflow at t
stress-free endwall could be obtained only if the simulat
was run with a fixed endwall result~having an inward flow at

FIG. 11. Reynolds number dependence of the maximum radial velo
component nondimensionalized withV i r i* near the endwall and midway
across the annular gap. Inset shows the curves near transition.n, Ve50; h,
Ve5V i ; s, Ve5F both endwalls;3, value at stress-free endwall fo
mixed endwall conditions;* , value at rotating endwall for mixed endwa
conditions.
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the endwall! as the initial condition. For the mixed endwa
condition, the velocity near the stress-free endwall follo
the curve for both endwalls being stress-free, while the
locity near the rotating endwall follows the curve for bo
endwalls rotating. In other words, even with a small asp
ratio of G56, the influence of the rotating endwall is min
mal at the stress-free endwall. The only exception occ
very near the transition to vortical flow at«51, where the
velocity near the stress-free endwall in the mixed condit
does not reflect as sharp of a change as that for both endw
being stress-free, as shown in the inset of Fig. 11. It is a
interesting to note that as« increases, the maximum radia
velocity near the stress-free endwalls becomes larger
that for the rotating endwalls, though not until the Reyno
number is well above the transition,«.2. On the other hand
the magnitude of the maximum radial velocity for the fixe
endwall case remains about one-half that of the stress-fre
rotating endwalls. These results suggest that the friction n
the endwalls reduces the energy of the vortical structu
This is a stronger influence in the case of fixed endwa
where the endwall friction reduces the azimuthal moment
substantially more than in the case of rotating endwalls.

From the results presented so far, it is clear that
endwall conditions affect the nature of the bifurcation at t
transition from nonvortical to vortical flow. We can furthe
examine the bifurcation by considering the maximum rad
velocity near the center of the axial length of the annulus
a function of«, as shown in Fig. 12. The maximum radi
velocity is recorded either at the midpoint of the axial leng
of the cylinders (z50), or at the next inflow or outflow
boundary above or below it. This was done so that the ra
velocity at outflow boundaries and at inflow boundari
could be compared to one another. Depending on the end
boundary conditions, the inflow and outflow boundaries o
cur either at the midpoint of the axial length or approx
mately d above or below the midpoint. For the mixed en
wall condition, the asymmetry in the vortex field requir

ty
FIG. 12. Bifurcation diagram based on the maximum radial velocity non
mensionalized withV i r i* at outflow regions and inflow regions near th
axial center of the annulus.n, Ve50; h, Ve5V i ; s, Ve5F both end-
walls; 3, mixed endwall conditions.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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that the local maximum value be measured at a slight a
offset from the center of the length of the annulus.

Considering first the inset in Fig. 12, it is clear that e
cept for the case of both endwalls being stress-free, the
wall vortices reduce the sharpness of the bifurcation, con
tent with previous results.9,32 From the entire range of«, it is
clear that above the transition to vortical flow, the rad
velocity at the inflow boundaries is only about 60% of t
magnitude of the radial velocity at the outflow boundaries
is interesting that the radial velocity at outflow boundar
collapse onto a single curve, regardless of the endwall c
dition. However, for inflow boundaries, the radial veloci
for the stress-free endwall condition is slightly smaller th
that for no-slip endwall conditions. Furthermore, this res
is opposite that evident in Fig. 11 in which the stress-f
condition results in the highest radial velocity near the e
wall at high «. The reason for this is not clear, although
may be related to differences in the size of the vortices.
stress-free endwalls, the vortices have an axial exten
aboutd, whereas for no-slip endwalls the vortices near
center are smaller because of the large endwall vorti
Since the outflow velocity is similar for all endwall cond
tions, it is reasonable to assume that the outflow region h
similar width in the axial direction in all cases. Cons
quently, the inflow region for no-slip endwalls must be n
rower than the inflow region for stress-free conditions b
cause of the smaller vortices for the no-slip endwalls. T
result is a narrower inflow region for no-slip endwalls, whi
will then result in a slightly greater inflow velocity.

VI. CONCLUSIONS

The problem of endwalls boundary layers and their
teraction with the centrifugal instability in Taylor–Couet
flow has been frequently noted, but rarely directly addres
in the literature. Notable exceptions include the work
anomalous vortices and bifurcation phenomena by Benjam
Mullin, and co-workers,2–4,11,18,30,32,33the analysis of vortex
front propagation from an endwall by Ahlers, Lu¨cke, and
co-workers,7,8 and the experiments of Soboliket al.10 In this
paper, we focus on somewhat different aspects of the p
lem: The effect of the endwall condition on the nature of t
interaction of the endwall vortices with the centrifugal ins
bility, the implications of the interaction between endw
vortices and Taylor vortices on the structure of the veloc
field near the endwalls, and the net effect of the endw
conditions on the bifurcation phenomena.

The endwall vortex strength is greatly affected by t
type of endwall boundary condition and the strength of
endwall boundary layer. A simple force balance based on
centrifugal force near the endwall and the geostrophic p
sure gradient defines a force imbalance that drives the
wall flow. Using this simple approach@Eq. ~3!#, the direction
and relative strength of the boundary flow adjacent to
endwall can be predicted. Not only is this valuable for t
cases presented here in which only the inner cylinder rota
it could be applied to the much more complicated case wh
both cylinders rotate. As predicted from the force imbalan
near the endwalls, the endwall flow is much stronger for
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case of rotating endwalls than for fixed endwalls. Intere
ingly, for stress-free endwalls, the strength of the endw
flow is similar to that for rotating endwalls. Furthermor
computations of the stress-free endwall case show that
possible to obtain either an inflow or an outflow, depend
of the initial conditions for the computations.

The interaction between the endwall boundary layer a
the Taylor vortex near the endwall results in endwall vortic
that are asymmetric and axially elongated. The asymmetr
driven by the endwall boundary layer flow, so that the vort
has a higher velocity in the meridional plane near the in
cylinder for fixed endwalls and a higher velocity near t
outer cylinder for rotating endwalls. In both cases, the e
wall vortex is elongated by up to 30%. Both the asymme
and the axial elongation disappear for the case of stress
endwalls. In this case, the vortices near the endwalls
symmetric and have a square aspect ratio just like the Ta
vortices far from the endwalls.

The interaction between the endwall boundary condit
and the centrifugal instability has a profound effect on t
bifurcation phenomena. Near the endwall, the radial veloc
smoothly increases with Reynolds number even well be
the critical Reynolds number for no-slip endwalls due to t
endwall vortices, which are unrelated to the Taylor centri
gal instability. Only in the case of a stress-free endwall do
the radial velocity change sharply from zero to a finite va
at the transitional Reynolds number.
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8M. Lücke, M. Mihelcic, and K. Wingerath, ‘‘Front propagation and patte
formation of Taylor vortices growing into unstable circular Couette flow
Phys. Rev. A31, 396 ~1985!.

9D.-C. Kuo and K. S. Ball, ‘‘Taylor–Couette flow with buoyancy: Onset
spiral flow,’’ Phys. Fluids9, 2872~1997!.

10V. Sobolik, B. Izrar, R. Lusseyran, and S. Skali, ‘‘Interaction between
Ekman layer and the Couette–Taylor instability,’’ Int. J. Heat Mass Tran
43, 4381~2000!.

11T. B. Benjamin, ‘‘Bifurcation phenomena in steady flows of a viscous flu
I: Theory,’’ Proc. R. Soc. London, Ser. A359, 1 ~1978!.

12J. E. Burkhalter and E. L. Koschmieder, ‘‘Steady supercritical Taylor v
tex flow,’’ J. Fluid Mech.58, 547 ~1973!.

13Y. Takeda, K. Kobashi, and W. E. Fischer, ‘‘Observation of the transi
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ers

id

f

in

te

vy
m

rn

o
e,

, ‘
e

. E

es

on

on-
f the

n-
us

l

er-

a

ex

.

-

477Phys. Fluids, Vol. 15, No. 2, February 2003 Interaction between Ekman pumping
behaviour of Taylor vortex flow between rotating concentric cylind
after sudden start,’’ Exp. Fluids9, 317 ~1990!.

14H. P. Greenspan,The Theory of Rotating Fluids~Cambridge University
Press, London, 1969!.

15J. A. Cole, ‘‘Taylor-vortex instability and annulus-length effects,’’ J. Flu
Mech.75, 1 ~1976!.

16K. A. Cliffe and T. Mullin, ‘‘A numerical and experimental study o
anomalous modes in the Taylor experiment,’’ J. Fluid Mech.153, 243
~1985!.

17A. Lorenzen and T. Mullin, ‘‘Anomalous modes and finite-length effects
Taylor–Couette flow,’’ Phys. Rev. A31, 3463~1985!.

18T. Mullin and C. Blohm, ‘‘Bifurcation phenomena in a Taylor–Couet
flow with asymmetric boundary conditions,’’ Phys. Fluids13, 136 ~2001!.

19O. Czarny, E. Serre, P. Bontoux, and R. M. Lueptow, ‘‘Spiral and wa
vortex flows in short counter-rotating Taylor–Couette cells,’’ Theor. Co
put. Fluid Dyn.16, 5 ~2002!.

20E. Serre, E. CrespoDelArco, and P. Bontoux, ‘‘Annular and spiral patte
in flows between rotating and stationary discs,’’ J. Fluid Mech.434, 65
~2001!.

21J. M. Vanel, R. Peyret, and P. Bontoux, ‘‘A pseudospectral solution
vorticity streamfunction equations using the influence matrix techniqu
in Numerical Methods for Fluid Dynamics II, edited by K. W. Morton and
M. J. Baines~Clarendon, Oxford, 1986!, pp. 463–475.

22I. Raspo, S. Hughes, E. Serre, A. Randriamampianina, and P. Bontoux
spectral projection method for the simulation of complex thre
dimensional rotating flows,’’ Comput. Fluids31, 745 ~2002!.
Downloaded 16 Jul 2003 to 129.105.69.153. Redistribution subject to A
-

s

f
’’

‘A
-

23A. Recktenwald, M. Lu¨cke, and H. W. Mu¨ller, ‘‘Taylor vortex formation in
axial through-flow: Linear and weakly nonlinear analysis,’’ Phys. Rev
48, 4444~1993!.

24H. A. Snyder and R. B. Lambert, ‘‘Harmonic generation in Taylor vortic
between rotating cylinders,’’ J. Fluid Mech.26, 545 ~1966!.

25J. P. Gollub and M. H. Freilich, ‘‘Optical heterodyne test of perturbati
expansions for the Taylor instability,’’ Phys. Fluids19, 618 ~1976!.

26T. Berland, T. Jøssang, and J. Feder, ‘‘An experimental study of the c
nection between the hydrodynamic and phase-transition descriptions o
Couette–Taylor instability,’’ Phys. Scr.34, 427 ~1986!.

27R. M. Heinrichs, D. S. Cannell, G. Ahlers, and M. Jefferson, ‘‘Experime
tal test of the perturbation expansion for the Taylor instability at vario
wavenumbers,’’ Phys. Fluids31, 250 ~1988!.

28S. T. Wereley and R. M. Lueptow, ‘‘Azimuthal velocity in supercritica
circular Couette flow,’’ Exp. Fluids18, 1 ~1994!.

29S. T. Wereley and R. M. Lueptow, ‘‘Spatio-temporal character of sup
critical circular Couette flow,’’ J. Fluid Mech.364, 59 ~1998!.

30S. J. Tavener, T. Mullin, and K. A. Cliffe, ‘‘Novel bifurcation phenomen
in a rotating annulus,’’ J. Fluid Mech.229, 483 ~1991!.

31G. P. Neitzel, ‘‘Numerical computation of time-dependent Taylor-vort
flows in finite-length geometries,’’ J. Fluid Mech.141, 51 ~1984!.

32T. Mullin, ‘‘Finite-dimensional dynamics in Taylor–Couette flow,’’ IMA J
Appl. Math. 46, 109 ~1991!.

33G. Pfister, H. Schmidt, K. A. Cliffe, and T. Mullin, ‘‘Bifurcation phenom
ena in Taylor–Couette flow in a very short annulus,’’ J. Fluid Mech.191,
1 ~1988!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


