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The endwalls in a Taylor—Couette cell introduce adjacent boundary layers that interact with the
centrifugal instability. We investigate the interaction between the endwall Ekman layers and the
Taylor vortices near transition from nonvortical to vortical flow via direct numerical simulation
using a spectral method. We consider a radius ratiopef0.75 in a short annulus having a
length-to-gap ratio o' =6. To analyze the nature of the interaction between the vortices and the
endwall layers, three endwall boundary conditions were considered: fixed endwalls, endwalls
rotating with the inner cylinder, and stress-free endwalls. Below the critical Taylor number, endwall
vortices for rotating endwalls are more than twice the strength of the vortices for fixed endwalls.
This trend continues well above the transition to vortical flow, consistent with a simple force balance
analysis near the endwalls. Stress-free endwalls result in endwall vortices that are similar in strength
to those for rotating endwalls above the critical Taylor number. The endwall conditions significantly
change the bifurcation diagram based on the radial velocity near the center of the annulus. For
stress-free endwall conditions, the bifurcation is quite sharp, although only one fork of the
bifurcation results unless the initial conditions are specifically set to favor the other fork. For
rotating and fixed endwalls, there is a continuous transition from a featureless flow to a vortical flow
due to the endwall vortices. @003 American Institute of Physic§DOI: 10.1063/1.1534108

I. INTRODUCTION the centrifugalTaylor) instability. However, this geostrophic
flow is upset at the endwalls where the no-slip boundary
The Taylor—Couette system of shear flow between a roeondition results in an azimuthal velocity near the endwall
tating inner cylinder and a concentric, fixed outer cylinder isthat is different from that far from the endwall. The imbal-
a canonical system that provides valuable insight into theance between the pressure gradient force near the endwall,
centrifugal stability of rotating flows as well as low- which is similar to the pressure gradient imposed by the flow
dimension bifurcation phenomena. Typically, the effects offar from the endwall, and the centrifugal force near the end-
the endwalls on the flow are avoided theoretically by assumwall, which is driven by the azimuthal velocity due to the
ing infinitely long cylinders, experimentally by using long rotation of the endwall, results in a force near the endwalls
cylinders(compared to the gap between the cylingeesxd  that drives a radial flow in a boundary layer on the endwalls.
computationally by using periodic boundary conditions at theDepending on the nature of the endwall boundary condition,
axial extrema of the computational domain. In this way, thethe boundary-driven flow at the endwall can be considered
centrifugal instability is considered without the interferenceeither a Balewadt flow, where the endwall is fixed and the
of the confining endwalls. However, the endwalls are an im<luid is rotating, or an Ekman flow, where the endwall and
portant influence on the flow throughout the Taylor—Couettdluid are rotating at different angular velocities. These end-
cell. Consequently, we consider the interaction between theall flows are part of the larger family of flows including
boundary-driven flows at the endwalls and the centrifugaBodewadt, Ekman, and von Kaan (BEK) boundary layer
instability inherent in the Taylor—Couette configuration. flows! For BEK flows, the thickness of the boundary layer
Away from the endwalls in cylindrical Couette flow, the scales with ¢/Q)2, wherev is the kinematic viscosity and
stable flow is geostrophic. In other words, the centrifugal() is an angular velocity scale.
force due to the azimuthal velocitpr equivalently, the in- The transition from stable cylindrical Couette flow to
ertia related to the centripetal accelerajimnbalanced by the Taylor vortex flow is described by a pitchfork bifurcation
pressure gradient force. No radial flow occurs when the Reywhen the cylinders are infinitely long to avoid endwall ef-
nolds number is small enough so that viscosity suppressdscts. However, the presence of the endwalls upsets the nor-
mal pitchfork bifurcation. This leads to one branch having a
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the rotation of the endwall vortex associated with the contime scale of rotation so thaEk Y20 ~1=(7T)Y2 where
tinuous branch is such that the flow adjacent to the endwall¥=2=/(Q) is the period of rotation.

is radially inward. For endwalls rotating with the inner cyl- Consequently, the endwalls play a significant role in the
inder, the rotation of the endwall vortices is such that thenature of the Taylor vortex flow. This is most easily evident
flow adjacent to the endwalls is outward. A second branchfor short cylinders, since the vortices are never far from the
which is disconnected from the first branch, corresponds t@ndwalls. For short cylinders, the transition to nonwavy vor-
rotation of vortex near the endwall opposite that defined bytical flow occurs at a slightly lower rotational spe€dyre-

the endwall boundary flo#.This second branch could be sumably because of the perturbation by the endwall vortices.
considered an “anomalous” branch, since the rotation of vorFurthermore, the subsequent transition to wavy vortical flow
tices near the endwall is opposite that normally expecte®ccurs at a higher rotational speed than in the case of infi-
based on the endwall boundary layer flow. In most cases, thaitely long cylinders,® most likely because the endwall vor-
flow follows the continuous branch, although it is possible totices related to the endwall boundary layers alter the vortical

generate flows corresponding to the anomalous branch und&ffucture to minimize the tendency toward waviness. In ad-
certain conditiong: dition, the distance between the endwalls can strongly influ-

The continuous transition from featureless flow to vorti- €NC€ the axial wave number. In the case of infinite cylinders,
cal flow along the continuous branch is quite evident boti€ @zimuthal wave number is such that nearly square vorti-

experimentally and computationafiy® Below the critical ca! cells occur. For aspect ratios tht are even integefs, the
Reynolds number for transition from nonvortical to vortical axial Wavelen.gth qf the vortex pair s nearly that predicted
flow, a single vortex driven by the flow in the endwall by theory for identical endwall conditions. However, odd or

oninteger aspect ratios results in vortices near the endwalls

boundary layer first appears near each endwall. These enﬁq— ¢ stretch ; date th ical
wall vortices are often referred to as Ekman vortit&sThe at stretch or compress fo accommodate the proper vortica
rotation required by the endwall conditiohsAnomalous

vortical structures are not an instability but instead are driven : )
by the boundary layer flow at the endwalls. Because thé/ortex structuregalong the disconnected branch of the bifur-

equations of motion are elliptic, these endwall effects pen—Catlon diagramcan be brought about most readily in short

H 3,4,16 .
etrate to Some extent over the entire fBw. cylinders; but can also occur for long cylinders upon

. . impulsive startug’
As the Reynolds number is gradually increased, more From the discussion above, it is clear that the flow in the

vortices appear with a counter-rotating sense, such that thgndwall boundary layers in Taylor vortex flow strongly in-
strength of the vortices decays exponentially with distanc

fluences the centrifugal instability and the resulting flow
frpm the_ endV\{a_lII§.AIthough they are unrelated to the cen- field. This interaction is the topic of this paper. We consider
trifugal instability of Taylor vortex flow, these counter-

g . ite simil | . h the flow in a short Taylor—Couette cell to investigate how the
rotatlng vqrtllces app(;ar qu'te simriar to 'Iray or vlortlcehs aV-endwall boundary layers interact with the vortical structures
Ing an axial extent that Is approximately equal to the gaRg|ateq to the Taylor centrifugal instability. By using fixed
betvyeen the cylinders. Once the tran-smorlwal Reynolds NUMspgwalls, endwalls rotating with the inner cylinder, and
ber is reached, the vortex structure is driven by the Taylogyess free endwallsnodeling a free surfagewe investigate
cen'frlfugall instability in addition to the boundary Igyer flow. how the interaction between the endwall boundary layer and
Vortices fill the annulus, but the sense of rotation of theye centrifugal Taylor instability affects the transition from

vortical structure is maintained so that the endwall vortices,onvortical flow to steady, axisymmetric vortical flow and
continue with the same sense as the original Ekman vorticegne nature of the final flow field.
Thus, the endwall vortices that appear well below the transi-
tion to Taylor vortex flow excite the unstable Taylor vortices
and subsequently determine the rotation of the entire vortex
structure above the critical speed for the appearance of Ta)'é'oA SIMPLE PREDICTION SCHEME FOR THE
UNDARY LAYER FLOW

lor vortices, even for relatively long cylindet$If the Rey-

nolds number is impulsively increased from subcritical to  \yhen the inner cylinder is rotating and the outer cylin-
supercritical instead of being increased gradually, the interger js stationary, the direction of the radial flow in the end-
face between the vortical motion near the endwalls and th@a|| |ayer is easy to predict. For endwalls rotating with the
stable flow pI’OpagateS from the endwalls into the bulk of thaner Cy"nder, Centrifuga' viscous pump|ng causes an out-
annulus, eventually filling the annulus with vortices. Fromflow at the endwalls, which is similar to a von Kaan
experimental and computational results, the time for the fronpoundary layer for a disk rotating in an otherwise quiescent
to propagate one annular gap width is of the order fluid. For endwalls fixed to the stationary outer cylinder, the
=d?/2mv, whered=r% —r} is the gap between cylinders of imbalanced pressure gradient and centrifugal forces near the
radiusr} andry .®!3[The viscous time scale can be de- endwalls result in an inward flow, which is similar to a
rived from the characteristic time scale for spin-up of a fluidBodewadt layer for a stationary disk and a rotating fluid.
between a pair of rotating disk&Ek 201, where Ek The situation can be approached more quantitatively by
=v/QL? is the Ekman numbei) is the rotational speed, considering a force balance on a cylindrical element that is
andL is a typical length scale of the flo#f.UsingL=d as  dz* xr*déxdr*, or, equivalently, from considering the
the characteristic length scale, this spin-up time scale can bgoundary layer approximation for the radial Navier—Stokes
rewritten as the product of the viscous time scale and thequation, which results in
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p* a7, %2 vortex adjacent to the rotating endwall than near the fixed
- m—*+ 9 P ) endwall. As they increased the rotational speed, the vortex
nearest the rotating endwall grew larger, eventually eliminat-
where p* is the pressurer}, is the shear stresg, is the  ing the other vortices in the cell. Applying E¢B) to their
density, and ¢ ,v7 ,v3) are the velocities in ther{, 6,z*) geometry indicates that the maximum force driving the out-
directions. In the geostrophic region, the gradient of theward radial flow at the rotating endwall was more than twice

shear is zero, so the radial pressure gradient is balanced lag large as the maximum force driving the inward flow at the

the centrifugal force nonrotating endwall. Apparently, this effect was so strong
. %2 that as the rotational speed was increased, the recirculating
al* :pvi*, 2) flow driven by the lower endwall boundary flow dominated
geostrophic | the centrifugal instability resulting in a single vortex in the
cavity.

wherev (r*) is the exact solution for cylindrical Couette
flow. Thus, there is no force driving a radial flo(at least
when the flow is centrifugally stableBecause of the no-slip
condition at the endwall, the azimuthal velocity, , near the
endwall is different from that away from the endwall. The
azimuthal velocity very near the endwall can be approxi-
mated av’ =r* ., where(, is the angular velocity of the
endwall. In addition, to a first approximation, the radial pres-
sure gradient in the geostrophic portion of the flow is im-

posed on the fluid very near the endwall. This geostrophig;, sEoMETRY AND NUMERICAL METHOD
pressure gradient can be found from the exact solution for

Later in this paper, we use the estimate of the force
imbalance near the endwall in E() to aid in interpreting
computational results for a wide range of endwall conditions.
The advantage, of course, is that E8). allows thea priori
prediction of the “strength” of the Ekman vortices as we
ascertain the role of the endwall flow in its interaction with
the centrifugal instability.

cylindrical Couette flow based on E). Using this and the The configuration that is considered is an annular cavity
estimate for the azimuthal velocity near the endwall in Eq.between two concentric cylinders of inner and outer reflii
(1) results in andry , with the inner cylinder rotating &®; and the outer

* . cylinder fixed. The flow is described by the incompressible

9Tzt ~ ‘?L — pQ2r* 3) Navier—Stokes equations written with cylindrical coordinates

az*  ar* geostrophic Pilel (r*,z*,0) in an absolute frame of reference, according to

the velocity-pressure formulation. Parameters character-

We specify an approximate equality here because the anguI%rtiC of the physical problem are the Reynolds number Re
velocity of the fluid near the endwall is not exactly, but —Qur*div, the radius ratiop=r*/r* , and the aspect ratio
1M 1 | o

only approaches this value. In addition, the geostrophic presE:Zh/d_ The scales for the dimensionless variables

sure gradient on the right side of the equation is only an, space, time and velocity aw or h, Q. 1 and ot
estimate for the local pressure gradient based on the exac : . . : . .

T o respectively. The dimensionless radial and axial coordi-
solution in Eq.(2) for stable cylindrical Couette flow far

— * _pk ok _1- — %
from the endwalls. Furthermore, the pressure gradient in vor':]ates arer = (2r* =ro —ri)/d, re[~1,1], andz=z"/h,

tical flow is modified by the presence of the endwall vortices.” [6 L;1]to qllovy the use of _Chebyshgv polynomlals.
. . : n the cylindrical boundaries, the dimensionless veloc-

Nevertheless, E(:3) provides an estimate of the imbalance ity ( ) obeys the no-slip condition
between the centrifugal force and the pressure gradient force,y UriWorlz y P
which drives the radial endwall flow. Of course, the viscous v,=v,=0, vy=1, atr=—-1, ze[—1,;1],
stress forming the left side of the equation, opposes motion . 4
of the fluid. As a result, when the right side of the equation is ~ Ur~vz=0» vo=0, atr=1, ze[~1:1]. @
positive, the flow is inward at the endwall; when the right Three endwall conditions are considered, depending on the
side of the equation is negative, the flow is outward at theangular velocity of the endwall).: (1) Stationary endwall
endwall. This boundary layer flow at the endwalls deter-(Q2,=0); (2) rotation of the endwall with the inner cylinder
mines the rotation of the vortices that appear near the end€).=(};); and(3) a stress-free boundary condition on the
wall well below the critical speed for Taylor vortices, and, endwall (designated).=F). In this last case, the free sur-
upon transition to unstable flow, the rotation of the vorticesface is assumed flat, and surface tension is neglected, so that
for the entire unstable flow field. However, we must note thathe surface is a pure slip boundary. The boundary conditions
due to the nonlinear nature of the flow, anomalous modesn the endwalls are complicated by the difficulty in handling
may exist having vortex rotation at the endwall opposite thathe singularity in the azimuthal velocity, at the corner
predicted using this simple scherte. where the cylinder has a different rotational speed than the

Equation (3) can also be used to predict the relative endwall. This occurs at==*1 and:(1) r=—1 for Q.=0;
strength of the endwall vortices. For instance, Mullin and(2) r=1 for Q.=();. To handle this, the profiles at the upper
Blohm considered a situation with the inner cylinder rotatingand lower endwalls are set so that the velocity is that of the
and the outer cylinder fixed for a cylinder lengthh)2to gap ~ endwall except very near the singularity, where velocity ex-
ratio of I'=2h/d=3.8 The upper endwall was fixed and the ponentially changes to that of the adjacent cylinder. Thus, the
lower endwall rotated with the inner cylinder. Their compu- dimensionless form of the boundary conditions for the azi-
tational and experimental results showed a much strongenuthal velocity atz=*1 are
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The location of the region in which the velocity changes
from that of the cylinder to that of the endwall depends on
the sign of the decay coefficieat The width of the region is
set to about 0.0%b by adjusting the magnitude . This
small distance is consistent with the size of the gap betweeRIG. 1. Radial gradient of the azimuthal velocity: * experimental data at
a rotating cylinder and an endwall rotating at a different:?-()o? (Ref. 10 bold curve: computations at=1.00; fine curve: compu-
speed that would be necessary in an equivalent experiment&fons at=0-99.

system.

_ Since we consider axisymmetric flows, the incompressyimated to within a few percent due to minor errors in mea-
ible, dlm_en5|0|_1less Nawgr—Stokes equations are solved Wltgluring the viscosity, rotational speed, and diameter of the
a twl%-dlnjensmnal version of the code used by Czamyyjinders. In fact, Soboliket al. indicate that their critical

et al:™ This code uses a pseudo-spectral Chebyshev colloCgeynolds number differed by as much as 3% from the theo-
tion method taking advant.age of the orthqg.onahty propert.leﬁ,eticm valuel® Changing the Reynolds number for the com-
of Chebyshoev polynomials and providing - exponentialy, tations by only 1% te =0.99 (shown as the fine curve in
convergencé® The time scheme is semi-implicit and second- Fig. 1) brings the computations very close to the experimen-

order accurate. Itis a combination of the second-order backy) regyits. Second, the electrodiffusion method has some in-
ward implicit Euler scheme for the t|mg term, an explicit porent experimental error in it. Although Sobolik al. do
Adams-Bashforth scheme for the noplmearﬁ:}erms,. and afot provide an error analysis, their data for the directional
implicit formula for the viscous diffusion terT. An im- characieristics of the probe suggest that an error of several
proved projection algorithm allows velocity-pressure nercent would not be unreasonable. We have compared our
coupling>* The mesh grid is defined by the Gauss—Lobattoyompytational results to their experiments at other Reynolds

collocation points alongr(z) with N=61 andM =121 be- ,mpers, hoth above and below the critical Reynolds num-
ing the number of points in the radial and axial directions fory,o and find agreement similar to that shown in Fig. 1. Thus

the spatial mesh. The high grid resolution in the axial direcyye conclude that our computational results faithfully repro-

tion is helpful in avoiding any predisposition to a particular q,ce experimental results for a geometry that is very similar
number of vortices appearing due to a particular grid spacg, those that we study.

ing.

Preliminary computations for a fixed outer cylindey ( V. RESULTS
=0.83) were undertaken to compare our results to that ex-
pected for three aspect ratios: 16, 32, 48. In all cases Taylor We consider the steady, axisymmetric flow near the tran-
vortices were obtained with the axial wavelength and criticalsition from stable flow to vortical flow for an aspect ratio of
Reynolds number (Rg) in good agreement with theofy. I'=6 and a radius ratio ofy=0.75. The aspect ratio and

Perhaps a more challenging test is to directly compar@adius ratio were chosen to match our previous computations
our numerical results with experimental results in a situatiorfor counter-rotating cylinders In addition, the small aspect
where the effect of endwalls is specifically addressed. Sobaatio assures that the effect of the endwall condition is felt
lik et al. measured the velocity gradients at the stationaryquickly near the midpoint of the length of the annulus. For
outer wall using a three-segment electrodiffusion probe foinfinitely long cylinders, the transition from nonvortical to
I'=9.85 andz=0.9 with fixed endwalls Q,=0).1% In this  vortical flow at this radius ratio occurs at Re=85.82% We
case, the critical Reynolds number for transition to vorticalexamine the character of the flow as the Reynolds number is
flow for infinitely long cylinders is Rg;=1382 Figure 1  varied from below this transition Reynolds number to well
shows a comparison of our axisymmetric computational reabove it for all three endwall conditions. In all cagesch as
sults for one-half of the length of the annulus with the mea-that shown in Fig. 2 the velocity vectors in a meridional
surements for the case whete= Re/Rg,;;=1.00. The com- plane @,, v,) atr=0 (midway between the inner and outer
putations(bold curve match the experimental resuldata  cylinderg are plotted. The inner cylinder is the left vertical
points®) fairly well, although the maxima in the computa- line, and the outer cylinder is the right vertical line. The
tions are as much as 7% higher than the measurements. Nexectors are scaled with* ); at Re,;; to permit comparison
ertheless, the match can be considered quite good for twof the magnitudes of the velocities as the Reynolds number
reasons. First, the precise value of the Reynolds number & increased and to evaluate the differences in the various
which experimental data is obtained can usually only be esendwall conditions.
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FIG. 2. Veloci id h ition 1 FIG. 3. Velocity vectors midway across the gap near transition from non-
T e ocn_y vectors midway across the gap near transition rqm MO ortical to vortical flow forl'=6, n=0.75,Q.=(); (endwalls rotating with
vortical to vortical flow forl’=6, »=0.75,Q,=0 (endwalls not rotating

the inner cylinder.
The inner cylinder is the left vertical line; the outer cylinder is the right 4 >
vertical line.

again suggests that the magnitude of the velocity in a vortex

A. Fixed endwalls is determined by the inherent length and velocity scales for

Consider first the case of endwalls fixed2{=0), the situation, not the mechanism that causes the vortical mo-
shown in Fig. 2. Even well below the transition to Taylor tion. .
vortex flow (e<1), the inward flow at the endwalls induces The th|ck1512ess of ar12 el|/qzdwall bqundary layer should scale
a strong endwall vortex. The vortices near the center of th@ng“‘NElf1 :.(V/QL ) ?ccordmg to the thgory for Ek-
annular length are substantially weaker. Asncreases for man layers: Usmg the radii of one of the cylinders; or
e<1, the endwall vortex remains nearly the same, but thdo» Of the gap widthd, for the length scalel,_,_ prOVId_e
vortices near the center grow in strength. All of the vorticesSlmllar results, so we choose to _uddo l_ae con_5|stent W'Fh
for e<1 are induced by the endwall boundary row—thethe Iengt_h scale used for _the spin-up time, d_|scussed in the
are not due to the centrifugal instability. As the Reynolds'mmducnon' Base_d on this, one would predict an endwall
number is increased above the Reynolds number for transF—Ounda.ry layer thickness .Of 049 The e”dW"?‘“ boundary
tion (e>1), the vortices near the center of the annulus con-2Yer thickness can pe est|mateq using t_he d|s.tance f“’”.‘ the
tinue to grow in strength, eventually growing somewhatendw_a” tol the position of the first maximum in th_e radial
stronger than the endwall vortex driven by boundary IayerveIOCIty midway across the gap. In the case of Fig4g,
pumping fore >1.04. On the other hand, it is interesting that ranges frgm O.2($.for 8<.1 to 0.24 for s>1,.based on the
the magnitude of the velocity in the endwall vortex just be_cor_nputatlonal grid location where the maximum radial ve-
low the transition to vortical flow is similar to that for the locity near the endwall occurs. Although these results seem
Taylor vortices near the center of the annulus just above théf)_meWhat high _compared with the predicted value, the de_:ﬂ-
transition, in spite of the very different mechanisms respon—nltlon of the th_|ckness_ of fche endwall bOF‘”d"’.“y layer is
sible for the appearance of the vortices. In both situations?ome‘."'hat amb|guous_ in this case. We .arbltranly. measured
the maximum radial velocity is about 3% to 4% of the Sur_the th|ckn§ass as the distance to the maximum radial velocity,
face speed of the inner cylinder. This suggests that while thBUt Fhe thlckness_ could have been defined in other ways. In
mechanism that generates the vortices is quite different in th ddlthn, the vortical motion near the endwall clegrly affect's
two cases, the geometry of the situatiomost likely the gap the thlckness of the layer. For ms.tance, the maximum radial
width, d) and the inherent velocity scale in the problem velocity occurs at a much larger d!stance from the wallwhen
(r;Q,) determine the magnitude of the velocity for the vor- measured nearer one of the cylinders rather than midway
tices. between them.

The situation at the endwall vortex is quite interesting. _
One might expect that the velocity near the endwall mightB' Rotating endwalls
increase substantially at the transition from nonvortical to  Next, consider a similar sequence for the endwall rotat-
vortical flow due to the combined effect of the boundary-ing with the inner cylinder Q.=£};), shown in Fig. 3. The
driven flow and the centrifugal instability. However, the vor- endwall flow is outward, which is opposite that for fixed
tex strength only continues to very gradually increase with endwalls, and is much stronger. This is a direct consequence
around the transitional Reynolds number. This situatiorof the force balance in Ed3). Figure 4 compares the theo-
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FIG. 4. Force imbalance near the endwall fg=0 (open symbolsand

0=, (filled symbols. —— Eq. (3); circles are data based on pressure
gradient at the center of the annulus; squares are data based on press

e _.. . .
gradient near the endwall l6cations very near the endwalls, its value is less than that

predicted by Eq(3). This is a consequence of the flow ad-
justing to the force imbalance by generating the radial end-

retical and computed force imbalanég,, for both fixed and  wall boundary flow. Nevertheless, the direction and relative
rotating endwalls as a function of radial positiditor the  magnitude of the endwall flow is consistent with the predic-
ordinate in Fig. 4, the left hand side of E®) is nondimen-  tion of Eq. (3).
sionalized so that force imbalance ks=d7,/dz’, where In spite of the stronger endwall vortices in the case of
7. =7%1pr’Q? andz' =z*/r* . This nondimensionalization rotating endwalls, the vortical structure away from the end-
scheme results inQF ;<1 for the case where the endwalls walls is similar for both fixed and rotating endwalls, except
are fixed. However, data for the theoretical model are omitfor the sign of the velocity, as shown in Figs. 2 and 3. How-
ted at the inner or outer cylinders where singularities o¢cur.ever, careful examination of the radial velocity at the axial
WhenF,>0, the force imbalance generates an inward flowmidpoint of the domain shows that it is somewhat weaker for
at the endwall; whek, <0, the force imbalance generates anrotating endwalls than that for the case of fixed endwalls for
outward flow at the endwall. The force imbalanég,, is &>1. This is because the radial outflow is stronger than the
calculated just below transition to vortical flowat0.96 in  radial inflow in Taylor vortex flow?*=2° This effect is quite
three ways for each casél) Using Eq.(3), which is based evident for the vortices away from the endwalls in both Figs.
on the theoretical pressure gradient with no endwalls and th2 and 3. Above transition, the radial outfloinghtward is
velocity of the endwall itself{2) using the computed pres- always stronger than the radial inflow except at the endwalls.
sure gradient at the center of the gap=0), which is very In the case of fixed endwalls, the radial outflow coincides
similar to the theoretical pressure gradient with no endwallswith the axial midpoint of the domain, so the radial flow at
and the fluid’s azimuthal velocity at computational grid lo- the midpoint is greater in this case. In addition, note that the
cations very near the endwalt€ 0.991, which is equivalent flow is symmetric with respect to the midpoint of the annu-
to 0.02d from the endwall and(3) based on the computed lus, as would be expected for an aspect ratio that is an even
pressure gradient and the fluid’s azimuthal velocity, both ainteger value. We note that the flow with rotating endwalls
computational grid locations very near the endwal ( may become asymmetric for aspect ratios of 4 or ¥ss.
=0.991). Again the thickness of the endwall boundary layer can

From Fig. 4, itis quite clear that no matter how the forcebe determined based on the location of maximum radial ve-
imbalance is calculated, its magnitude is greater for the cadecity near the endwall. For rotating endwall§; is 0.15
of the endwall rotating with the inner cylinder than for a both above and below the transition Reynolds number.
fixed endwall, thus explaining the stronger endwall layerAgain, given the uncertainty in defining the endwall bound-
flow when the endwall rotates with the inner cylinder. Of ary layer thickness, this value is consistent with the predicted
course, the direction of the endwall motion in Figs. 2 and 3 isvalue of 0.19l.
also consistent with the prediction based on the force imbal- Returning now to the force imbalance indicated in Fig.
ance. The force imbalance calculated based on the radid, an interesting aspect is that the magnitude of the imbal-
pressure gradient at the center of the annulus and the aznce is greatest near the inner cylinder for fixed endwalls,
muthal velocity near the endwalls is very similar to that pre-and it is greatest near the outer cylinder for rotating end-
dicted by Eq.(3). This is quite reasonable, given the assump-walls. This suggests that the boundary layer flow might be
tions in deriving Eq.(3) that the geostrophic pressure stronger near the inner cylinder for fixed endwalls and near
gradient(which is that far from the endwallss used in the the outer cylinder first for rotating endwalls. This is indeed
calculation. However, when the force imbalance is calculatedhe case as is evident in Fig. 5, which depicts the velocity
based on the local pressure gradient at computational gridectors for the boundary-driven vortex fer=0.98 in both
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FIG. 6. Comparison of the velocity vectors near the upper endwadl at (fixed
=1.05 for (8) Q.=0; and(b) Q.=;. Vectors are scaled identically in endwall1C)
both cases.

FIG. 7. Velocity vectors midway across the gap near transitionl fer6,
7n=0.75,Q,=F (stress-free at the endwall§ he far right image shows the
flow when the initial condition is fixed endwalls instead of quiescent flow.

cases. For the case of fixed endwalls, the strongest radial
motion near the endwall is closer to the inner cylinder, a
shown in Fig. %a). The strong inward radial flow near the
inner cylinder leads to a very strong axial flow downward Although it is challenging to achieve experimentally, the
along the inner cylinder compared to the upward flow alongcase of stress-free boundary conditions at both endwalls can
the outer cylinder. This results in an asymmetric vortex withbe readily modeled computationally. The appearance of the
its center offset from the midpoint of the annular gap. Inflow, as shown in Fig. 7, is quite different from the previous
addition, the endwall vortex is somewhat elongated axiallycases with the no-slip condition at the endwalls. The vortices
so that it does not have the square aspect ratio like that fordo not appear at all below the critical Reynolds number.
Taylor vortex, consistent with previous wotk:'°The length  When the vortices first appear at=1, they are nearly uni-
of the endwall vortex is 1.30 In the case of rotating end- form in their strength along the length of the annulus. The
walls, the strongest radial flow at the endwall is nearer thdlow near the stress-free endwall is nearly identical to that at
outer cylinder, as shown in Fig(. The consequence is a the other vortices in terms of its amplitude, with the highest
strong downward axial flow at the outer cylinder, just thevelocity right at the endwall. The radial velocity at the out-
opposite of what occurs for fixed endwalls but still resultingflow boundaries between vortices increases more quickly
in an asymmetric vortex. In this case, the vortex is elongatedavith increasinge than the velocity at the inflow boundaries.
in the axial direction, but not as much as for the case of fixedlo accommodate this, the width of the outflow region de-
endwalls—the length of the vortex is only 1d.7The reason creases slightly, while the width of the inflow regions in-
for the difference in the elongation of the endwall vortices iscreases correspondingly.
not clear. It may simply be related to the stronger driving  The endwall vortex in this case is quite different from
force for the rotating endwall generating a stronger vortexcases for which there is a no-slip boundary condition at the
that is more compact. endwall, as shown in Fig. 8 in comparison with Fig. 6. In
Above the transition to Taylor vortex flow at=1.05, fact, the appearance of the vortex is very similar to that of a
the situation near the endwall is similar, as shown in Fig. 6Taylor vortex away from an endwall boundary. With a stress-
for both endwall conditions, even though the centrifugal in-free endwall condition, the axial flow along the inner and
stability in addition to the endwall boundary flow drives the outer cylinder walls is nearly the same. In addition, the end-
vortex. One might expect that the Taylor centrifugal instabil-wall vortex is not axially elongated as with the vortices
ity at this supercritical Reynolds number might cause thelriven by either no-slip endwall condition. The axial length
vortex to “even out” to a nearly uniform cell, but it does not of the endwall vortex is 0.98 resulting in a square vortical
do so for either endwall case. Apparently, the endwall boundeell like that for a Taylor vortex with the vortex center ap-
ary layer continues to drive a strong enough endwall flow tgproximately midway between the inner and outer cylinders at
continue to affect symmetry of the endwall vortex structure.0.4d from the inner cylinder.
However, the endwall vortex for fixed endwalls has a slightly =~ The computations for stress-free endwalls converged to
reduced axial extent of 1.87 The axial extent of the end- an outflow at the endwalls beginning from a quiescent flow
wall vortices remains at 1.47for rotating endwalls. The initial condition. However, we were able to obtain a solution
vortex centers are still offset from the midpoint of the annu-with an inflow at the stress-free endwalls at a particular value
lar gap. For the fixed endwall condition, the vortex centerof & by using the solution for fixed endwalls at thats the
(estimated from the location where the radial and axial veinitial condition. An example is shown in Fig. 7 fot

S
C. Stress-free endwalls

locities appear to vanighis 0.44 from the inner cylinder, =1.049. The flow is similar to that obtained at the same
whereas for the rotating endwall the vortex center is atd.53 Reynolds number with stress-free endwall conditions, except
from the inner cylinder. that vortices are shifted by and the velocity at the endwall
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is slightly smaller. This clearly shows how the initial condi- FIG. 10. Dependence of the length of the endwall vortex on the Reynolds
tions determine the final state. The nature of the convergend®imbers=Re/Rg;, A Q.=0; [, Q.=0;; O, Qe=F both endwalls’,
for the case of stress-free endwalls is also quite different®u® at rotating endwall for mixed endwall conditions.
from the other two cases. The flow takes about 100 times
longer to computationally develop and converge for thetransition to vortical flow, the penetration depfh, of end-
stress-free endwall condition than for the no-slip endwallyall vortices from the endwall into the bulk of the annulus is
condition. This result amplifies how important the endwall given by?
vortices are as precursors to Taylor vortex flow. Y

The final case that we consider is that for a mixed end- D~0.6§e— 1| *d. ©®
wall condition having a stress-free upper endwall and a roUsing this relation, the estimated penetration depth isl 1.8
tating lower endwall, shown in Fig. 9. The development ofand 3.4 for e =0.874 and 0.956. These locations, which are
the flow near the upper stress-free boundary is very similar tenarked on Fig. 9, are consistent with our computational re-
that for a stress-free boundary at both endwalls, shown igults.
Fig. 7. Likewise, the development of the flow near the rotat-
ing lower boundary is very similar to that for a rotating V. DISCUSSION
boundary at both endwalls, shown in Fig. 3. The penetration
of the vortices from the lower endwall into the annulus be-
low the critical Reynolds number is quite clear. Below the

It is clear from the results so far that the axial length of
the endwall vortex depends on both the Reynolds number
and the nature of the endwall boundary condition. Figure 10
displays the endwall vortex length,, estimated from vec-
tor plots like those shown in Figs. 5, 6, and 8. Of course, the
measurement of the length of the endwall vortex somewhat
subjective, because the velocity is only available at discrete
grid locations and the precise boundary between vortices is
not always clearly defined. At low, the endwall vortices fill
the length of the annulus, so that there are two vortices for
the symmetric no-slip endwall conditiont {/d=3) and a
single large vortex for the mixed endwall conditiob(d
=6). As ¢ increases, more vortices appear in the annulus,
reducing the length of the endwall vortex. At the transition
Reynolds numberg =1, vortices of length_./d=0.99 ap-
pear for the stress-free endwall condition, and the endwall
L : vortex length has been reduced to Xl7,/d<1.29 for the
: £ cases of no-slip endwalls. With increasiag the endwall
£ £ vortex length remains dt./d=0.99 for the stress-free end-
% % wall condition and asymptotes to,/d=1.17 for the fixed
% % endwall case Q.=0). However in the case of the endwalls

_% _% rotating, either both endwalls or for the mixed endwall con-
£=0874 £=0956 £=1.002 £=1.049 £=1.096 dition, the length of the endwall vortex increases slightly
FIG. 9. Velocity vectors midway across the gap near transition from non with increasings. The origin of this increase in size is not
vorti'ca'l to vortif):/al flow forl'=6, )7/;=0.75,Qe=|% a?tthe upper endwall and clear, although it may be related to the flow .Of energy into
0=, at the lower endwall. Arrows mark the predicted penetration depththe endwall vortex due to the endwall rotation. However,
according to Eq(6). because the aspect ratld, is an even integer, this last result
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FIG. 11. Reynole nur.nber. deper?den*ce of the maximum radlal. veIOCItyFIG. 12. Bifurcation diagram based on the maximum radial velocity nondi-
component nondimensionalized wifh;r;* near the endwall and midway

" . mensionalized withQ;ri¥ at outflow regions and inflow regions near the
across the annular gap. Inset shows the curves near trangitiéh,=0; [J, : ) .
. . axial center of the annulug\, Q,=0; [0, Q.=Q;; O, Q,=F both end-
0e=0;; O, Q.,=F both endwalls;X, value at stress-free endwall for . -
¢ e ) ; walls; X, mixed endwall conditions.
mixed endwall conditions?, value at rotating endwall for mixed endwall
conditions.

the endwall as the initial condition. For the mixed endwall
condition, the velocity near the stress-free endwall follows

indicates that the Taylor vortices away from the endwalls areghe curve for both endwalls being stress-free, while the ve-
somewhat reduced in size at the expense of the endwall volecity near the rotating endwall follows the curve for both
tices whenL./d=1, similar to the results with a larger as- endwalls rotating. In other words, even with a small aspect
pect ratio>%3! ratio of I'=6, the influence of the rotating endwall is mini-

At this point, it is useful to examine the dependence ofmal at the stress-free endwall. The only exception occurs
the radial velocity in the endwall layer, which is a measure ofvery near the transition to vortical flow at=1, where the
the strength of the endwall boundary layer, on the Reynoldselocity near the stress-free endwall in the mixed condition
number and endwall condition. The maximum radial velocitydoes not reflect as sharp of a change as that for both endwalls
near the endwall halfway across the annular gap normalizedeing stress-free, as shown in the inset of Fig. 11. It is also
by r;Q; is shown in Fig. 11 for all of the endwall conditions interesting to note that as increases, the maximum radial
that have been considered, including the values for the maxivelocity near the stress-free endwalls becomes larger than
mum radial velocity at each of the two endwalls for thethat for the rotating endwalls, though not until the Reynolds
mixed endwall case(Note that since the vortex is not nec- number is well above the transitiogi;>> 2. On the other hand,
essarily centered in the annular gap as shown in Figs. 5 anttie magnitude of the maximum radial velocity for the fixed
6, the radial velocity may have a somewhat larger value agéndwall case remains about one-half that of the stress-free or
radial locations other than the center of the gap. Nevertherotating endwalls. These results suggest that the friction near
less, the maximum radial velocity at the center of the gap ishe endwalls reduces the energy of the vortical structures.
used here to provide a consistent measure of the radial v&his is a stronger influence in the case of fixed endwalls,
locity in the endwall boundary layer-or the cases in which where the endwall friction reduces the azimuthal momentum
the no-slip condition is imposed on the flow, the endwallsubstantially more than in the case of rotating endwalls.
velocity changes smoothly as the Reynolds number in- From the results presented so far, it is clear that the
creases. Even at the transition to Taylor vortex floweat endwall conditions affect the nature of the bifurcation at the
=1, the curve is quite smooth with no hint of a change intransition from nonvortical to vortical flow. We can further
slope. The magnitude of the maximum radial velocity isexamine the bifurcation by considering the maximum radial
larger for rotating endwalls than for fixed endwalls, since thevelocity near the center of the axial length of the annulus as
driving force is larger, as was shown in Fig. 4. a function ofeg, as shown in Fig. 12. The maximum radial

One branch of the pitchfork bifurcation that is expectedvelocity is recorded either at the midpoint of the axial length
for stress-free endwalls is evidentat 1. In this case, the of the cylinders £=0), or at the next inflow or outflow
transition from nonvortical flow to vortical flow results in a boundary above or below it. This was done so that the radial
sharp increase in the radial velocity near the endwall. Thevelocity at outflow boundaries and at inflow boundaries
lower branch of the bifurcation is not plotted in this figure could be compared to one another. Depending on the endwall
because our simulations converged to the solution for a raboundary conditions, the inflow and outflow boundaries oc-
dial outflow at the stress-free endwall. A radial inflow at thecur either at the midpoint of the axial length or approxi-
stress-free endwall could be obtained only if the simulatiormatelyd above or below the midpoint. For the mixed end-
was run with a fixed endwall resulhaving an inward flow at  wall condition, the asymmetry in the vortex field requires
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that the local maximum value be measured at a slight axiatase of rotating endwalls than for fixed endwalls. Interest-
offset from the center of the length of the annulus. ingly, for stress-free endwalls, the strength of the endwall
Considering first the inset in Fig. 12, it is clear that ex-flow is similar to that for rotating endwalls. Furthermore,
cept for the case of both endwalls being stress-free, the endomputations of the stress-free endwall case show that it is
wall vortices reduce the sharpness of the bifurcation, consigossible to obtain either an inflow or an outflow, depending
tent with previous result3? From the entire range of itis  of the initial conditions for the computations.
clear that above the transition to vortical flow, the radial ~ The interaction between the endwall boundary layer and
velocity at the inflow boundaries is only about 60% of thethe Taylor vortex near the endwall results in endwall vortices
magnitude of the radial velocity at the outflow boundaries. Itthat are asymmetric and axially elongated. The asymmetry is
is interesting that the radial velocity at outflow boundariesdriven by the endwall boundary layer flow, so that the vortex
collapse onto a single curve, regardless of the endwall corhas a higher velocity in the meridional plane near the inner
dition. However, for inflow boundaries, the radial velocity cylinder for fixed endwalls and a higher velocity near the
for the stress-free endwall condition is slightly smaller thanouter cylinder for rotating endwalls. In both cases, the end-
that for no-slip endwall conditions. Furthermore, this resultwall vortex is elongated by up to 30%. Both the asymmetry
is opposite that evident in Fig. 11 in which the stress-freeand the axial elongation disappear for the case of stress-free
condition results in the highest radial velocity near the endendwalls. In this case, the vortices near the endwalls are
wall at highe. The reason for this is not clear, although it symmetric and have a square aspect ratio just like the Taylor
may be related to differences in the size of the vortices. Fovortices far from the endwalls.
stress-free endwalls, the vortices have an axial extent of The interaction between the endwall boundary condition
aboutd, whereas for no-slip endwalls the vortices near theand the centrifugal instability has a profound effect on the
center are smaller because of the large endwall vorticesifurcation phenomena. Near the endwall, the radial velocity
Since the outflow velocity is similar for all endwall condi- smoothly increases with Reynolds number even well below
tions, it is reasonable to assume that the outflow region hasthe critical Reynolds number for no-slip endwalls due to the
similar width in the axial direction in all cases. Conse-endwall vortices, which are unrelated to the Taylor centrifu-
quently, the inflow region for no-slip endwalls must be nar-gal instability. Only in the case of a stress-free endwall does
rower than the inflow region for stress-free conditions be-the radial velocity change sharply from zero to a finite value
cause of the smaller vortices for the no-slip endwalls. Theat the transitional Reynolds number.
result is a narrower inflow region for no-slip endwalls, which
will then result in a slightly greater inflow velocity. ACKNOWLEDGMENTS
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