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Abstract

Wavy Taylor vortex flow was simulated by developing a stream function model of the velocity vector field in a radial—-axial
plane that mimics an experimentally obtained velocity field. The simulation neglects the azimuthal component of velocity but
provides estimates of the mixing and axial transport properties of wavy vortex flow in the axial-radial plane at higher Taylor
numbers (7a) and larger gap widths than previous models. Based on the estimated Lyapunov numbers, the particle paths
appear to be chaotic for wavy vortex flow in the range 131 < Ta < 253. The axial particle transport increases with the Taylor
number in this range, most likely due to increased axial transport of fluid between vortices. The mixing within vortices is also
enhanced with increasing Taylor number as a result of increased stretching and folding within a vortex. © 1998 Published by

Elsevier Science B.V.
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1. Introduction

Mixing in Taylor—Couette flow is important for cat-
alytic chemical reactors, rotating filtration devices,
and bioreactors, all based on an inner cylinder ro-
tating within an outer shell [1]. The idea in many
of these devices is to mix the fluid in the annulus
while minimizing localized shear stresses. These de-
vices are often operated in the wavy vortex flow regime
based on practical experience. Recent measurements
of the velocity field in wavy Taylor—Couette flow have
shown that, unlike non-wavy vortex flow, wavy vor-
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tices are not independent toroidal cells [2]. Instead, for
wavy flow in a vertical cylindrical Couette flow device,
regions of upward (downward) deformation of a vor-
tex correspond to regions of upward (downward) axial
flow. These regions progress around the cylinder at the
same speed as the azimuthal travelling wave. Thus in
any given radial-axial plane, over the period of one az-
imuthal wave, there is initially an upward flow wind-
ing around the vortices, followed by flow into alternate
vortices from adjacent vortices, followed by down-
ward flow winding around the vortices, completing the
cycle with flow out of alternate vortices into adjacent
vortices (for example see Fig. 1(c). Up to 50% of the
volume of a vortex can be transported into and out of a
vortex in one azimuthal wave period. In addition to the
axial fluid transport, the vortices oscillate both axially,
as is evident from flow visualization, and radially.
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Fig. 1. A comparison between experimentally measured velocities and model results in a radial-axial plane over the period of one
azimuthal wave. Time progresses from top to bottom. In each frame the inner rotating cylinder is the upper line, and the outer
stationary cylinder is the lower frame (a) experiment, 7z = 131; (b) model , Ta = 131; (c) experiment, Ta = 253; (d) model, Tz = 253.

Prior to these recent measurements, several mod-
els of particle motion in Taylor—Couette flow and the
related Bénard convection flow have been presented.
Broomhead and Ryrie [3] and Ryrie [4] considered the
transport of fluid particles in a model of Taylor vortex
flow near the onset of the wavy instability. By adding
small temporally and spatially varying periodic distur-
bances to an axisymmetric model of non-wavy vor-
tex flow, these authors were able to devise a velocity
field with travelling azimuthal waves. Based on this
model, they were able to show that transport between
vortices is possible even in the absence of molecu-
lar diffusion and that particles passing from one vor-
tex to another follow chaotic trajectories, resulting in
an enhanced effective diffusivity, or axial dispersion.
Solomon and Gollub [5,6] similarly demonstrated en-
hancement of diffusivity in time-periodic Bénard con-
vection both experimentally and via perturbations of
a two-dimensional vortex model. A comparison [7]
of their transport properties with experimental results
showed good agreement. Ashwin and King [8] used
a very different approach in which they tracked fluid

particles computationally in the velocity field from the
perturbation solution for wavy Taylor vortex flow in
a narrow gap just above the onset of waviness [9].
Their results indicated that while some particles wind
around adjacent vortices, the cores of adjacent vor-
tices are isolated from one another. Rudman [10] found
similar trapping of particles in vortex cores based on
tracking fluid particles in numerically modeled wavy
vortex flow.

In this paper we use an approach based on mod-
eling the axial and radial velocity components in a
radial-axial plane measured using Particle Image Ve-
locimetry (PIV) by Wereley and Lueptow [2]. We first
devise a two-dimensional stream-function model of
wavy vortex flow (WVF) that matches the experimen-
tally measured vortex distortion and fluid transport
between vortices. Then we track fluid particles com-
putationally in this velocity field. This approach dif-
fers significantly from the Broomhead and Ryrie [3],
Ryrie [4], or Rudman [10] approaches in that the ve-
locity field is based on actual experimental results.
Thus, the degree of vortex distortion and transport
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between vortices is derived from physical measure-
ments rather than analytically simple perturbations of
non-wavy vortices or computational models. Further-
more, our approach permits us to consider flow con-
ditions well above the onset of travelling azimuthal
waves. This differs from the studies of Broomhead and
Ryrie [3], Ryrie [4], or Ashwin and King [8], which
are inherently limited to conditions very near the on-
set of the azimuthal waviness. Finally, we were able
to consider the wide-gap case, whereas Ashwin and
King [8] were necessarily limited to infinitesimal gap
widths. Our objective here is to investigate the non-
turbulent transport and mixing processes in an experi-
mentally motivated model of wavy Taylor vortex flow.
The work presented in this paper is an example of
matching experimental data with a model, from which
further information can be extracted.

In Section 2, we describe the model flow and com-
pare the velocity field that it generates with experi-
mental data. In Section 3, we evaluate the mixing rate
and uniformity predicted by the model, after which we
evaluate the effective diffusivity, or axial dispersion,
in the model flow.

2. Stream function model of wavy vortex flow

Available experimental velocity fields include mea-
surements of the axial and radial components of ve-
locity, but not the azimuthal velocity. Consequently,
we devise a two-dimensional velocity field to model
wavy vortex flow and subsequently track particles.
Without the azimuthal velocity component, the exper-
imentally measured radial-axial velocity field cannot
be used directly for particle tracking. The utility of a
two-dimensional approximation relies on the assump-
tion that mixing and transport are dominated by the ra-
dial and axial velocities in wavy vortex flow, with the
azimuthal velocity acting principally to distribute the
fluid axisymmetrically (on average) around the annu-
lus. A similar assumption was made by Solomon and
Gollub [5] for a successful model of transport in time-
periodic Bénard convection [7]. Furthermore, our in-
terest is in the axial transport and mixing of the fluid,
and experiments in turbulent Taylor—Couette flow in-

dicate that the time scale for transport in the radial and
azimuthal directions is short compared to that in the
axial direction [11]. While our analysis is for wavy
vortex flow, not turbulent flow, the same relationship
for the time scales may be expected to occur, support-
ing the notion that the azimuthal velocity has little ef-
fect on the axial transport.

The experimentally measured velocity fields of
wavy vortex flow that we model are shown in Figs.
1(a) and (c) for two Taylor numbers with the corre-
sponding model velocity fields shown in Figs. 1(b)
and (d), respectively. Each column of figures shows
from top to bottom eight realizations of the velocity
vectors in a radial-axial plane uniformly distributed
over the period of one azimuthal travelling wave.
After the lowest frame, the cycle repeats. The upper
line in each frame is the wall of the inner rotating
cylinder and the lower line is the wall of the outer
stationary cylinder. Vortex centers, determined from
the interpolated position of the minimum axial and
radial velocities, are marked with asterisks.

The WVF cycle can be described most easily with
reference to the middle vortex for the experimental re-
sults at Ta = 253, shown in Fig. 1(c). Although the
Taylor number, which relates the centrifugal forces to
the viscous forces, has several different forms, we use
Ta = r; $2d /v, where r; is the radius of the inner cylin-
der, £2 is the rotational velocity of the inner cylinder,
and 4 is the gap between the cylinders, and v is the
kinematic viscosity. This form of the Taylor number,
often called a rotating or inner Reynolds number, is
used because it is simple and consistent with the form
used in several recent studies [12,13]. The cycle be-
gins with fluid from the inner part of the left vortex
flowing into the middle vortex and toward the outer
cylinder. Simultaneously, fluid from the middle vor-
tex moves into the right vortex and toward the inner
cylinder. The result is that fluid winds around the outer
side of the middle vortex from left to right. The flow
out the right side of the middle vortex ends in the sec-
ond frame, so that now the middle vortex is gaining
fluid from the left vortex without losing any fluid. By
the third frame, an inward flow from the right vor-
tex also feeds fluid into the middle vortex. The flow
into the middle vortex decreases in the fourth frame
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as the flow in from the left vortex ends. In the next
four frames the process reverses, beginning with flow
around the inner side of the middle vortex from right
to left, followed by flow out of the middle vortex to
the left, then flow out to the left and right, and finally
to the right only. Of course, the middle vortex loses
the same amount of fluid during the second half of
the cycle that it gains in the first half, and the size of
the vortex oscillates correspondingly. The second half
of the cycle (frames 5-8) appears identical to the first
half of the cycle (frames 1-4) reflected either about an
outflow boundary between the left and middle vortices
or about an inflow boundary between the middle and
right vortices. This is called “shift-and-reflect” sym-
metry [14].

We begin the development of our model of WVF
with a stream function ¥ (x, y) formulated by Chan-
drasekhar [15] for two-dimensional, counter-rotating
rolls bounded by parallel walls, originally devised as
a model for Bénard rolls

A
Y(x,y) = - sin(kx) W (y), €))

where x and y correspond to the axial and radial co-
ordinates normalized by the gap width d, A is an am-
plitude, k is a wave number non-dimensionalized by
the gap d between the parallel plates (at y = +0.5),
and W(y) is a specific function provided by Chan-
drasekhar [15] that satisfies the no-slip boundary con-
dition at the walls. W(y) and its derivative vanish at
y =053

Eg. (1) results in square vortical cells, but the exper-
imental vortex cells have substantial distortion from
a square shape, as shown in Fig 1(c). This distortion
is a function of both space and time due to the time
periodic nature of the azimuthal waviness. Eq. (1),

3 Presumably due to numerical round-off errors in the orig-
inal evaluation of the numerical coefficients in W(y), Chan-
drasekhar’s original values for W(£0.5) are slightly different
from zero (Eq. (218) of Chap. II in [15]). To compensate for
this problem a small constant (—1.75371244 x 10~%) was added
to Chandrasekhar’s original equation for W(y) to enforce a
value of zero for both W(y) and its derivative at the walls.
To accommodate this modification, the walls were repositioned
at y = +0.4999537. Without this correction, marker particles
tended to bleed away from the flow boundaries.

modified to account for this distortion, results in the
following equation:

- A
Yx,y,1)= E[l +jx. y. 0]
x {sin[k(X + & sin(kx))] — h(1)}

x W), 2)
where
x=x—gx,yt), (3a)
gx,y, 1) =[1— f(x)gow(y, ) + f(x)

X gin(¥. 1), (3b)

gou(y, 1) = asin(wt + $7) + By sin(wt + 1), (3c)
gin(y, 1) = asin(wt + i7) + By sin(wt + ), (3d)
fx) = 4[1 — cos(kx)], (3e)

h(t) = nsin(wt + 37), 4)
j(x, y,t) = @sin(wt + %JT)
x {sin[k(£ + 8 sin(kx))] — h(r)}. &)

These equations, although collectively abstruse, are in-
dividually quite straightforward to understand. Here w
is the frequency of the travelling wave associated with
the azimuthal waviness. The parameters A, &, 8,&,8,7,
and ¢ are numerical values adjusted to match specific
characteristics of the experimental velocity field. The
terms j(x, y,?),8, g(x, y, t), and A(z) distort the vor-
tex field in different ways. The form of Eq. (1) be-
comes evident in Eq. (2) when these terms approach
zero. A brief description of each of the distortions of
the vortex represented in Egs. (2)—(5) follows.

1. Angled boundaries between vortices and axial
displacement of vortices. The boundaries between
vortices in the velocity field for Eq. (1) are at right
angles to the bounding walls and are at fixed ax-
ial positions. In the experimental velocity fields for
WVF shown in Figs. 1(a) and (c) the boundaries are
angled with respect to the walls with the angle de-
pending periodically on the time during the period of
the azimuthal wave. Furthermore, the angle of inflow
boundaries between vortices is not in phase with the
angle of outflow boundaries. In addition, the bound-
aries move axially in a periodic fashion. The function
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g(x, y, t) in Eq. (3a) accounts for the angle and axial
motion of the boundaries. The boundary distortion
functions gou(y, ) and gin(y, ¢), Egs. (3¢) and (3d),
represent the axial shift and angling of boundaries
for outflow and inflow boundaries, respectively. The
parameter «, which is measured directly from the
experimental results, is related to the periodic axial
displacement of the vortices, or wave height, which
is in phase for outflow and inflow boundaries. The
phase of the axial displacement is set for convenience
in matching the experimental data. The parameter
B, also measured directly from the experimental re-
sults, is related to the periodic angling of the vortex
boundaries, which is 90° out of phase for outflow and
inflow boundaries. The function f(x), Eq. (3e), mul-
tiplying the boundary distortion equations in Eq. (3b)
results in the outflow distortion function gou(y,?)
having a strong influence at outflow boundaries,
or kx = 2nm, while the inflow distortion function
gin(y, t) has a strong influence at inflow boundaries,
or kx = (2n + 1)z (where n is an integer).

2. Relative shift of vortex centers. Experimental
[2,16,17] and computational [14,18] studies of both
non-wavy and wavy vortex flow show that outflow
regions between vortices are stronger than inflow re-
gions. As a result of mass conservation, the centers of
vortices on either side of an outflow region must be
closer together than the vortices on either side of an
inflow region. Since vortex centers are extrema of the
stream function, this requires a slight deformation of
the position of the extrema while maintaining the pe-
riodicity and smoothness of the stream function. One
way to achieve this is to use an analytic method pro-
posed by Shinbrot, et al. [19]. In this method, if p(x)
is a scalar function that vanishes at two bounds x; and
x2, then

p(x) = p(x + 8p(x)) (6)

is a one-parameter family of the deformed function
lying within the same bounds. Applying Eq. (6) to
p(x) = sin(kx) results in

p(x) = sinfk(x + 8 sin(kx))]. €))

The minima and maxima of this function, which cor-
respond to the positions of the vortex centers on either

side of an outflow boundary, are shifted toward one
other. Applying this method to the inner square brack-
ets of Eq. (2) results in shifting the vortex centers on
either side of an outflow boundary closer together than
the vortex centers on either side of an inflow boundary.
Judicious choice of the parameter § matches the shift
of vortex centers of the model to experimental data.

3. Growth/shrinkage of vortices. The experimental
results indicate that the vortices grow and shrink pe-
riodically with the azimuthal waviness. This occurs
because at certain times during the cycle, fluid flows
out of a vortex into adjacent vortices, while one-half
cycle later fluid flows back into the vortex from the
same adjacent vortices. As a result, vortices grow and
shrink out of phase with respect to their neighbors. The
quantity in curly brackets in Eq. (2) defines the axial
extent of the vortex cells. For a sine wave the posi-
tive portion of the sine represents the axial extent of
one cell, while the negative portion of the sine repre-
sents the axial extent of the adjacent vortex. Including
the quantity A(z) within the brackets shifts the zero-
crossing of the sine wave, resulting in one cell has a
greater axial extent than its neighbors, without chang-
ing the axial wavelength of any vortex pair. Making
h(t) dependent on the period of the azimuthal wave,
Eq. (4), requires alternate vortices to grow and shrink
during each wave period. The degree of growth and
shrinkage can be adjusted through the parameter 7 to
match the vortex size to experimental data. Note that
the phase of vortex cell growth is used to conveniently
match the experimental results.

4. Magnitude correction. A side effect of the
procedure used to control the size dynamics of the
vortices is a change in the magnitude of stream func-
tion @ (x, v, t). The function j(x, y,t) is introduced
to compensate for this change. Of course, this func-
tion must have the same time dependence as h(t),
so the argument of the sine in j(x, y,t) (Eq. (5)) is
identical to that of h(z) (Eq. (4)). Furthermore, the
function j(x, y, ) must vanish at boundaries between
vortices. As a result, it is convenient to give j(x, y, t)
the same form as the term in curly brackets in the
stream function, Eq. (2), to force ¥ to vanish at vor-
tex boundaries. The amplitude ¢ is adjusted to match
experimental results.
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Now there are seven parameters, A, k, 8, o, 8, n7, and
@, that must be matched to experimental velocity data.
Superficially, it may appear that with seven parame-
ters the model velocity field could be matched to the
experimental velocity field quite arbitrarily. In fact, all
of the parameters except ¢ are measured directly from
the experimental velocity field and are not subject to
interpretation. The vortex strength A is determined by
matching the dimensionless quantity (vvortex ' /d) for
the model and the experimental data, where vyorex iS
the absolute value of the axial velocity component at
the axial position corresponding to the vortex center
averaged over the gap width, and T is the period of
the azimuthal travelling wave. The wave number k =
25rd /) is measured directly from experimental wave-
length A for a vortex pair. The value for § is based on
the experimentally measured distance between vortex
centers on either side of a vortex boundary averaged at
eight times during the period of one azimuthal wave.
The wave height is directly measured from the experi-
mental data and is used for the value of «. The param-
eter related to the angle of the boundaries, B, is less
easily derived from the experimental data, since the
experimental data is for a three-dimensional flow and
the model is inherently two-dimensional. Hence, the
model satisfies continuity in two dimensions, while
the experimental flow is divergence-free in three di-
mensions. Consequently, the experimental results can
have a net axial flow in the axial-radial plane, which
cannot occur in the model. Instead of matching the an-
gle of the boundary, we match the maximum axial ve-
locity at the midpoint of the annular gap and midway
between adjacent vortices normalized by vyortex. TO
do this the parameter 8 is varied until these quantities
agree in both model and experiment. This method re-
sults in matching the maximum axial velocity, not the
maximum axial flow rate, between adjacent vortices.
The vortex size parameter 7 is adjusted to directly
match experimental minimum and maximum vortex
sizes throughout an azimuthal wave period. The only
parameter which could not be systematically measured
from the experimental data is the compensation fac-
tor ¢, which accounts for the change in magnitude of
the stream function resulting from controlling the size
of the vortices. This parameter was adjusted by trial

Table 1

Parameters used in model

Parameter Ta = 131 Ta = 253
Vortex strength (A) 0.2077 0.2628
Wavenumber (k) 7 +0.097 r —0.1496
Center position (J) 0.06 0.08

Wave height (@) 0.4225 0.2545
Angling at boundaries (8) 0.55 0.70
Vortex size (n) 0.3 0.6
Compensation () 0.2 0.2

and error to best match the model to the experimental
results.

The seven parameters were matched at Taylor num-
bers Ta = r;§2d /v = 131 and 253. For an experimen-
tal radius ratio r; /(r; + d) = 0.83, the lower Taylor
number corresponds to wavy vortex flow just above
transition and the higher Taylor number corresponds
to the condition for maximal fluid transfer between
adjacent vortices for wavy vortex flow [2]. Values for
the parameters under these conditions are given in
Table 1.

Eq. (2) with Egs. (3)~(5) is easily differentiated to
obtain analytic functions describing the velocity field
at any location and time. A comparison of the model
velocity field with the experimentally measured veloc-
ity field is shown in Fig. 1 for two Taylor numbers. The
model captures the essential elements of the velocity
field including the winding around vortices, the axial
oscillation of the vortex centers, and the flow into and
out of any particular vortex with the corresponding
change in vortex size. Note, however, that the model
velocity field is purely phenomenological. By virtue
of its stream function representation, it satisfies con-
tinuity. But it does not necessarily satisfy momentum
conservation.

Fig. 2 shows the streamlines for 7o = 131 and
253 at successive phases of the azimuthal wave (as
in Fig. 1). The influence of several of the parameters
is evident. For instance, the angle of the boundaries
between vortices is steeper for 7a = 253 than for
Ta = 131, as reflected in the different values of B.
The vortices also vary more in size for Ta = 253 than
for Ta = 131, as reflected in the value of 7. But the
amplitude of the waviness, most evident in the axial
variation in the vortex centers marked by an asterisk,
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Fig. 2. Streamlines of the model flow in a radial-axial plane over the period of one azimuthal wave. Time progresses from top to
bottom. In each frame the inner rotating cylinder is the upper line, and the outer stationary cylinder is the lower line: (a) Ta = 131;

(b) Ta = 253.

is greater for 7a = 131 than for Ta = 253, as reflected
in the parameter «. The remaining parameters, A, k,
3, and ¢, do not differ greatly for the two cases and
their influence is less evident in the figure.

3. Mixing

From kinematical standpoint, mixing is the stretch-
ing and folding of material lines (for two-dimensional
flows) or surfaces (for three-dimensional flows). To
investigate mixing (and transport) in the flow field we
track passive particles.* Mixing can be observed by

4 Thus, it is necessary to integrate dx/d: =u(x), where u(x)
is given by the spatial derivatives of the stream function. A

marking particular particles in a region of the flow.
This “dyed” region can stretch and fold by advection.
Such a numerical experiment is shown in Fig. 3 for
Ta = 253. Here an initial line of 5000 tracer parti-
cles along the mid-line of the annulus at ¢+ = 0.125T
is allowed to advect for nearly four periods of the az-
imuthal wave. The axial extent of the region shown in
the figure covers two vortices with periodic boundary
conditions, so that particles leaving the flow domain
on the right re-enter the domain on the left. Folding
is evident, most easily observed at + = 17. Further,

fourth order Runge-Kutta method was used to track particle
positions using a time step of 0.01257, where T is the period
of the azimuthal traveling wave. This time increment generated
approximately 100 steps in one orbit around a vortex center at
the highest vortex strength modeled.
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t=0.125T

t=05T t=15T t=25T - t=3.5T B
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t=1T t= éT t= '4T -

Fig. 3. The time evolution of a line of 5000 particles initially along the midpoint of the annulus at ¢ = 0.1257 for Ta = 253.

W=

t=1T

t=2T

t=3T

Fig. 4. The time evolution of a line of 5000 particles initially along the midpoint of the annulus for 7a = 131

note the self-similar structure exhibited by folded el-
ements as time evolves in steps of 7. For example,
the relatively thin tongue enclosed by a large fold of a
horizontal horseshoe shape at ¢t = 17 appears again at
t = 2T, 3T and 4T at successively smaller scales. A
goal of mixing is the reduction of length scales, which
can be efficiently accomplished by this stretching and
folding. The flow in Fig. 3 has particularly good mix-
ing characteristics as evidenced by the high fraction
of the area that is penetrated by marker particles and

the uniform dispersion of particles. The existence of
horseshoe structures [20] indicates effective stretching
and folding and implies chaotic mixing. For compar-
ison, similar results for 7a = 131 are shown in Fig. 4
for fewer time instants. The mixing is not as rapid
at the lower Taylor number, although horseshoes and
successively refined striations are again seen in this
figure.

The stretching can be quantified in terms of the fi-
nite time Lyapunov number, calculated numerically
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Table 2

Lyapunov numbers

Ta Ay at N = 1600
131 28

192 35

253 44

using the procedure of Wolf et al. [21]. Lyapunov num-
bers for tracer particles initially placed at the middle
of the annulus at three different Taylor numbers are
displayed in Table 2. The Lyapunov number typically
varies with the number of wave periods used in the cal-
culation, up to about 200 wave periods. Calculations
of the Lyapunov number for 200-1600 wave periods
produced essentially a constant value for a given Tay-
lor number. The calculations for Tz = 192, which is
midway between the Taylor numbers for which model
parameter were calculated as indicated in Table 1,
were based on linear interpolation of the parameters in
Table 1. The Lyapunov numbers are unambiguously
greater than unity, supporting the conclusion that the
trajectories in the model are chaotic. The magnitude
of the Lyapunov number provides a measure of how
fast interfacial lines between constituents in the mix-
ing process are produced, so the higher Taylor number
should provide more rapid mixing, consistent with the
qualitative results shown in Figs. 3 and 4.

Further insight into the time-periodic model of
WVF can be gained from a stroboscopic surface of
section, obtained by plotting (x(z), y(¢)) for a particle
at t = to + nT, where n is an integer. A typical stro-
boscopic section is shown in Fig. 5(a) for 7Ta = 131.
During 100 successive cycles, 1000 particles initially
placed midway between the upper and lower sim-
ulation boundaries become stochastically dispersed
throughout the available area. For this Taylor number,
there are evidently no regular regions of any signifi-
cant size, and mixing appears to be uniform as well as
rapid. Systematic tests throughout the range of Taylor
numbers 131 < Ta < 253 at intervals of ATa = 6, in-
dicate only one set of Taylor numbers which generate
regular regions of non-trivial size. In a range of Taylor
numbers 155 < Ta < 204, elliptic islands are found
as shown in Fig. 5(b). Even these islands are rather
small, making up only a few percent of the flow field.

4. Axial dispersion

In the structurally related case of time-periodic
Bénard flow, Solomon and Gollub {5,6] reported
experimental observations suggesting that transport
between rolls can be modeled as a diffusion process.
To differentiate this process from molecular diffusion,
we refer to this transport as dispersion. Solomon and
Gollub obtained a dispersion coefficient 1-3 orders of
magnitude larger than would be expected from molec-
ular diffusion alone. Furthermore, a numerical inves-
tigation of a model of WVF at the onset of instability
by Broomhead and Ryrie [3] suggests a dispersion
transport process. Insight into the axial transport in
WVF can be obtained by tracking particles over time.
Fig. 6 shows the positions of 20000 particles initially
distributed along a single radial line in the outflow re-
gion between a vortex pair after five azimuthal wave
periods. The small sparse region at the inner cylinder
wall (upper line) approximately marks the axial po-
sition of an outflow boundary, and the sparse region
at the outer cylinder wall (lower line) approximately
marks the position of an inflow boundary. Using this
as a guide, it is evident that at Ta = 131, particles
have penetrated six vortices in five wave periods,
whereas at Ta = 253, particles have penetrated eight
vortices. At the same time, a larger fraction of the area
is filled with marker particles at 7a = 253 than at the
lower Taylor number, indicating better mixing within
vortices as well as more efficient axial transport be-
tween vortices. By contrast, at low Taylor number
the dispersion within a vortex can be described as a
non-uniform distribution of segregated filaments with
“tongues” extending into adjacent vortices.

The axial transport can be quantitatively compared
by calculating of histograms of particles numbers
along the length of the annulus, shown in Fig. 7at ¢t =
157 . Here the axial coordinate is normalized by the
annular gap width so that a vortex pair spans a region
of approximately Ax = 2. At the higher Taylor num-
ber, sharp gradients in particle distribution occur at
boundaries between vortex pairs (x = %1, £3, etc.),
while the particle distribution within a vortex pair is
relatively uniform (for —1 <x < 1,1 < x < 3, etc.).
By contrast, at the lower Taylor number, boundaries
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(&)

Fig. 5. Stroboscopic section spanning a pair of vortices; 1000 initial points placed on the line y = 0 (midway between the inner and
outer cylinder walls) are recorded after each of 100 successive cycles: (a) Ta = 131; (b) Ta = 180.

Fig. 6. A snapshot at r = 5T of the positions of 20000 particles initially distributed along a single radial line in an outflow region:

(a) Ta = 131; (b) Ta = 253.

between vortex pairs are not as clearly defined, and
the distribution of particles across a vortex pair is not
at all uniform. In longer simulations, we have found
that as the simulation time increases to ¢ = 1957, the
histograms approach a Gaussian character, although
the variance grows with Taylor number.

The axial transport can be quantified in terms of
an axial dispersion coefficient, also known as an “ef-
fective diffusion” coefficient. The coefficient we use
is based on the expression given by Broomhead and
Ryrie [3],

N

1
7 2% ) = x; O /2n ¢ ®)

j=1

D* = lim
n—o0

where N is the total number of particles and x;(n)
is the axial position of the j-th particle at time step

n. For short times, the axial dispersion coefficient is
dependent on the initial placement of particles and
the time of release during the period of the azimuthal
wave. Two different initial particle distributions were
used. In the first case, 2500 particles were placed in
the flow distributed along a radial line at each of eight
equally spaced times (+ = 0.1257, 0.257,...,1.0T)
during one azimuthal wave period. Multiple initial par-
ticle placements were used to minimize the depen-
dence on the initial release time. In the second case,
20000 particles were randomly distributed in a sin-
gle vortex pair at t = 0.57. Although for short times
the dispersion coefficient varied significantly between
the two methods for small times, by ¢ = 307 both
methods resulted in similar values of D*, and by ¢ =
1957 the values for the two methods agreed within
2%.
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Fig. 7. Histogram of the axial distribution of 20000 particles at ¢+ = 157: (a) Ta = 131; (b) Ta = 253.

The axial dispersion coefficient at 1 = 1957 aver-
aged for the two methods is given in Table 3. Clearly
the axial dispersion due to the WVF is substantially
greater at 7a = 253 than at lower Taylor numbers.
The dispersion coefficients are similar to those found
by Rudman [10] for a computational model of wavy
vortex flow. Broomhead and Ryrie [3] also found sim-
ilar dispersion coefficients for a less physical model of
WVF over a particular range of the parameter space
that they considered. However, in the parameter range
where our dispersion coefficients agree with Ryrie [4],
we found that nearly the entire flow field was chaotic
(based on stroboscopic sections such as those shown
in Fig. 5), while she found that less than half of the
flow field is chaotic. The difference may be due to

Table 3

Ta D* D(cm?/s)
131 0.0075 0.0008
192 0.0124 0.0026
253 0.0187 0.0061

the simplicity of the Ryrie model compared to our
model.

The dimensional axial dispersion coefficients,
D, are also included in Table 3 for comparison to
experimental results. These values were based on the
parameters in the original flow upon which the model
presented here is based [2]. The dimensional values
compare well with the extrapolation of measurements
of tracer dispersion at low Taylor numbers, which
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probably correspond to WVF, although the authors
are not clear on this point (Fig. 1 of [1]). Measure-
ments of the dispersion coefficient have also been
made at much higher Taylor numbers in the turbulent
Taylor vortex flow regime [1,11,22]. In these cases,
the axial dispersion coefficient is up to 3 orders of
magnitude greater than that for WVFE. The mechanism
for enhanced transport in turbulent Taylor vortex flow
is doubtless intrinsic to the turbulence, whereas the
mechanism in wavy vortex flow is axial transport of
fluid between vortices.

5. Summary

As experimental techniques being applied to clas-
sic fluid dynamics problems become increasingly so-
phisticated, so too should analytic techniques adapt
and develop. Our simulation, while neglecting the az-
imuthal component of velocity, is intended to provide
a reasonably accurate model of the mixing and axial
transport properties of WVF at higher Taylor numbers
and larger gap widths than previous models. Based on
the Lyapunov numbers and stroboscopic sections of
WVE for 131 < Ta < 253, particle paths appear to be
chaotic throughout essentially all of the fluid volume.
Thus, the fluid mixes efficiently within an individual
vortex and this mixing is enhanced as the Taylor num-
ber is increased. The rate of axial scalar transport is
increased substantially compared to that due to molec-
ular diffusion. The enhancement of transport is largely
due to the transfer of well-mixed fluid between adja-
cent vortices. Increasing the Taylor number above 253
may not result in either faster mixing or more complete
transport in the wavy vortex flow regime, because ex-
periments indicate that the maximum transfer of fluid
between vortices occurs at Ta = 253, with decreasing
transfer at both lower and higher Taylor numbers.
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