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Chaotic mixing and transport in wavy Taylor–Couette flow
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Abstract

Chaotic transport and mixing in wavy cylindrical Couette flow has been studied in some detail, but previous studies
have been limited to the velocity field at transition from Taylor–Couette flow to wavy flow or have used phenomenological,
computational, or theoretical models of the flow. Recent particle image velocimetry measurements of wavy vortex flow provide
the experimental three-dimensional, three-component velocity field at conditions well above the transition to wavy flow. Using
this experimental velocity field, fluid tracer particles were tracked computationally to determine the nature of the mixing. The
results show how mixing is enhanced with increasing rotating Reynolds number as a consequence of increased stretching
and folding that occurs in meridional, latitudinal, and circumferential surfaces. The axial particle transport increases with
the rotating Reynolds number as a consequence of stretching and folding within the vortices and the axial transport between
vortices, both related to the waviness of the flow, as well as increased vortex strength. The calculated effective dispersion
coefficient is very similar to that found experimentally and computationally confirming that chaotic advection is the mechanism
responsible for enhanced mixing in wavy vortex flow.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cylindrical Couette devices have often been propo-
sed as mixing devices in applications such as catalytic
chemical reactors, rotating filtration devices, and
bioreactors[1–3]. These devices are based on an inner
cylinder (IC) rotating within a fixed outer cylindrical
shell. The idea in many of these devices is to optimally
mix the fluid in the annulus while minimizing the lo-
cal shear stresses throughout most of the annulus. In
a cylindrical Couette device, Taylor vortex flow, con-
sisting of counter-rotating, toroidal vortices stacked in
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the annulus of the device, occurs due to a centrifugal
instability above a particular critical Reynolds num-
ber,Rec = riΩd/ν, whereri is the radius of the IC,Ω
the rotational speed,d the gap between the cylinders,
andν the kinematic viscosity. This critical Reynolds
number depends on the ratio of the radii of the inner to
outer cylinders (OCs),η = ri/ro. Further increasing
the Reynolds number to approximately 1.2Rec (for the
radius ratios considered here) results in an azimuthal
waviness in the vortices, known as wavy vortex flow.

Cylindrical Couette devices are often operated in the
wavy vortex flow regime to enhance mixing. Compu-
tational models and particle image velocimetry (PIV)
measurements of the velocity field in wavy cylindri-
cal Couette flow have shown that, unlike non-wavy
Taylor vortex flow, wavy vortices are not independent

0167-2789/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-2789(02)00529-8



184 A. Akonur, R.M. Lueptow / Physica D 167 (2002) 183–196

toroidal cells[4–6]. Instead, for wavy flow in a verti-
cal cylindrical Couette flow device, regions of upward
(downward) deformation of a vortex correspond to re-
gions of upward (downward) axial flow. These regions
of axial flow wind axially around the vortices from
the inner to the outer cylinder and back. In any given
meridional plane, over the period of one azimuthal
wave, there is initially an upward flow winding around
the vortices, followed by flow into alternate vortices
from adjacent vortices, followed by downward flow
winding around the vortices, completing the cycle with
flow out of alternate vortices into adjacent vortices. Up
to 50% of the volume of a vortex can be transported
into and out of a vortex in one azimuthal wave pe-
riod [5]. Furthermore, the regions of axial flow move
back and forth in the azimuthal direction, depending
on the phase of the wave[6]. In addition to the axial
fluid transport, the vortices oscillate both axially, as
is evident from flow visualization, and radially[5,6].

Axial mixing and dispersion in wavy vortex flow has
been the recent focus of research from the standpoint
of chaotic advection[7–13]. The axisymmetric cellu-
lar structure of non-wavy Taylor vortex flow results in
a set of nested streamtubes (KAM tori) for each vor-
tex with a dividing streamsurface (invariant surface)
between adjacent vortices. Consequently, molecular
diffusion is the only mechanism for transport within a
vortex or between vortices. However, wavy vortex flow
leads to two mechanisms that bring about the chaotic
motion of fluid particles[12]. First, since the velocity
field depends on all three spatial coordinates, stream-
tubes are destroyed leading to chaotic particle paths
and intra-vortex mixing[9]. Secondly, the waviness
breaks the streamsurface between neighboring vor-
tices leading to substantial inter-vortex transport[5,9].

Several models of chaotic particle motion in wavy
cylindrical Couette flow and the related Bénard con-
vection flow have been explored. Broomhead and
Ryrie [7] and Ryrie[8] devised a model of the cylin-
drical Couette velocity field just above the transition
to traveling azimuthal waves by adding small tempo-
rally and spatially varying periodic disturbances to an
axisymmetric model of non-wavy vortex flow. Based
on this model, they were able to show that transport
between vortices is possible even in the absence of

molecular diffusion and that particles passing from one
vortex to another follow chaotic trajectories resulting
in an enhanced effective diffusivity, or axial disper-
sion. Similarly, Solomon and Gollub[14,15] demon-
strated enhancement of diffusivity in time-periodic
Bénard convection both experimentally and via pertur-
bations of a two-dimensional vortex model. Ashwin
and King[9] used a very different approach in which
they tracked fluid particles computationally in the
velocity field from the perturbation solution for wavy
Taylor vortex flow in a narrow gap just above the
onset of waviness[16]. Their results indicated that
some particles cross to adjacent vortices, although the
cores of vortices remain isolated from one another.

The recent work of Rudman[10] and Rudolph
et al. [11] most closely parallel the work we present
here. Rudman analyzed the effective diffusion due to
chaotic advection using particle tracking in a numer-
ically modeled velocity field for wavy vortex flow
considering rotating Reynolds numbers well above
the transition to wavy vortex flow. He found that
while fluid particles can be trapped in vortex cores
under some conditions, under other conditions the
entire flow appears to be chaotic. He also found that
the Schmidt number based on an effective axial dif-
fusivity related to chaotic advection decreases with
increasing rotating Reynolds number, asymptoting
to a value that indicates chaotic advection plays an
important role in mixing. Rudolph et al. used a phe-
nomenological stream function model of velocity
field based on experimental measurements above the
transition to wavy vortex flow in a meridional plane.
While the model neglected the azimuthal component
of velocity, it clearly showed the chaotic nature of the
velocity field and the increased axial transport due to
chaotic advection with increasing Reynolds number.

For completeness, we note that axial mixing and
dispersion has also been studied from a more practical
standpoint for the application of mixing in cylindrical
Couette devices[1,2,17–23]. In many of these
studies, the axial dispersion in cylindrical Couette
flow was measured using dye concentration or tracer
techniques.

In this paper we investigate the chaotic nature of
the velocity field and the effective axial dispersion
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based on experimental axial, azimuthal, and radial
velocity components measured using PIV[5,6]. These
measurements are unique in that they provide the
time-resolved velocity field in three dimensions. Using
this experimental velocity field, we track fluid particles
computationally. This approach differs significantly
from the approaches used by Broomhead and Ryrie
[7], Ryrie [8], Ashwin and King[9], Rudman[10], or
Rudolph et al.[11] in that the velocity field is experi-
mentally measured, not a model of the velocity field.
Thus, the degree of vortex distortion and transport
between vortices is based on physical measurements
rather than analytically convenient perturbations of
non-wavy vortices or computational models. Fur-
thermore, our approach permits us to consider flow
conditions well above the transition from non-wavy
Taylor–Couette flow to wavy vortex flow. This differs
from the studies of Broomhead and Ryrie[7], Ryrie
[8], or Ashwin and King[9], which are inherently lim-
ited to conditions very near the onset of the azimuthal
waviness. Our objective here is to use the experimen-
tally measured wavy vortex flow to investigate the
relationship between the physics of the flow and the
non-turbulent chaotic transport and mixing processes.

2. Experimental velocity field

A unique aspect of the work described in this paper
is that the time-resolved, three-dimensional velocity
field for wavy vortex flow was experimentally determi-
ned, unlike previous studies where the velocity field
was computationally determined[10], theoretically
based[9], or a phenomenological model[7,8]. The
velocity field was measured using PIV. Pairs of digital
images of illuminated seed particles in a laser-illumi-
nated plane were obtained at a slight time delay using a
CCD camera. The spatial cross-correlation between
corresponding small regions in the two images provi-
des the average displacement of particles in that region
from which the statistically averaged velocity of the
seed particles, and hence the fluid, in the illuminated
plane can be determined. Calculating the velocity at a
grid of locations in the illuminated plane provides the
in-plane velocity field for the entire image. Sequen-

Fig. 1. Sketch of PIV measurement planes. Measurements in merid-
ional (r–z) planes were matched to measurements in latitudinal
(r–θ ) planes by shifting the planes to minimize the difference in
the radial velocity, which was measured in both cases.

tially obtained image pairs provide the time-resolved
velocity field in the plane for an unsteady flow.

The velocity field used in this study was obtained
from PIV measurements of the velocity field in merid-
ional (r–z) and latitudinal (r–θ ) planes as shown in
Fig. 1 [5,6]. Since the velocity field in wavy vortex
flow consists of wavy vortices with the waviness trave-
ling azimuthally at about one-third of the velocity of
the IC, measurements in a single meridional plane as
the wave passes through the plane provide the radial
(vr ) and axial(vz) velocities as a function of time, or,
equivalently, as a function of the phase of the travel-
ing wave[5]. Likewise, PIV measurements in a series
of latitudinal planes perpendicular to the axis of rota-
tion and slicing through a vortex pair at uniform axial
positions provides the radial(vr ) and azimuthal(vθ )

velocities [6]. By matching the radial velocities in
eight meridional planes (corresponding to one azimu-
thal wave) and 12 latitudinal planes (corresponding
to the axial extent of two vortices), the entire time-
resolved, three-dimensional, three-component velo-
city field can be obtained[6].

The velocity field for wavy vortex flow has been
measured for a radius ratio ofη = ri/ro = 0.82, where
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ri is the radius of the IC andro the radius of the OC. At
this radius ratio, the transition from nonvortical flow
to non-wavy vortical flow (Taylor vortex flow) occurs
at a critical Reynolds number ofRec = riΩd/ν = 100
[24]. Wavy vortices were first readily detectable at a
reduced Reynolds number ofε = Re/Rec −1 = 0.28.
Measurements were made forε = 0.28, 1.48, and
5.03. The velocities measured using PIV were smoo-
thed to minimize experimental noise and interpolated
onto a grid with the resolution�r, �θ , and�z noted
in Table 1. Also indicated in the table are the number
of azimuthal waves,m, the axial wavelength for a vor-
tex pair,λ, and the period for a travelling azimuthal
wave,T.

The experimental velocity field is shown inFig. 2.
This figure shows the radial and axial velocity vectors
in meridional plane overlaid with azimuthal veloc-
ity contours for approximately the same phase in
the azimuthal wave for the three reduced Reynolds
numbers. The lower boundary in each frame is the
rotating IC, and the upper boundary is the fixed OC.
The magnitude of the velocity vectors is indicated by
the vector below the lowest frame.

Some characteristics of wavy vortex flow are evi-
dent in the figure. The vortical motion, clearly evident
in the velocity vectors, increases in intensity with
increasing Reynolds numbers. The vortical motion
causes the deformation of the azimuthal contours as
high azimuthal momentum fluid is carried outward
at outflow boundaries and low azimuthal momen-
tum fluid is carried inward at inflow boundaries. In
addition, there is significant leftward axial transport
between vortices as fluid winds around the vortices
[5]. This axial fluid transport depends on the phase of
the azimuthal wave. One half wave period later, the
axial transport is rightward. In fact, there are streams
of rightward and leftward axial flow in the annulus

Table 1
Number of waves, wavelength, and resolution of interpolated
velocity field

ε m λ/d �r/d �θ (◦) �z/d TriΩ/d T (s)

0.28 2 2.16 0.050 1 0.090 33 7.96
1.48 4 2.16 0.050 1 0.090 21 2.63
5.03 4 2.18 0.050 1 0.068 25 1.18

Fig. 2. Radial(vr ) and axial(vz) velocity vectors in a meridional
plane overlaid with azimuthal velocity contours shown at the
same approximate phase of the azimuthal wave: (a)ε = 0.28, (b)
1.48, (c) 5.03. The azimuthal velocity contours are equally spaced
between 0 at the OC and 1.0riΩ at the IC.

that wind from the inner to outer cylinder and back as
well as winding azimuthally about one-half azimuthal
wavelength[6]. At ε = 1.48 as much as 54% of the
fluid in a vortex is transferred in and out of the vortex
over one wave period due to the axial transport of
fluid. At ε = 0.28 and 5.03 the amount of axial fluid
transport is somewhat less, but still substantial, 40
and 45%, respectively[5]. Although it is not shown
in the figure, the vortex centers oscillate both axially
and radially due to the waviness of the vortices[5]. In
addition, the azimuthal velocity at the vortex centers
is about that of the traveling azimuthal wave evident
upon flow visualization of the system[6].

3. Passive fluid particle tracking

From kinematical standpoint, mixing is the stretch-
ing and folding of material surfaces. To investigate
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mixing and transport in the flow field we track passive
“fluid particles” having a density identical to the fluid
and an infinitesimally small size. This is equivalent to
calculating fluid pathlines according to the equations

dr

dt
= vr ,

dz

dt
= vz,

dθ

dt
= vθ

r
(1)

using a fourth order Runge–Kutta scheme to find the
new position based on the original position and the
velocity at that position. The velocity was interpolated
based on the discrete three-dimensional experimental
velocity field, which extended axially two vortices
(one axial wavelength) and was repeated periodically.
In order to validate the particle tracking code, particles
were tracked in a mathematically generated veloc-
ity field that was mapped on to a three-dimensional
polar grid with spacing similar to the experimental
velocity field. The mathematically generated velocity
field consisted of a circular velocity in a meridional
plane (like a Taylor vortex) together with a constant
azimuthal velocity. Although the velocity field was
nonphysical (it does not satisfy continuity), it has
similarities to vortical flow in a cylindrical Couette
device. Furthermore, it allowed testing the accuracy
of the integration and interpolation schemes by com-
paring the numerically calculated particle positions
after a long time with the exact solution. This test
showed that the integration and interpolation schemes
were quite robust, at least for this nonphysical veloc-
ity field. Because of the very short time step used in
the calculations, the typical error in the radial posi-
tion of a tracked particle was less than 0.1% after 370
revolutions around the circular path.

In this paper, we show the particle paths or posi-
tions as a function of nondimensional time,t/T, where
T is the period of one azimuthal wave passing through
a fixed meridional plane. Values forT are indicated
in Table 1, both dimensionally and nondimensionally.
The time step used in particle tracking calculations
was 0.002T. The total time for which the particles can
be tracked is somewhat limited. In complex flow fields,
seemingly inconsequential computational errors re-
lated to discretization, time-integration, and round-off
can substantially alter the particle tracking results,
even for an exact solution to the flow field. These errors

increase exponentially with tracking time for chaotic
flows [25]. When the flow field is experimentally
determined, the inherent experimental error has the
same effect as the computational errors. However, the
experimental errors can be much larger. The error in
the experimental velocity field is estimated to be about
1–4% of the velocity of the IC. Since the axial and
radial velocities are substantially less than the veloc-
ity of the IC, the error in the radial or axial velocities
can build up quickly. Thus, it is quite difficult to track
particles for long times using the experimental veloc-
ity field. Fortunately, results useful in understanding
the chaotic nature of the velocity field are obtained
from tracking particles over relatively short times. In
fact, tracking particles over relatively short times is
advantageous in producing more easily interpreted
particle trajectories, which is the focus of this paper.

4. Particle tracking results

We first examine fluid mixing from a kinematical
standpoint as the stretching and folding of material
lines by marking particular particles in a region of the
flow. Because the azimuthal velocity varies substan-
tially from the inner to the outer cylinder, we consider
the deformation of an axial line of fluid particles that
begins at different radial positions to see how the de-
formation varies.Fig. 3 shows the deformation of a
line of 2000 particles initially at(r − ri)/d = 0.25,
0.50, 0.75 for each of the three reduced Reynolds num-
bers considered. The number of particles tracked was
large enough to produce smooth curves with sufficient
resolution to show details, while keeping the compu-
tation times reasonable. The line of particles initially
extends a distance of 2λ, approximately from the cen-
ter of one clockwise (CW) vortex to another. The line
of particles is “released” from an initial azimuthal po-
sition corresponding to the meridional plane in which
the azimuthal wave is at its rightmost axial position to
permit comparison between equivalent initial positions
at different Reynolds numbers. For each Reynolds
number inFig. 3, the upper horizontal solid line is the
OC and the lower solid line is the IC. The curves show
the line of particles att = 0, 0.5T, and 1.0T.
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Fig. 3. Deformation of an axial line of 2000 particles initially about 2λ long at (r − ri)/d = 0.25 (top), 0.5 (middle), 0.75 (bottom) for
t = 0 (dotted), 0.5T (dashed), and 1.0T (solid) viewed in a meridional plane: (a)ε = 0.28, (b) 1.48, (c) 5.03.

For all initial radial positions shown inFig. 3, the
line of particles is subject to extensive folding and
stretching resulting in horse-shoe shaped structures
characteristic of mixing in a chaotic flow[26,27].

Further, note the self-similar structure exhibited by
folded elements as time evolves. For example in the
upper frame ofFig. 3(b), a relatively thin tongue is en-
closed by a similar larger tongue at 1.0T. The degree



A. Akonur, R.M. Lueptow / Physica D 167 (2002) 183–196 189

of folding and stretching increases with the Reynolds
number,ε, which is somewhat surprising given that
the total axial fluid transport between vortices is
greater forε = 1.48 than for either of the other two
Reynolds numbers[5]. But from Fig. 2, it is evident
that the vortices increase in strength with Reynolds
number. Thus, it appears that the increasing strength of
the vortical structures withε enhances chaotic advec-
tion even though the axial transport between vortices
decreases somewhat at the highest Reynolds number.
However, it is quite clear that flux between vortices
is necessary for significant axial dispersion. Thus, the
vortex strength apparently acts together with axial
transport between vortices to enhance the stretching
and folding as the Reynolds number increases.

The line of particles near the IC has a higher degree
of folding and stretching than those near the OC, most
readily evident forε = 1.48 in Fig. 3(b). This proba-
bly results from the increased azimuthal velocity near
the IC where the azimuthal velocity is substantially
higher than the azimuthal wave speed, which is 0.3–0.4
times the speed of the IC[5,28,29]. Thus, in the period
for one azimuthal wave,T, particles near the IC have
traveled azimuthally farther than a single wave being
exposed to more vortical transport and axial trans-
port between vortices than particles initially near the
OC. This result is amplified considering the azimuthal
transport of the line of particles inFig. 4, which shows
the position of the axial line of particles collapsed into
a single latitudinal plane. The axial line of particles ini-
tially appears as a single point near the right side of the
circular section. After just 0.5T the line of particles has
stretched azimuthally and extends across nearly the en-
tire annular gap regardless of the initial radial position.
However, particles initially near the IC have traveled
farther azimuthally. By 1.0T the particles initially near
the IC have stretched more than those starting near
the OC. Of course, the chaotic mixing carries particles
initially near the IC to the OC and vice versa, so in the
long run the effect of the initial radial position is lost.

The positions of the same three axial lines of par-
ticles on an unwrapped circumferential surface are
shown inFig. 5. For reference, the azimuthal wave-
length corresponding to an azimuthal wave isλθ =
[ri + (d/2)]2π/m = 7.94d for m = 4 waves. Since

Fig. 4. Deformation of an axial line of 2000 particles initially about
2λ long at (r − ri)/d = 0.25 (top), 0.5 (middle), 0.75 (bottom)
for t = 0 (single dot), 0.5T (fine curve), and 1.0T (bold curve)
viewed in a latitudinal plane forε = 1.48.

the original line extends two axial wavelengths (four
vortices), the shape of the stretched line of particles is
periodic in the axial direction with period 2d. Some
of the particles starting at(r −ri)/d = 0.25 have trav-
eled nearly one full azimuthal wavelength due to the
higher azimuthal velocity by 0.5T, whereas particles
starting near(r − ri)/d = 0.75 have traveled only half
as far. By 1.0T the axial line of particles has stretched
azimuthally by about one full azimuthal wavelength,
with the greatest stretching for the line of particles
initially near the IC. Clearly the stretching is not uni-
form, based on the distance between dots at 1.0T. The
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Fig. 5. Deformation of an axial line of 2000 particles initially
2λ long at (r − ri)/d = 0.25 (top), 0.5 (middle), 0.75 (bottom)
for t = 0 (vertical line atθ = 0), 0.5T (middle curve), and 1.0T
(right curve) viewed in an unwrapped circumferential surface at
the center of the annular gap forε = 1.48. Dots on the lines
denote every 10th particle.

portions of the curve that are stretched significantly
are those close to the IC as viewed inFig. 4. It is also
evident that some particles have moved axially beyond
the extent of the original line, but the axial stretching
is small compared to the azimuthal stretching.

We can also consider the deformation of a line of
1000 particles initially positioned along a radius across
the annular gap, shown inFig. 6 for ε = 1.48. Like
previous cases, we consider a line of fluid particles
“released” at an initial azimuthal position correspond-
ing to the meridional plane in which the azimuthal
wave is at its rightmost axial position. In this case,
the radial line of particles is released from the fol-
lowing initial axial positions with respect to a vortex
pair: (i) the center (C) of a CW vortex; (ii) an inflow

Fig. 6. Deformation of a radial line of 1000 particles initially posi-
tioned at a clockwise vortex center [C(CW)], an inflow boundary
[I], a counter-clockwise vortex center [C(CCW)], and an outflow
boundary [O] fort = 0 (dotted), 0.5T (dashed), and 1.0T (solid)
viewed in a meridional plane forε = 1.48.

boundary (I); (iii) the center of a counter-clockwise
(CCW) vortex; and (iv) an outflow boundary (O). Of
course, since the vortices are wavy, these axial posi-
tions only align with these locations with respect to
the vortex pair at the instant the particles are released.
Significant stretching and folding is evident inFig. 6
for both vortex centers and for the outflow boundary.
However, the line of particles at the inflow boundary
undergoes much less folding and stretching. This re-
sult occurs for all Reynolds numbers and independent
of when the particles are released with respect to the
phase of the azimuthal wave. This result is surprising
given our earlier explanation that fluid near the IC is
carried farther azimuthally in a given time exposing
it to more waves to fold and stretch the line.

More insight is obtained from observing the stretch-
ing in a latitudinal plane, shown inFig. 7. The length
of the arc shown in the figure clearly indicates that
the particles in the radial line at an inflow bound-
ary are stretched further azimuthally than particles
at a vortex center or outflow boundary. Yet there
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Fig. 7. Deformation of a radial line of 1000 particles initially positioned at a clockwise vortex center [C(CW)], an inflow boundary [I], a
counter-clockwise vortex center [C(CCW)], and an outflow boundary [O] fort = 0 (bold radial line), 0.5T (curve with no dots), and 1.0T
(curve with dots denoting every 10th particle) viewed in a latitudinal plane forε = 1.48.

is substantially less folding evident for the line of
particles at an inflow boundary. The reason for lit-
tle folding at an inflow boundary is not clear. Close
inspection of the velocity field at inflow boundaries
through several meridional slices of a wave does not
reveal a substantially different appearance from out-
flow boundaries (other than the sense of the velocity)
[6]. There are however two significant differences in
the velocity field at inflow and outflow boundaries.
First, the outflow is generally stronger than the inflow
[30]. Second, the redistribution of azimuthal momen-
tum by the vortical motion results in either a velocity
defect or a velocity augmentation compared to the
stable, nonvortical velocity field. The velocity defect
at an inflow boundary is greater than the velocity
augmentation at an outflow boundary[6]. However,
neither of these differences between inflow and out-
flow boundaries suitably explains the minimal folding
at an inflow boundary. It appears that particles ini-
tially in a radial line at an inflow boundary are carried
toward the IC and then stretched substantially by the
high azimuthal velocity before vortical motion carries
the particles outward again to provide any folding.

5. Stretching

It is possible to quantify the stretching by simply
comparing the length of a line of fluid particles at
some timet with the initial length of the same line of
particles att = 0. Thus, we calculate the stretch,Sn,
at time incrementn as

S(n) =
∑

j |X(n)|∑
j |X(0)| , j = 2 : N, (2)

where the distance between two adjacent particlesj
andj − 1 at time incrementn is

|X(n)| =
[
(rj (n) − rj−1(n))2 + (rj (n)θj (n)

− rj−1(n)θj−1(n))2

+ (zj (n) − zj−1(n))2
]1/2

. (3)

The denominator ofEq. (1)is the initial length of the
line at t = 0. The degree of stretching as a function
of time is shown inFig. 8 for the three different re-
duced Reynolds numbers considered. In this case, the
time axis is nondimensionalized with the rotational
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Fig. 8. Stretching as a function of time forε = 0.28 (dashed-dot),
ε = 1.48 (dashed), andε = 5.03 (solid).

speed rather than the period for an azimuthal wave,
T, to permit comparison between Reynolds numbers
having different numbers of azimuthal waves. At
each Reynolds number, the stretching was calculated
for an axial line like that inFigs. 3–5at three initial
radial positions,(r − ri)/d = 0.25, 0.50, 0.75 and
then averaged. First, it is evident that the stretch-
ing grows approximately exponentially with time
after an initial period of slower growth in all cases,
as would be expected for a chaotic system. (The
slight downward curvature at longer times may be
a consequence of particles getting computationally

Fig. 9. Positions of 1250 particles initially on an axial line at(r−ri)/d = 0.5 after 2, 4, 6, and 8T for ε = 1.48 viewed in a meridional plane.

“stuck” on the wall and, consequently, not having the
distance between them change with time.) Second,
the stretching increases with increasing Reynolds
number.

6. Mixing

Insight into the enhanced axial transport in WVF
can be obtained by tracking particles over time.Fig. 9
shows the positions of 1250 particles initially distribu-
ted along a single axial lineλ long (two vortices) at the
middle of the annulus over 2, 4, 6, and 8T atε = 1.48.
(Particles “sticking” to the walls is a nonphysical arti-
fact that comes about when the particles get so close
to the wall that there is essentially no radial velocity
at the resolution of the computational grid that can
carry them away from the wall.) In addition to the very
quick inter-vortex mixing, it is evident that by 8T, par-
ticles have penetrated eight vortices via intra-vortex
mixing.

The combination of the azimuthal velocity, the azi-
muthal waviness, and the transport between vortices
results in enhanced axial dispersion of fluid particles
and mixing. The axial transport can be quantified
in terms of an “axial dispersion” coefficient, also
known as an “effective diffusion” coefficient. The
axial dispersion coefficient is based on the chaotic ad-
vection of a large number of fluid particles using the
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Fig. 10. Instantaneous axial dispersion as a function of time forε = 0.28 (dashed-dot),ε = 1.48 (dashed), andε = 5.03 (solid).

expression[7]:

D′ = lim
n→∞{D(n�t)}

= lim
n→∞

{
1

N

∑ [zj (n) − zj (0)]2

2n�t

}
, (4)

where N is the total number of particles andzj (n)
the dimensional axial position of thejth particle at
time stepn. The axial dispersion is shown inFig. 10
as a function of time for the three Reynolds num-
bers that we considered. The instantaneous dispersion
coefficientD necessarily starts very small for small
t = n�t as particles move only a short distance from
their initial position. In addition, at smallt, the axial
dispersion coefficient depends on the initial positions
of the particles. Thus, the results inFig. 10 are the
average of three axial lines of particles at the three
radial positions inFig. 3 to avoid errors due to the
initial position of the particles.

After a short transient oft ≈ 0.35T , D reaches
a value D′ that is indicative of axial mixing due
to chaotic transport of the particles, much like the
molecular diffusion coefficient is indicative of mixing
due to molecular diffusion. Because small experimen-
tal errors are likely to be magnified during numerical
integration of the experimentally obtained velocity
field, we calculate the argument of the limit in the

expression for the axial dispersion coefficientD(n�t)
as a function of time only up tot = 1.0T . The short
transient is consistent with computational models of
particle transport in wavy vortex flow[10] where the
axial dispersion coefficient became essentially inde-
pendent of time fortriΩ/d > 10 (corresponding to
about 0.5T or less), although our previous calculations
based on a phenomenological model of wavy vortex
flow required a longer time to reach their final value
[11]. The nonphysical sticking of particles to the walls
is insignificant at 1.0T (only about 0.7% of the parti-
cles), so this does not affect the dispersion coefficient.

The values at 1.0T in Fig. 10 are quite similar to
those obtained experimentally and computationally
for axial dispersion. Using the residence time distri-
bution of a tracer, Moore and Cooney[1] found axial
dispersion coefficients forη = 0.81 ranging from
0.05 cm2/s at ε = 2.24 to 0.11 cm2/s at ε = 6.38,
consistent with our values of 0.06 cm2/s atε = 1.48
and 0.17 cm2/s at ε = 5.03 for ν = 0.031 cm2/s.
For comparison, the molecular diffusion coefficient
for glycerol in water is∼10−3 cm2/s indicating that
transport due to chaotic advection is significantly
greater than transport due to molecular diffusion.

Perhaps a better comparison is in terms of the
Schmidt number based on the effective axial disper-
sion,Sc = ν/D′, as shown inFig. 11for experimental
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Fig. 11. Schmidt number as a function of the reduced Reynolds
number. �, computational[11]; �, dye diffusion [1] (vertical
distribution represents the range of possible values since the exact
viscosity was not provided by the authors);�, dye diffusion[22];
�, current results.

[1,22] and computational results[10]. Using a com-
putational model of wavy vortex flow, Rudman found
thatSc decreased from 0.85 atε = 0.37 to a constant
value of 0.15 for 3.10 ≤ ε ≤ 5.39, indicating the in-
creasingly important role of chaotic transport with in-
creasing Reynolds number[10]. Experimental results
based on tracer diffusion[1,22] and our results based
on our particle tracking indicate somewhat higher
Schmidt numbers, as shown inFig. 11. However, the
agreement between the computational results, experi-
mental tracer results, and our particle tracking results
is quite good given the different techniques to mea-
sure the Schmidt number and the range of conditions
that were considered. Several comments are in order
here. First, the high value of the Schmidt number at
low ε where the wavy vortical motion is weak is not
surprising, given that the Schmidt number asymptotes
to a very high value for no chaotic transport at all. For
example, the molecular diffusion coefficient for glyc-
erol in pure water is quite small leading toSc ∼ 103.
Secondly, Moore and Cooney[1] only provided a
range of viscosities for their experiments, so we plot
a range of Schmidt numbers for their data. Finally, we
would have liked to compare the results here to the
results for the effective diffusion coefficient derived
from our previous phenomenological model[11], but

those results are an order of magnitude smaller than
the results of this and other studies indicating that the
phenomenological model does not accurately describe
the physics of axial dispersion. Measurements of the
dispersion coefficient have also been made at much
higher rotating Reynolds numbers(ε > 10) in the tur-
bulent Taylor vortex flow regime. The axial dispersion
coefficient for these cases is much greater than that
for wavy cylindrical Couette flow[1,17,18,21,22].
The mechanism for enhanced transport in turbulent
Taylor vortex flow is doubtless intrinsic to the turbu-
lence, whereas the mechanism in wavy vortex flow is
axial transport of fluid between wavy vortices.

7. Summary

As experimental techniques that are applied to
classic fluid dynamics problems become increasingly
sophisticated, so too should analytic techniques adapt
and develop. Our approach is intended to provide a
picture of the nature of the mixing and axial trans-
port properties of wavy cylindrical Couette flow. The
unique aspect of this work is that we have tracked
particles in an experimentally measured time-resolved
velocity field in three dimensions rather than a com-
putational, theoretical, or phenomenological model
of the flow. Thus, the degree of vortex distortion
and transport between vortices is based on physical
measurements rather than perturbations of non-wavy
vortices or computational models. Furthermore, our
use of an experimental velocity field permits the con-
sideration of flow conditions well above the transition
from non-wavy Taylor–Couette flow to wavy vortex
flow and for wider annular gaps, which is difficult
using perturbation models.

Our results clearly show the chaotic nature of the
flow. Material lines in the flow field stretch and fold
resulting in horse-shoe structures. We show how the
underlying circular Couette flow field affects the
stretching and folding. A material line starting very
near the IC is subject to more extensive folding than a
material line initially near the OC because the higher
azimuthal velocity near the IC carries the particles
through more azimuthal waves. Of course, this effect is
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smeared out with time as the material line is dispersed
radially. The degree of stretching and folding is depen-
dent upon the Reynolds number. The vortex strength
increases with Reynolds number, but this cannot be
exclusively responsible for the chaotic advection. The
enhanced axial dispersion requires that there be fluid
transport between vortices. Since the axial transport
of fluid between vortices reaches a maximum and then
decreases somewhat with increasing Reynolds number
[5,13], we can conclude that increasing vortex strength
with Reynolds number combined with inter-vortex
transport enhances chaotic advection as the Reynolds
number increases. An interesting result is that a radial
material line positioned at an inflow boundary is not
exposed to as much folding as radial lines at vortex
centers or an outflow boundary. It appears that this
fluid is carried toward the IC and then swept with the
IC rotation with little exposure to axial transport or
vortical motion. Of course, this effect diminishes as
the particles are redistributed in the vortex.

The effective dispersion coefficient calculated
based on the axial dispersion of fluid particles pro-
vides results that are consistent with experimental
measurements of the dispersion due to chaotic advec-
tion. The rate of axial scalar transport is increased
substantially compared to that due to molecular dif-
fusion. The enhancement of transport is largely due
to the transfer of well-mixed fluid between adjacent
wavy vortices. These results also indicate that the
expression used to calculate the dispersion (Eq. (4))
provides a reasonable estimate of the experimentally
determined dispersion due to chaotic advection.
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