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Segregation of polydisperse granular materials occurs in many natural and industrial
settings, but general theoretical modeling approaches with predictive power have been
lacking. Here we describe a model capable of accurately predicting segregation for both
discrete and continuous particle size distributions based on a generalized expression
for the percolation velocity. The predictions of the model depend on the kinematics
of the flow and other physical parameters such as the diffusion coefficient and the
percolation length scale, quantities that can be determined directly from experiment,
simulation or theory and are not arbitrarily adjustable. The model is applied to heap
and chute flow, and the resulting predictions are consistent with experimentally validated
discrete element method (DEM) simulations. Several different continuous particle size
distributions are considered to demonstrate the broad applicability of the approach.
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1. Introduction

Size segregation of polydisperse granular materials is ubiquitous in industrial and
natural processes. As particles of different sizes flow or are agitated in the presence
of gravity, small particles fall through the interstices between larger particles resulting in
size segregation of initially well-mixed particles. This mechanism is commonly referred
to as particle percolation; it is the primary driving mechanism for segregation in dense
size-disperse granular flow and its effects are the focus of this paper.

Most previous theoretical approaches to understanding and modeling percolation-
driven segregation have been limited to bidisperse granular mixtures (Savage & Lun
1988; Dolgunin et al. 1998; Gray & Thornton 2005; Gray & Chugunov 2006; May et al.
2010; Wiederseiner et al. 2011; Marks et al. 2012; Fan & Hill 2011; Thornton et al.
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2012; Tunuguntla et al. 2014; Larcher & Jenkins 2013, 2015). Several studies have used
experiments (Conway et al. 2005; Newey et al. 2004; Jain et al. 2013; Bhattacharya
& McCarthy 2014) and discrete element method (DEM) simulations (Jain et al. 2013;
Bhattacharya & McCarthy 2014; Marks et al. 2012; Pereira & Cleary 2013) to study
polydisperse segregation, but a general theoretical model for polydisperse segregation is
currently lacking. Gray & Ancey (2011) derived a continuum equation that describes the
segregation of multidisperse mixtures (i.e. a finite number of distinct particle sizes), but
the model includes arbitrarily adjustable parameters, making it difficult to accurately
apply the results to specific particle sizes or to generalize the model to a continuous
distribution of particle sizes. Marks et al. (2012) developed a continuum model for
polydisperse segregation, but it also relies on a fitting parameter without a clear physical
meaning that is determined by fitting data to DEM simulations in an ad hoc manner,
making it difficult to apply the model across a broad range of physical parameters.
Recently a stochastic lattice model incorporating the effects of segregation, mixing
and crushing was applied to predict steady-state grain size distributions in uniformly
sheared granular flows (Marks & Einav 2015). Although the approach can connect micro-
and macroscale advection-driven processes for polydisperse systems, it has shown only
qualitative agreement with experimental grain size distributions in geophysical situations
such as debris flows and fault gouges. Moreover, only a limited number of initial size
distribution types have been considered, such as uniform or power-law distributions,
even though in typical granular systems in industry and nature, particle sizes tend to
be distributed log-normally (Limpert et al. 2001; Peng & Dai 1994; Bartelt & McArdell
2009; Bertin et al. 2011; Su & Yu 2005).

In this paper, we generalize a recent segregation model for bidisperse gravity-driven
flows (Fan et al. 2014) to describe segregation in multidisperse mixtures by extending
the bidisperse percolation velocity model to describe interactions between particles of
three or more different sizes. Our model is similar to the approach of Gray & Ancey
(2011); however, it utilizes physical segregation parameters and material-dependent
scalings obtained from DEM simulations that are applicable to different flows. Using
this formalism, we generalize the model to describe segregation in polydisperse mixtures
of particles. We apply the model to two different examples of gravity-driven flows:
tridisperse heap flow and polydisperse chute flow, though the model is broadly applicable
to many types of granular flows. In these examples, the theoretical model demonstrates
quantitative agreement with DEM simulations. In the polydisperse chute flow example,
the model is applied first to particle sizes that are distributed log-normally by volume,
though other particle size distributions are also considered.

The relevance of polydisperse particle segregation in heap and chute flow to industrial
settings is clear—segregation is problematic in industries ranging from pharmaceutical
production to polymer processing to handling of ores and grains. The model may also
be applicable to geophysical settings, such as debris flow, although this is a complex
area where specific details are of critical importance (Montgomery & Buffington 1997)
and where even defining consistent terminology presents challenges (Mulder & Alexander
2001). It has been argued that simple physical models of granular solids and solid-fluid
mixtures may provide a foundation for the development of a comprehensive theory
of debris flow (Iverson 1997), and various groups have attempted to model particle
segregation as a combination of sediment particles of various sizes and a fluid flowing
down a chute (Hutter et al. 1996). Here we provide the foundation for theoretically
modeling percolation-driven segregation in multidisperse and polydisperse granular flows
with the ultimate goal of providing a robust theoretical approach for segregating granular
materials in both industrial and geophysical situations.
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2. Multidisperse mixtures

In the bidisperse segregation model of Fan et al. (2014), the effects of segregation are
combined with advection due to the mean flow and diffusion due to random particle
collisions through a scalar transport equation:

∂ci
∂t

+∇ · (uci) +
∂

∂z
(wp,ici) = ∇ · (D∇ci), (2.1)

where u = ux̂ + vŷ + wẑ is the mean particle velocity with streamwise, spanwise and
normal components, u, v and w, respectively. Here, x is the streamwise coordinate, y is
the spanwise coordinate, z is the coordinate normal to the free surface where segregation
occurs, and the origin is at the free surface. ci is the volume concentration of species i,D is
the scalar diffusion coefficient assuming that diffusion is homogeneous and isotropic, and
wp,i = wi−w is the percolation velocity of species i related to segregation, which accounts
for the motion of different sized particles relative to the mean flow in the direction normal
to the free surface. This model has been applied to bidisperse segregation in bounded
heaps (Fan et al. 2014; Schlick et al. 2015a) and rotating tumblers (Schlick et al. 2015b),
and its predictions exhibit excellent quantitative agreement with both DEM simulations
and experiments.

The key to this model is a relation for the percolation velocity applicable to size
bidisperse mixtures (Savage & Lun 1988; Gray & Thornton 2005; Fan et al. 2014)
composed of particles with diameters αi and αj in which the percolation velocity wp,i

for species i is related to the local shear rate γ̇ and the local concentration of the other
species (j) as

wp,i = S(αi, αj)γ̇cj . (2.2)

S, the percolation length scale, is approximated as

S(αi, αj) = Bmin(αi, αj) ln(αi/αj) (2.3)

for cohesionless spherical glass particles, where B = 0.26 and the expression is valid
for 1/3 < αi/αj < 3 (Schlick et al. 2015a). This expression captures the downward
percolation of smaller particles (αi < αj) and the upward segregation of larger particles
(αi > αj) in a flowing mixture. It describes the local effects of percolation, and is thus
valid everywhere in a dense, bidisperse granular system.

To generalize the model to multidisperse mixtures, we assume as a first order ap-
proximation that the percolation velocity of particle i is a linear combination of the
concentration of each surrounding species j weighted by the percolation length scale
S(αi, αj) and the local shear rate γ̇. For n distinct particle sizes in a mixture, each with
diameter αj and a spatially varying concentration cj(x) where j = 1, ..., n, equation 2.2
for the percolation velocity of particle i is generalized to

wp,i =
n∑

j=1

S(αi, αj)γ̇cj . (2.4)

Equation 2.4 is similar to the approach proposed in Gray & Ancey (2011) based on the
linear sum of binary interactions but with the additional inclusion of the local shear rate,
consistent with equation 2.2, which has been successfully applied to bidisperse mixtures
(Fan et al. 2014; Schlick et al. 2015a,b). This relation neglects higher order interactions
between species, but it provides an appropriate starting point to consider multidisperse
mixtures. Substituting equation 2.4 into equation 2.1 yields the full scalar transport
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equation for particle mixtures with n distinct sizes:

∂ci
∂t

+ u · ∇ci +

n∑
j=1

[
S(αi, αj)

∂

∂z
(γ̇cjci)

]
= ∇ · (D∇ci). (2.5)

This system of n coupled nonlinear partial differential equations can be simplified to n−1
partial differential equations since the total species concentration

∑n
i=1 ci = 1.

Unlike previous approaches, equation 2.5 contains no arbitrarily adjustable fitting
parameters; instead, it uses an empirical form for S (equation 2.3) that has been measured
from DEM simulations and successfully applied to different flow geometries (Schlick et al.
2015a,b). Previous studies showed that the diffusion coefficient D depends on the local
shear rate and particle size in the flowing layer (Utter & Behringer 2004; Fan et al. 2014)
and saturates in the creep flow region (Fan et al. 2015), so D can be estimated from
the flow kinematics. Therefore, equation 2.5 can be applied to any flowing mixture of n
discrete particle sizes when the kinematics are known. Note that in bounded heap flow we
have shown that using the mean diffusion coefficient in the entire flowing layer instead
of a spatially-varying diffusion term provides accurate model predictions but reduces
mathematical complexity significantly, so here we use the mean diffusion coefficient in
the flowing layer.

To test the validity of equation 2.5, we consider tridisperse (n = 3) segregation in
the flowing layer of quasi-2D bounded heap flow, the same flow geometry considered
in previous studies of segregation in bidisperse mixtures (Fan et al. 2014; Schlick et al.
2015a). A DEM simulation for a tridisperse mixture of spherical glass particles in a
quasi-2D bounded heap flow is used to compare predictions of the model (see figure
1(a)). In quasi-2D bounded heap flow, granular material is fed by gravity at the left end
of the thin gap between two coplanar vertical walls. If the material flows continuously (no
avalanching), then the heap rises with uniform velocity. A linear spring-dashpot normal
force and a linear spring tangential force with Coloumb sliding friction criterion were used
for the contact model in the DEM simulation. A restitution coefficient e = 0.8 and binary
collision time tc = 1× 10−3 s were used to simulate contacts between glass spheres. The
Coloumb sliding friction coefficient for particle-particle and particle-wall contacts was
µpp = µpw = 0.4. Further details on the methodology of the DEM simulation and quasi-
2D bounded heaps can be found in our previous work (Fan et al. 2014, 2013, 2012).

For the tridisperse mixture in bounded heap flow shown in figure 1(a), particles enter
the flowing layer well-mixed, and their concentrations are approximately equal at the
flow inlet (cs = cm = cl = 1/3). The smallest particles quickly percolate to the bottom
of the flowing layer and deposit in the upstream (left) region of the heap. Intermediate
size particles rise above the small particles in the flowing layer but fall below the large
particles, and deposit midway down the heap. The largest particles rise to the top of
the flowing layer and are advected down the heap depositing in the downstream (right)
portion of the heap. To predict the segregation pattern for the flow shown in figure
1, equation 2.5 is solved using a mapping method with operator splitting (Fan et al.
2014). Particle motion occurs almost entirely in a thin flowing layer extending from
the free surface to a depth of O(10) particle diameters, and this is where we apply the
theoretical model (equation 2.5). To implement the model for tridisperse mixtures, the
depth of the flowing layer δ = 1.0 cm (assumed constant) and the diffusion coefficient
D = 1.4× 10−6 m2/s are taken from previous studies (Schlick et al. 2015a). The surface
velocity is assumed to decrease linearly along the length of the flowing layer and the
streamwise velocity is assumed to decrease exponentially with depth, consistent with
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Figure 1. Tridisperse segregation in quasi-2D bounded heap flow. (a) DEM simulation of 1 mm
(dark grey, red online), 2 mm (light grey, yellow online), and 3 mm (black, blue online) diameter
particles in a W = 46.7 cm wide and T = 15 mm thick container with feed rate ṁ = 11.7
g/sec. (b) Concentration vs. scaled streamwise position at the bottom of the flowing layer for
the model (curves) and the DEM simulation shown in (a) (data points) for 1 mm (dark grey,
red online, ◦), 2 mm (light grey, yellow online, □), and 3 mm (black, blue online, △) diameter
particles.

mass conservation for a steadily rising surface, and validated by DEM simulations and
experiments (Fan et al. 2013).

Figure 1(b) compares the particle concentration at the bottom of the flowing layer
for each of the three species for the model and the DEM simulation shown in (a). For
all three species, the model agrees well with the DEM simulation. More importantly,
the theoretical curves were calculated without the use of any fitting parameters; all
parameter values needed for the model were determined in previous studies based on
bidisperse mixtures of particles (Fan et al. 2014; Schlick et al. 2015a), demonstrating
the potential of this theoretical approach. We expect this approach to work for any inlet
concentration of particles (not just equal concentrations) as well as for more than three
species.

3. Polydisperse mixtures

Consider now a continuous distribution of particle sizes with diameters αmin < α <
αmax. Define c(x, t, α)dα as the probability that a particle of size α is at position x at
time t. Note that α has units of length and c(x, t, α) is a probability density function with
units of 1/length. Generalizing equation 2.5 from multidisperse to polydisperse mixtures
yields

∂c(x, t, α)

∂t
+ u(x, t) · ∇c(x, t, α) +

∫ αmax

αmin

S(α, α′)
∂

∂z
[γ̇c(x, t, α)c(x, t, α′)] dα′

= ∇ · [D∇c(x, t, α)] . (3.1)

The connection between equations 2.5 and 3.1 is evident by noting that for the mul-
tidisperse case with a finite number of distinct particle sizes with diameter αi and
concentration ci (i = 1, ..., n),

c(x, t, α) =
n∑

i=1

ci(x, t)δ(α− αi), (3.2)

where δ(α) is the Dirac delta function. Substituting this expression into equation 3.1
yields equation 2.5.
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Figure 2. Images from a DEM simulation of chute flow for a size polydisperse granular mixture
for the (a) initial condition and (b) a fully-developed, segregated state after 60 s. Initially
well-mixed particles flow down the chute (left to right). x is the streamwise coordinate, y is
the spanwise coordinate, z is the coordinate normal to the free surface, the origin is at the free
surface, and g indicates the direction of gravity. Periodic boundary conditions are implemented in
the streamwise (x) direction. Particle sizes are distributed according to a truncated log-normal
distribution, with mean particle diameter ᾱ ≈ 2 mm and minimum and maximum particle
diameters equal to 1 mm and 4 mm, respectively. Chute inclination angle is θ = 28◦ and
particle depth is δ = 6.2 cm.

3.1. Polydisperse segregation in steady-state chute flow

To demonstrate the application of the model (equation 3.1) to polydisperse segre-
gation, we consider chute flow in the limit of an infinitely long chute, in which the
segregation of a polydisperse mixture is assumed to have reached steady-state. Although
the method can be applied to other dense gravity-driven flows, chute flow has the
advantage of being a relatively simple flow in steady-state, and it has applications to both
industrial processes and geophysical debris flows (Hutter et al. 1996). A DEM simulation
for polydisperse segregation in chute flow is shown in figure 2. In the simulation, particle
sizes are modeled using a truncated log-normal distribution by volume with mean particle
diameter α = 2 mm, and minimum and maximum particle diameters of 1 mm and 4 mm,
respectively. In an idealized chute flow, particles flow continuously down an infinitely
long incline with a constant particle depth δ and z = 0 located at the free surface. In
the DEM simulation, periodic boundary conditions were implemented in the streamwise
(x) direction to simulate a fully-developed, steady-state condition and to minimize the
computational domain. Frictional sidewalls constrained the simulation domain in the
spanwise (y) direction, with a gap thickness T = 1.76 cm and a particle-wall Coloumb
sliding friction coefficient µpw = 0.1. The bottom boundary consisted of a stationary,
regular packing of small particles with diameters uniformly distributed between 1.0-1.5
mm, simulating a rough wall composed of glued spheres. These boundary conditions
produce a steady-state velocity profile that is approximately linear through the depth of
the flowing layer.

Previous DEM simulations (Silbert et al. 2001; Rognon et al. 2007) and theory (Rognon
et al. 2007) have approximated the velocity profile for chute flows using a Bagnold-type
rheology, giving rise to a profile of the form: u ∼

[
δ3/2 − (−z)3/2

]
x̂. More complex

profiles have been suggested by others to account for discrepancies in experimentally
observed profile shapes across a wide variety of flowing regimes (Ancey 2001). Adding to
this complexity are the coupled effects of size segregation on the velocity profile in non-
monodisperse mixtures, which, as of present, has received little investigation except for
recent work by Marks et al. (2012). However, in most studies on monodisperse flows down
rough inclines, the velocity is well approximated by a linear profile for sufficiently shallow
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flow depths (< 20 particle diameters thick) (Silbert et al. 2001; Midi 2004). Consistent
with the DEM results, we use a linear velocity profile in the model: u = γ̇ (z + δ) x̂,
where γ̇ ≡ ∂u/∂z is the (constant) shear rate and δ is the particle depth. We note that
steady-state concentration distributions for a linear velocity profile (presented later in
this section) were very similar to those for a Bagnold velocity profile.

For steady-state chute flow, c(x, t, α) = c(z, α), since the particle concentrations are
independent of the streamwise position x. Therefore, equation 3.1 becomes∫ αmax

αmin

S(α, α′)
∂

∂z
[γ̇c(z, α)c(z, α′)] dα′ =

∂

∂z

[
D
∂c(z, α)

∂z

]
(3.3)

for −δ ⩽ z ⩽ 0. The boundary conditions for equation 3.1 are the segregation flux equals
the diffusion flux at the boundaries (z = −δ, 0). In addition, the overall particle size
distribution, f(α), is specified such that:∫ 0

−δ

c(z, α)u(z)dz = f(α)

∫ 0

−δ

u(z)dz, (3.4)

where
∫ αmax

αmin
f(α)dα = 1. Note that the particle concentrations are weighted by the

velocity, so that the total flux of particles through −δ ⩽ z ⩽ 0 is specified. Integrating
equation 3.3 with respect to z and applying the no flux boundary condition yields∫ αmax

αmin

S(α, α′)γ̇c(z, α)c(z, α′)dα′ = D
∂c(z, α)

∂z
(3.5)

for −δ ⩽ z ⩽ 0. Note that the governing equation 3.5 specifies that, in steady-state, the
segregation flux equals the diffusion flux in the entire domain (−δ ⩽ z ⩽ 0), which is
the same as the boundary condition at z = −δ, 0. This makes sense physically since, in
steady-state, particles do not on average move in the z direction.

To nondimensionalize equation 3.5, let z̃ = z/δ, α̃ = α/d0, c̃ = d0c, S̃ = S/d0 and
f̃ = d0f , where d0 is a characteristic length associated with the particle size. Substituting
these dimensionless quantities in equation 3.5 yields

Γ

∫ α̃max

α̃min

S̃(α̃, α̃′)c̃(z̃, α̃)c̃(z̃, α̃′)dα̃′ =
∂c̃(z̃, α̃)

∂z̃
(3.6)

for −1 ⩽ z̃ ⩽ 0, where Γ = d0γ̇δ/D. Using the same dimensionless quantities above and
the linear velocity profile, equation 3.4 becomes∫ 0

−1

c̃(z̃, α̃)(1 + z̃)dz̃ =
1

2
f̃(α̃), (3.7)

with
∫ α̃max

α̃min
f̃(α̃)dα̃ = 1.

Equation 3.6 is similar to the steady-state advection-segregation-diffusion equation
presented in Schlick et al. (2015b) in that the product Γ S̃ = γ̇δS/D represents the relative
importance of segregation compared to diffusion. For bidisperse segregation in a bounded
heap or rotating tumbler (Fan et al. 2014; Schlick et al. 2015b), this ratio can be expressed
as the product of a dimensionless segregation parameter, Λ, representing the ratio of
segregation to advection, and the Péclet number, Pe, representing the ratio of advection
to diffusion, such that ΛPe = γ̇δS/D. Of course, there is no streamwise advective time
scale in fully developed chute flow. Thus, the product ΛPe is analogous to Γ S̃ in that
it represents the relative importance of segregation compared to diffusion. However, the
model for polydisperse segregation differs from previous results for bidisperse systems
(Fan et al. 2014; Schlick et al. 2015a,b) in that the nondimensional percolation length
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scale S̃ is not a constant. Hence, equation 3.6 represents a natural nondimensionalization,
where S̃ remains inside the integral, as it must. Equation 3.6 can be solved for c̃(z̃, α̃)
using a finite difference method with the midpoint rule to approximate the integral, one-
sided differencing in the z̃ direction, and the method of successive iterations (Ames 1977)
to account for the nonlinearity. For the remainder of this work, tildes are dropped and
dimensional quantities are denoted with a subscript “d”.

While equation 3.6 can be applied to any particle size distribution, here we primarily
consider log-normal distributions, which are prevalent in many different scientific areas
(Limpert et al. 2001). In granular systems, particle sizes have been shown to be log-
normally distributed in iron-copper alloys fabricated using a co-evaporation technique
(Peng & Dai 1994), aggregates of snow and ice from snow avalanches (Bartelt & McArdell
2009), urea from an industrial fluidized bed granulator (Bertin et al. 2011), and aerobic
granules cultivated in a sequencing batch reactor (Su & Yu 2005). The variable αd is log-
normally distributed with median d0 and geometric standard deviation σg when ln(αd/d0)
is normally distributed with mean 0 and standard deviation σ = lnσg. Therefore,

f(α) =
1

ασ
√
2π

exp

[
− (lnα)2

2σ2

]
. (3.8)

Note that d0 is notationally the same as d50, a measure of the median particle size as
commonly reported in industrial applications.

3.2. Validation of polydisperse model by DEM simulation in chute flow

To validate the theoretical model, we compare to DEM simulations of polydisperse
chute flow. Figure 2 shows results from a DEM simulation for the initial condition and at
a later segregated state. Particle sizes follow an overall log-normal distribution by volume
according to equation 3.8 with σ = 0.3 and αd nondimensionalized by d0 = 2 mm. Since
in DEM simulations it is computationally expensive to have a large particle size ratio,
particle sizes were restricted to 0.5 < α < 2 resulting in the particle size distribution
(dashed curve) shown in figure 3 (or, since d0 = 2 mm, particle diameters are between
1 mm and 4 mm). Note that this size range slightly extrapolates the applicability of
equation 2.3, but this has negligible impact on the results because pairs of particles with
a large size ratio (3 < αi/αj < 4) interact infrequently due to their small numbers (95%
of the particles in the log-normal distribution are in the size range 0.6 ⩽ α ⩽ 1.8, well
within the range of applicability of equation 2.3). To verify that the impact of applying
equation 2.3 outside the range where it is accurate is minor, the model was solved using
both equation 2.3 and a more accurate approximation to the percolation length scale
data in Schlick et al. (2015a) for size ratios 1/4 < αi/αj < 4. Since only a negligible
difference in concentration distributions was observed, we use the simpler equation 2.3
for convenience, even for size ratios slightly exceeding αi/αj > 4, which occurs for some
of the examples presented in the next section. In this simulation, the particle depth
was δ = 6.2 cm, and the surface velocity was u(x, 0) = 1.9 m/s. Since the velocity
field in the DEM simulation is approximately linear, the shear rate can be estimated as
γ̇ ≈ u(x, 0)/δ = 31 s−1. The diffusion coefficient was obtained from the DEM simulation,
which varied slightly with depth. For simplicity, we used the average value,D = 2.2×10−5

m2/s, throughout the domain. (Alternatively, the diffusion coefficient could be estimated
as a function of the local shear rate and mean particle size but this has been shown to not
significantly improve the model prediction for bidisperse segregation in heap flows (Fan
et al. 2014)). These parameters result in Γ = γ̇d0δ/D = 175.

To compare results from the DEM simulation to the model, a subtle precaution is
needed to ensure that the calculated c(z, α) (from the model) and the measured c(z, α)
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Figure 3. Comparison of steady-state particle size distributions for the model (curves) and the
DEM simulation for the conditions in figure 2(b) (data points) in terms of spatially averaged
concentrations in the bottom half ⟨c(α)⟩b (black, blue online, ◦) and top half ⟨c(α)⟩t (grey,
red online, □) of the flow (see text). For the model, Γ = 175. The particles have an overall
truncated log-normal distribution, f(α), with σ = 0.3 (equation 3.8), as indicated by the dashed
curve (model) and triangles (DEM, black, △). (Inset) Mean particle diameter as a function of
depth for the model (black, dashed curve) and DEM simulation (orange, □). All DEM data are
averaged between 30 and 60 s of simulated time, during which the system is in the fully-developed
segregated state shown in figure 2(b).

distributions are equivalent. Since the DEM simulation uses periodic boundary conditions
in the streamwise direction instead of prescribed flux boundary conditions typical of an
actual chute flow, the set of particles is fixed throughout the simulation. Consequently,
the total distribution of particles by volume satisfies:∫ 0

−1

c(z, α)dz = f(α). (3.9)

Hence, for the case of chute flow with periodic boundary conditions in the streamwise di-
rection, we numerically solve equation 3.6 subject to equation 3.9 instead of equation 3.7.
For purposes of comparison between the model and simulation, particle concentrations
are spatially averaged in the top and bottom halves of the chute as

⟨c(α)⟩t = 2
∫ 0

−1/2
c(z, α)dz,

⟨c(α)⟩b = 2
∫ −1/2

−1
c(z, α)dz, (3.10)

where ⟨c(α)⟩t is the average concentration of particles in the top half of the domain, and
⟨c(α)⟩b is the average concentration in the bottom half of the domain.

The model and the DEM simulation are compared in figure 3 for ⟨c(α)⟩t and ⟨c(α)⟩b.
The model agrees remarkably well with the DEM simulation, given the simplicity of
the model and the simplifying assumptions made for the chute flow. Smaller particles
tend toward the bottom portion of the flowing layer while larger particles tend toward
the top, consistent with the image in figure 2(b). The inset of figure 3 shows the depth
profile of the mean particle size as measured from the simulation and predicted by the
model. The local mean particle size ⟨α⟩ agrees quite well through the entire depth of
the flowing layer, with only slight deviations near the top and bottom boundaries of the
flowing layer, perhaps due to differences between the assumed linear velocity profile and



10 C. Schlick et al.

0

 

1

 

2

 

3

(a) Γ = 3 (b) Γ = 10

0 1 2 3

0

 

1

 

2

 

3

(c) Γ = 30

0 1 2 3

(d) Γ = 100

α

c
(z
,
α
)

Figure 4. Steady-state probability density functions c(z, α) for various Γ at depths z = −0.9
(black, blue online), z = −0.5 (dark grey, red online), and z = −0.1 (light grey, green
online), showing increased segregation as Γ increases. Particle sizes are distributed log-normally
according to equation 3.8 with the overall size distribution f(α) shown as a dashed curve.

the actual slightly nonlinear velocity profile, the estimation of S, or the assumption of a
constant value for D. Nevertheless, the match between the model and DEM simulations
is quite good for most of the flowing layer thickness, demonstrating the effectiveness of
the approach.

3.3. Effects of Γ and f(α) in chute flow

With the validation of the theoretical model by DEM simulation, we now explore the
relative effects of segregation and diffusion on the steady-state particle distribution by
varying the dimensionless parameter, Γ . Figure 4 shows c(z, α) as a function of α at
different depths in the domain for several values of Γ . Particle sizes are distributed log-
normally according to equation 3.8 with σ = 0.4. At Γ = 3, the distributions at the
top, middle, and bottom of the domain are nearly identical to the overall particle size
distribution f(α) (i.e. c(z, α) ≈ f(α)), indicating that little segregation occurs. As Γ
becomes larger (less collisional diffusion), stronger segregation occurs. Near the bottom
of the domain (z = −0.9), there are mostly smaller particles (smaller α). Moving higher
in the domain, there are fewer smaller particles, so the peak of the distribution shifts to
the right. Moreover, toward the bottom of the flowing layer, the distribution of particle
sizes becomes narrower, as evident in figure 4(d).

The effect of the variance σ2 of the overall (log-normal) particle size distribution for
Γ = 100 is shown in figure 5. For small σ, as in figure 5(a), particles are similar in
size, so little segregation occurs. As σ increases, segregation increases, and c(z, α) varies
substantially for different values of z. For example, in figure 5(b), c(−0.9, α) has much
less spread than c(−0.1, α) due to the long tail of the log-normal distribution. Thus, for
large σ, there is a wider range of large particle sizes (1 < α < 3) near the free surface.

While log-normal particle size distributions are prevalent in many natural and indus-
trial settings, other particle size distributions provide further insight into polydisperse
segregation and demonstrate the broad applicability of our approach. In figure 6, six
different distributions (summarized in table 1) are compared for Γ = 100 at different
depths in the domain. All six distributions have similar qualitative behavior: small
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Figure 5. Steady-state probability density functions c(z, α) with an overall log-normal size
distribution f(α) (dashed curve), for various σ (see equation 3.8) and Γ = 100. z = −0.9 (black,
blue online), z = −0.5 (dark grey, red online), and z = −0.1 (light grey, green online).

Distribution f(α) domain

Log-normal, σ = 0.4 1

ασ
√
2π

exp
[
− (logα)2

2σ2

]
α > 0

Normal, µ = 3, σ = 0.7 1

σ
√

2π
exp

[
− (α−µ)2

2σ2

]
α > 0

Uniform 1
4

1 < α < 5

Exponential, λ = 1 1
λ
exp (λα) α > 0

Triangle

{
1
4
(α− 1), 1 < α < 3

1
4
(5− α), 3 < α < 5

1 < α < 5

Gamma, kg = 2, θ = 1 1
θk(kg−1)!

αkg−1 exp
[
−α

θ

]
α > 0

Table 1. Particle size distributions considered in figure 6.

particles percolate toward the bottom of the flowing layer while large particles segregate
toward the top.

The log-normal and the normal particle size distributions in figure 6 generate segre-
gated distributions c(z, α) that are approximately log-normally and normally distributed,
respectively, at each depth z. For the uniform distribution and the exponential distri-
bution, the segregated distributions c(z, α) are quite different at each depth. Near the
bottom of the flow, c(z, α) decays rapidly as α increases, and c(z, α) has a maximum at
α = αmin for both distributions. Conversely, near the middle or top of the flow, c(z, α)
is similar to a normal distribution. The triangular distribution results in segregated
distributions similar to the normal distribution as well, except that c(z, α) is skewed
on different sides of the distribution at different depths, and c(z, α) = 0 at α = 1 and
α = 5, since f(1) = f(5) = 0. The gamma distribution has a similar shape to the log-
normal distribution, and thus c(z, α) is similar for both distributions. Some of the overall
size distributions in figure 6 exceed the range of applicability of the relation for the
percolation length scale (equation 2.3) but, as noted previously, the bulk of the particles
are within the range of applicability, particularly at steady-state.

Other particle size distributions can also be considered. Those depicted in figure 6
are only meant to give a flavor of the different particle segregation patterns possible
and to demonstrate the potential that the modeling approach holds for describing other
polydisperse mixtures.
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Figure 6. Effect of different overall particle size distributions f(α) on steady-state probability
density functions c(z, α) for Γ = 100 at z = −0.9 (black, blue online), z = −0.5 (dark grey,
red online), and z = −0.1 (light grey, green online). The dashed curves represent f(α). The six
different overall particle size distributions are summarized in table 1. Note the different scales
for each plot.

4. Conclusion

This paper develops a continuum model for percolation-driven segregation of multidis-
perse and polydisperse granular material. The approach is effective in modeling multi-
disperse heap flow and polydisperse chute flow in that the spatial particle concentrations
from theoretical predictions are consistent with those from DEM simulations. Several
points are worth noting. First, the model does not rely on arbitrarily adjustable fitting
parameters. Instead, the model uses general relations for the percolation velocity, diffu-
sion, and velocity profiles that can be based on theory, experiments, DEM simulations,
or any combination thereof. This permits the use of this approach across a wide range
of granular flow geometries. Second, the model predictions seem relatively insensitive to
uncertainties in determining the values for S, D, and the velocity profile. This suggests
that the approach can be broadly applied to a wide range of granular flows. Third, the
approach can be applied to three-dimensional and unsteady flows if the kinematics of
the flow are known. In fact, we have already applied the approach to transient bidisperse
segregation in rotating tumbler flow (Schlick et al. 2015b) and to steady-state bidisperse
segregation in a three-dimensional conical heap (Schlick 2014). With the formulation of
equation (3.1), these studies can be extended from bidisperse to polydisperse particle
mixtures. Fourth, as we have explored in figures 1 and 6, any particle size distribution
can be considered, whether multidisperse or polydisperse. This allows utilization of the
approach to better understand how particle size distributions (maximum size ratio,
standard deviations, etc.) affect segregation. Finally, while we have demonstrated the
approach for size-disperse spherical particles, it can be readily adapted to other types
of particle dispersity (e.g., density), provided that relations for the percolation velocity
(equation (2.3)) and diffusion coefficient can be determined through experiment, theory,
or DEM simulation.

The theoretical framework presented here for polydisperse size segregation in dense
granular flow extends from a bidisperse segregation model by connecting key segregation
parameters with particle and flow properties. The quantitative agreement between model



A continuum approach for predicting segregation in flowing polydisperse granular materials13

predictions of polydisperse segregation and simulation results indicates this method has
potential as a broadly applicable approach for modeling segregation in many types of
polydisperse granular flows in industry and geophysics. To this point, the framework has
been focused on modeling percolation-driven segregation—other segregation mechanisms
in dense granular flow have not been considered, including density segregation (Khakhar
et al. 1997; Tripathi & Khakhar 2013), angle of repose-induced segregation due to
particle shape or surface friction (Makse et al. 1997), or shear-induced segregation due
to shear rate gradients (Fan & Hill 2011). These mechanisms can be incorporated into
the framework by modeling each mechanism as a flux term similar to what we have
done for the percolation-driven segregation flux. These extensions will complement the
current model and move it further towards a general framework for modeling many types
of particle segregation.

This research was funded by NSF Grant CMMI-1000469 and The Dow Chemical
Company. We thank Karl Jacob for helpful discussions concerning polydisperse granular
flows in industrial settings.
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