
J. Fluid Mech. (2006), vol. 560, pp. 355–368. c© 2006 Cambridge University Press

doi:10.1017/S0022112006000437 Printed in the United Kingdom

355

Surface velocity in three-dimensional
granular tumblers

By NICHOLAS A. POHLMAN1, STEVEN W. MEIER2,
R ICHARD M. LUEPTOW1 AND JULIO M. OTTINO1,2

1Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
2Department of Chemical and Biological Engineering, Northwestern University,

Evanston, IL 60208, USA

(Received 8 June 2005 and in revised form 5 January 2006)

A fundamental characteristic of granular flows is that they are typically restricted to
thin layers of rapid surface flow. Thus, a complete understanding of surface flows is
key for an accurate representation of the dynamics of the entire flow. Experiments were
conducted in three-dimensional tumblers: cylindrical tumblers of various diameters,
a double-cone tumbler, and a spherical tumbler, the Froude number for the last two
being a function of the local geometry and ranging from 2.6 × 10−5 to 7.5 × 10−4.
Surface velocity measurements for 1mm and 2mm glass particles were obtained using
particle tracking velocimetry. Results indicate that the streamwise surface velocity at
the midpoint of the flowing layer is a linear function of local flowing layer length,
regardless of tumbler shape, particle size, rotation rate, and fill fraction. In addition,
the axial velocity of particles at the free surface is negligible. These results are key for
the development of three-dimensional models of granular flows.

1. Introduction
Three-dimensional tumblers are used widely in industries ranging from construction

to pharmaceuticals for processing granular materials. Although progress has been
made in describing and characterizing granular flows (Ristow 2000; Duran 2000;
Ottino & Khakhar 2000; GDR MiDi 2004), general theoretical descriptions of
these flows are incomplete, and there are no fundamental governing equations. An
additional complication arises in the case of polydisperse granular matter, for which
the size, shape, or density are not uniform. Instead of mixing, the particles often
demix, or segregate. There is, however, a characteristic of granular flows in tumblers
that provides a conceptual advantage over fluid flows: the flow of granular materials
in tumblers is confined to a thin region of rapid surface flow. The material below this
region moves in near solid-body rotation with the tumbler, exchanging particles with
the flowing layer. Thus, understanding the flow in the thin flowing layer is the key to
understanding the dynamics of the entire flow.

Consider the flowing layer of thickness δ(x) in the tumbler illustrated in figure 1.
The coordinate system has its origin at the midpoint of the surface of the flow with
the x-axis along the streamwise direction at an angle βm, the dynamic angle of repose,
with respect to the horizontal. The y-axis is normal to the free surface and the z-axis
is parallel to the axis of rotation with u, v, and w as the respective component
velocities. The distance from the midpoint of the flowing layer to the tumbler wall,
or half the flowing layer length, is L. The distance from the origin of the flowing
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Figure 1. Flowing layer with angular velocity vector ω = −ωez. On the right is an
enlargement of the upstream flowing layer.

layer to the axis of rotation, C, is given by h, and the radius of the tumbler is R. The
streamwise velocity in the flowing layer decreases with depth, approaching zero at the
interface of the flowing layer with the fixed bed of particles in solid-body rotation. A
reasonable form for the velocity field is

u(x, y) = usurf (x)

(
1 +

y

δ(x)

)α

(1.1)

where usurf (x) is the streamwise surface velocity. The value of α is often set at α = 1,
based on the approximately linear velocity profile evident in quasi-two-dimensional
experiments (Bonamy, Daviaud & Laurent 2002; Jain, Ottino & Lueptow 2002, 2004)
and dense free-surface flow experiments (Rajchenbach 2003). The depth-averaged
streamwise velocity for a given streamwise position is

ū(x) =
1

δ(x)

∫ 0

−δ(x)

u(x, y)dy =
usurf (x)

α + 1
. (1.2)

Thus, the velocity profile can be rewritten in terms of the depth-averaged streamwise
velocity

u(x, y) = (α + 1)ū(x)

(
1 +

y

δ(x)

)α

. (1.3)

Particles enter/exit the flowing layer across the boundary between the flowing layer
and the bed of solid-body rotation (figure 1) defined by the normal vector

n =
(∂δ(x)/∂x)ex + ey√

1 + (∂δ(x)/∂x)2
(1.4)

and the velocity at which particles enter/exit the flowing layer from the bed is

vb = −ω (h + δ(x)) ex − ωxey. (1.5)

A mass balance equation can be written for the wedge-shaped control volume bounded
by the dashed curve in the enlarged portion of figure 1. The mass flux exiting to
the right, Q(x), based on the bulk density, averaged streamwise velocity, and flowing
layer depth, is equal to the mass flux across the fixed bed interface, ρb

∫
vb · ndx.



Surface velocity in three-dimensional granular tumblers 357

Assuming that the flowing layer is thin and slowly varying, (∂δ(x)/∂x)2 � 1 (which is
less stringent than the assumption that ∂δ(x)/∂x � 1 made earlier by Khakhar et al.
(1997)), the mass balance is

ρū(x)δ(x) = ρb

∫ x

−L

[
−ω (h + δ(x))

∂δ(x)

∂x
− ωx

]
dx. (1.6)

Assuming that to a first approximation the bulk density in the flowing layer, ρ, is
similar to the bulk density in the bed, ρb (Jain et al. 2004; Orpe & Khakhar 2004), and
noting that the flowing layer thickness goes to zero at the tumbler wall, δ(−L) = 0,
equation (1.6) can be expressed as

ū(x)δ(x) =
ω

2
[h2 − (h + δ(x))2] +

ω

2
(L2 − x2). (1.7)

Since the flowing layer is thin, δ(x)2/L2 � 1. Retaining only the first-order δ(x) terms,
equation (1.7) yields

ū(x)δ(x) = −ωhδ(x) +
ω

2
(L2 − x2). (1.8)

The velocity profile in the flowing layer can now be expressed as

u(x, y) = (α + 1)

[
ω

2δ(x)
(L2 − x2) − ωh

] (
1 +

y

δ(x)

)α

. (1.9)

The shear rate in the flowing layer is

γ̇ (x, y) =
∂u(x, y)

∂y
=

αu(x, y)

δ(x)

(
1 +

y

δ(x)

)−1

. (1.10)

In this paper, we are primarily interested in surface flows which are at y = 0. Noting
that u(x, 0) = usurf (x), equations (1.9) and (1.10) can be reduced to

usurf (x) = (α + 1)

[
ω

2δ(x)
(L2 − x2) − ωh

]
, (1.11)

γ̇ (x, 0) =
αusurf (x)

δ(x)
. (1.12)

Combining equations (1.11) and (1.12) to eliminate δ(x) and solving for usurf (x) yields

usurf (x) = − (α + 1)

2
ωh +

√
(α + 1)2

4
ω2h2 +

(α + 1)

2α
ωγ̇ (x, 0)(L2 − x2). (1.13)

For the case of a half-full tumbler, h = 0. Therefore, the surface velocity at the centre
of the flowing layer (x = 0) is

usurf (0) = L

√
(α + 1)

2α
ωγ̇ (0, 0). (1.14)

Thus, the surface velocity at the midpoint of the flowing layer is linearly dependent
on the length of the flowing layer. Based on measurements in quasi-two-dimensional
circular tumblers, α is approximately 1, resulting in the simpler expression

usurf (0) = L
√

ωγ̇ (0, 0). (1.15)
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When h �= 0, it can be shown that the second term under the radical in equation (1.13)
is dominant since L2/h2 � ω/γ̇ and α ∼ 1 in practical situations for continuous/non-
slumping flow (fill fractions greater than 10%). Thus,

usurf (0) = − (α + 1)

2
ωh + L

√
(α + 1)

2α
ωγ̇ (0, 0) (1.16)

where the first term on the right-hand side accounts for the situation where the
tumbler is less than half full and is small compared to the second term. Again,
the streamwise surface velocity is linear with respect to the length of the flowing
layer.† This result has been used as a key assumption for modelling the flow in
three-dimensional tumblers (Khakhar et al. 1999; Gilchrist & Ottino 2003). A second
assumption of these models was that the flow can be considered as independent
two-dimensional slices normal to the axis of rotation (Shinbrot et al. 1999). In each
slice, advective flow is governed by the streamwise velocity, while transverse motion
is primarily diffusive with no advective component. Simulations of flows in half-
filled rotating spherical tumblers using this simple model are remarkably accurate in
reproducing the actual flows (Gilchrist & Ottino 2003).

Although the ‘slicing’ approach to three-dimensional modelling appears to work
well, previous measurements of the velocities of granular flows in cylindrical tumblers
have not directly addressed the key assumptions in the model: the dependence of the
surface velocity on the length of the local flowing layer and the negligible net axial flow
in the flowing layer. For flow conditions when the Froude number (Fr = Rω2g−1) is in
an appropriate range, the flowing layer is continuous without intermittent avalanches
and the free surface is flat (Henein, Brimacombe & Watkinson 1983; Mellmann 2001).
A variety of measurement techniques have been used to measure the velocity for a
continuous flat flowing layer in rotating cylindrical tumblers (magnetic resonance
imaging (Nakagawa et al. 1993), fibre optic probes (Boateng & Barr 1997), positron
emission particle tracking (Parker et al. 1997), video imaging (Alexander, Shinbrot
& Muzzio 2002; Bonamy et al. 2002), and particle tracking velocimetry (Jain et al.
2002)); however the results focused on the streamwise surface velocity flow along
the layer, u(x, 0) and through the depth of the layer at the midpoint of the flowing
layer, u(0, y). Of particular interest here is the work of Alexander et al. (2002), who
explored the streamwise surface velocity, u(x, 0), in a rotating tumbler system based
on particle tracking measurements from video images over a wide range of drum
sizes and rotation rates. They found that, at low rotational speeds, the streamwise
surface velocity increases in the upstream end of the flowing layer to a maximum
at the midpoint of the flowing layer, and then decreases nearly symmetrically in the
downstream end of the flowing layer, consistent with previous results (Boateng &
Barr 1997). (At higher rotational speeds, the particles accelerate beyond the midpoint
of the flowing layer resulting in a skewed streamwise velocity profile with respect
to flowing layer position.) A consequence of their dimensional analysis and their
measurements for different cylinder sizes and rotation rates was that, at low rotation
rates for half-filled tumblers, the particle velocities are scaled by the cylinder radius,
if the rotation rate is constant (Alexander et al. 2002). This conclusion is consistent
with equation (1.14). Of course, the analysis leading to equation (1.16) indicates that
the result is much more general: the streamwise surface velocity depends linearly on

† To be precise, h =
√

R2 − L2, which to a first approximation indicates that the first term in
equation (1.16) is also essentially linear with L.
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Figure 2. A top view schematic of the flowing layer length, L, as a function of axial position
in (a) a cylinder, (b) double-cone, and (c) sphere, all rotating about the z-axis.

the length of the local flowing layer for any fill condition, regardless of tumbler radius
or geometry.

The goal of this paper is to provide conclusive experimental evidence that the
streamwise surface velocity scales linearly with local flowing layer length and that
there is negligible axial flow in three-dimensional tumblers. The concept that the
surface velocity is related to the local flowing layer length suggests that tumblers with
different forms for the variation of L along the axial position, z, should be considered.
We consider here the three tumbler geometries shown in figure 2. For a cylinder, L is

constant for all z, but can change as a function of the fill level, since L =
√

R2 − h2.
In the case of a half-full double-cone tumbler rotated about the axis of the cones, L

is a linear function of axial position

L(z) = Lmax − |z| tan θ (1.17)

where Lmax is the maximum radius at the centre of the double-cone (z = 0), and
θ is half the opening angle of the cone. (Note that this geometry is different from
industrial double-cone blenders, examples of which have been studied extensively
(Alexander, Shinbrot & Muzzio 2001), where the rotation axis is perpendicular to the
axis of the cones to induce time-periodicity for improved mixing performance.) For
the case of a half-full spherical tumbler, L for each cross-section is equal to one-half
the length of the chord so that L varies nonlinearly with axial location as

L(z) =
√

R2 − z2 (1.18)

where z = 0 is at the centre of the sphere.
In this work, we present results of measurements of the surface velocity in all

three cases to examine (i) the degree to which the streamwise velocity at the surface
depends on the flowing layer length and (ii) the nature of the axial flow at the
surface. The investigation is limited to continuous flow with an essentially flat free
surface, represented by local Froude numbers (Fr(z) = L(z)ω2g−1) in the range of
2.6×10−5 to 7.5×10−4. In this range of Froude numbers, the surface remains flat and
the flattening and/or skewing of the velocity profile along the flowing layer length is
minimal (Alexander et al. 2002).

2. Experimental methods
Particle tracking velocimetry (PTV) was used to measure surface velocity. In order

to obtain images of the flowing free surface in the three tumbler geometries without
optical distortion due to the curved tumbler wall, a 90◦ wedge was cut out of each
tumbler, as shown schematically in figure 3. The rotation of the tumbler was controlled
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Figure 3. A schematic of the experimental set-up which includes the rotating tumbler, the
CCD camera to record particle locations, the Nd:YAG laser light source, a re-directing mirror,
and a diffuser plate.

with a DC stepper motor. The container was first rotated counter-clockwise such that
edge A of the cut-out was nearly parallel to the surface of the granular material, which
had a static angle of repose, βs , ranging from 20◦ to 24◦. Images of the flowing free
surface were recorded as the system rotated clockwise. Rotation and image acquisition
were stopped just before the material poured out over the edge B of the cut-out.

To maintain similar conditions for the cylinder, double-cone, and spherical tumblers,
the maximum diameter for all cases was nearly the same, 13.6 to 14.0 cm. The
cylindrical tumbler was a 17.5 cm long acrylic tube with an internal diameter of 14.0 cm
and having acrylic endwalls. Cylindrical tumblers of diameters 7.0, 10.0, and 17.0 cm
and lengths of 17.5 cm were also used. The conical tumbler was made of two high-
density polyethylene funnels with an opening angle of 60◦ and a maximum diameter
of 13.8 cm joined with RTV silicone to form the double-cone. The narrow ends of the
cones were truncated at a diameter of 2.1 cm (z = ±9.6 cm) with aluminium plugs.
The spherical tumbler was constructed of two moulded plastic hemispheres with a
diameter of 13.6 cm. All tumblers were wiped with a de-static agent prior to operation
to reduce electrostatic effects on the particle flow.

The tumblers were typically filled to 50% volume fraction with one of the
two particle types: 1.07 ± 0.04 mm black basalt glass beads (ρ = 2.6 g cm−3) or
2.07 ± 0.06 mm silica glass beads coated with black enamel paint (ρ =2.3 g cm−3).
The particles were illuminated by a 25 mJ Nd:YAG laser (New Wave Research)
synchronized with a 1 megapixel charged coupled device (CCD) camera (TSI) to
obtain images. The camera was positioned such that the focal plane was at the dynamic
angle of repose of the flowing material, βm = 23◦–30◦ depending upon the tumbler
and particle size. The laser beam was directed normal to the face of the diffuser plate,
which was held in a fixed position and tilted at the dynamic angle of repose for the
particle size and tumbler combination. The position of the illumination and camera,
along with the black colour of the beads, provided optimal visibility for locating the
bead positions by virtue of a single bright spot of reflected laser light on each bead
with an otherwise black background.

Image pairs separated by 	t = 1.5 ms were obtained at the rate of 15 Hz. The
image pairs were first analysed using particle image velocimetry software (Insight,
TSI) to obtain an estimate of the velocity of the particles at the free surface. From
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Figure 4. Velocity of the free surface as a function of time for 1 mm particles rotated at
2 r.p.m. in a 14.0 cm diameter cylinder. (a) Measurement started with the free surface poised
at the angle of repose. (b) A typical steady-state measurement.

these results, PTV was used to measure the velocities of individual particles (Cowen &
Monismith 1997; Jain et al. 2002). Errors due to the location of the bright spot on a
particle were at most 1 pixel. This error potentially contributes a bias to the velocity
of less than 0.5%. The positions of particles in each image were identified to sub-
pixel resolution, resulting in an error of less than 2% in the velocity for individual
particles.

The typical field of view for the image was 2.5–4.3 cm depending upon the particle
size as well as how close the camera could be positioned to the free surface without
interfering with the tumbler. A traverse was used to move the camera in the
axial direction allowing the image sets to be pieced together to give a full axial
representation of the free-surface velocity field. The velocities of particles within one
particle diameter of the axis of rotation (x = 0) were sorted into three-particle-
diameter wide bins along the axial direction in order to calculate a local mean and
standard deviation. The standard deviation levelled off when at least fifty image pairs
were ensemble-averaged, so a total of 100 image pairs were used at each measurement
location. The bins typically contained 200 or more particle velocity measurements, of
which vectors that were more than five standard deviations away from the mean were
ignored, eliminating no more than 0.1% of the total vectors available from PTV.

The tumbler could only be rotated a limited angle before the beads spilled out of the
cut-out. As a result, it was necessary to determine when the start-up transient effects
of the granular flow had decayed so that the data represented steady-state behaviour.
Tests were conducted to determine the transient dynamics of the free surface poised
at the static angle of repose starting from rest. A typical result of a single trial in
which the rotation starts with the material poised at the static angle of repose is
shown in figure 4(a) where the streamwise component of all of the vectors within one
particle diameter of the axis of rotation are shown as a function of time. The overall
form of the transient dynamics of the surface velocity are evident. The velocity peak
at approximately 0.5 s is due to a large avalanche at the angle of marginal stability.
Successively decaying oscillations are due to second and third avalanches, with the
surface material moving at near steady velocity after several oscillations. The results
presented here are for steady flow after the oscillations had decayed and before the
tumbler reached the rotation limit of the cut-out. A typical example of a steady-state
measurement is shown in figure 4(b). In these cases, the tumbler rotation began
before the free surface reached the static angle of repose, reducing the amplitude and
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Figure 5. The streamwise (left) and axial (right) surface velocity for 1 mm particles at the
midpoint of the flowing layer as a function of the axial position in all tumblers: (a) �, cylinder;
(b) �, double-cone; (c) �, sphere; the dark vertical lines indicate endwalls. The solid curve with
symbols is the mean velocity. The dashed curve is one standard deviation above and below the
mean velocity.

duration of the oscillations compared to that shown in figure 4(a). Each individual
trial was verified to have negligible oscillation of the streamwise velocity component
to assure steady-state conditions in all cases.

3. Results
Surface velocity profiles for 50% fill fraction with 1 mm particles rotated at 2.0 r.p.m.

are shown in figure 5 for the cylinder (a), double-cone (b), and sphere (c). The left
column shows the streamwise velocity component, usurf , while the right column gives
the axial velocity, wsurf . Similar velocity profiles were observed for 2 mm particles,
shown in figure 6. Velocities near the left endwall of the cylinder for 2 mm particles
could not be recorded due to a shadow being cast by the endwall.

Consider first the 14.0 cm cylindrical tumbler. The streamwise velocity usurf is
approximately 8.7 cm s−1 for 1 mm particles in the centre of the tumbler with
negligible net axial velocity wsurf , and a very small reduction of streamwise velocity
to approximately 8.1 cm s−1 for 2 mm particles with the similar negligible net axial
velocity. The streamwise velocity profile is symmetric along the axial direction of the
cylinder with the slowest velocity near the endwalls, consistent with the reduction in
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Figure 6. The streamwise (left) and axial (right) surface velocity for 2 mm particles at the
midpoint of the flowing layer as a function of the axial position in (a) cylinder, (b) double-cone
and (c) spherial tumblers. Symbols are the same as figure 5.

velocity near a sidewall that occurs in chute flow (Ahn, Brennen & Sabersky 1991;
Jop, Forterre & Pouliquen 2005) and rotating tumblers (Maneval et al. 2005).

The velocity is 17% higher a short distance from the endwalls than at the centre
of the cylinder for 1 mm particles (11% for 2 mm), an effect that has previously been
observed experimentally (Boateng & Barr 1997) and conjectured from mixing tests
(Santomaso, Olivi & Canu 2004). Friction between particles and the endwall slows the
streamwise flow of particles adjacent to the endwalls. However, due to conservation
of mass, all of the particles in the fixed bed must pass through the flowing layer
every half-revolution for a half-full tumbler and more frequently for lower fill levels.
Although the axial velocity at the midpoint of the flowing layer is negligible (as shown
in figures 5 and 6), particles apparently flow away from the wall in the upstream
region of the flowing layer and back toward the wall in the downstream region of the
flowing layer, so that there is a fast-flowing region 2–3 cm from the endwall.

The streamwise velocity for the double-cone tumbler is maximum at the centre,
where the diameter is largest (figures 5b and 6b). The streamwise velocity decreases
linearly as a function of the axial position, corresponding to the linear decrease in the
local flowing layer length of the two cones. In the spherical tumbler, the maximum
streamwise velocity occurs at the centre, where the flowing layer length is greatest, and
then decreases nonlinearly with axial position as the flowing layer length decreases
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1mm 2mm

Particle size σu σw σu σw

Cylinder 1.4 ± 0.2 1.1 ± 0.1 2.4 ± 0.1 1.8 ± 0.1
Double-cone 1.4 ± 0.1 1.0 ± 0.2 2.1 ± 0.3 1.5 ± 0.3
Sphere 1.6 ± 0.09 1.1 ± 0.06 2.6 ± 0.2 2.0 ± 0.2

Table 1. The standard deviation σ for both particle sizes of the component velocity averaged
over the axial length of the tumblers in cm s−1.

(figures 5c and 6c). In both cases, the axial velocity of the free surface is very close
to zero.

The higher streamwise velocity near the endwalls that was evident in the cylindrical
tumbler was not observed in the double-cone and sphere for two reasons. First,
due to the geometric shape of the sphere and double-cone tumblers, the ‘endwalls’
have negligible area and thereby presumably little frictional effect on the streamwise
velocity. Second, the length of the flowing layer decreases to near zero at the axial
extremes of these tumblers so that the surface velocity is negligible here regardless of
frictional effects (equation (1.16)).

The standard deviations σu and σw of the streamwise and axial velocities (the
dashed curves in figures 5 and 6) are reported in table 1 for both particle sizes and
the three tumbler geometries tested. The standard deviation indicates the degree of
diffusion that occurs as particles pass through the flowing layer. Given the similar
magnitudes of the standard deviation for each geometry, it appears that changing
the container shape does not significantly affect the degree of streamwise or axial
diffusion in the surface flow of the tumbler. Furthermore, the skewness of the axial
velocity was less than ±0.5 with no dependence on the axial position in all three
tumbler geometries, indicating that axial diffusion does not have a preferred direction
(individual particle axial velocity components are evenly distributed about the mean),
regardless of the shape of the tumbler. However, axial diffusion is clearly related to
the particle size for all tumbler shapes as would be expected from simple scaling
arguments. Also, diffusion appears to be anisotropic. The streamwise diffusion as
reflected by the velocity fluctuations is somewhat larger than the axial diffusion at
the surface of the flowing layer.

The maximum streamwise velocity shown in figures 5 and 6 is similar for all three
tumblers and corresponds to the location of the maximum dimension of the tumbler,
which is nearly the same for all tumblers. This similarity suggests that the local
streamwise velocity is indeed related to the local flowing layer length as predicted by
equation (1.16). The relationship is shown more clearly in figure 7 where results for all
three tumbler geometries are superimposed for both tested particle sizes. The range
of values of the streamwise velocity at L = 7 cm for the 14.0 cm diameter cylinder
reflects the variation in the streamwise velocity with axial position (including the
high-velocity regions near the endwalls but excluding the data immediately adjacent
to the endwalls). Also shown in the plot for the 1 mm particles in figure 7(a) are the
streamwise velocities for 7.0 cm, 10.0 cm, and 17.0 cm diameter cylinders for which
L is 3.5 cm, 5.0 cm, and 8.5 cm, respectively. The streamwise velocity has a range
of values in these cases, but the midpoint of that range clearly exhibits the same
linear relationship as the values for the other tumblers having maximum flowing
layer lengths of about L = 7.0 cm. Finally, the data for L = 7.75 cm were obtained
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Figure 7. The local streamwise surface velocity as a function of the local flowing layer length
at a rotation rate of 2.0 r.p.m.: �, cylinder; �, double-cone; �, sphere; ×, 25% full cylinder.
Particle sizes are (a) 1 mm and (b) 2mm.

in the 17.0 cm diameter cylinder with h = 3.5 cm (fill level of approximately 25%).
(Equation (1.16) is valid here since the ratio L2/h2 is 4.9, which is much greater than
the ratio of ω/γ̇ , given that ω is O(0.1) and γ̇ is O(10)). In this case, the initial
velocity of the particles entering the flowing layer is not perpendicular to the free
surface as in the case for a half-full tumbler, making the first term on the right-hand
side of equation (1.16) non-zero. Therefore, the velocity plotted at L = 7.75 cm in
figure 7(a) was adjusted by adding ωh (assuming α = 1) to the measured surface
velocity. Results for all three tumblers with 2 mm particles have nearly the same
dependence of streamwise velocity on the flowing layer length as shown in figure 7(b).
The important point that can be extracted from figure 7 is the clear linear dependence
of the streamwise velocity on the local length of the flowing layer, just as predicted
by equation (1.16), regardless of the tumbler geometry, tumbler diameter, fill level, or
particle size.

Equation (1.15) indicates that the slope of the data in figure 7 should be related to
the shear rate. Using this relationship, the theoretical shear rate at 2.0 r.p.m. can be
estimated as 9.3 s−1 for the sphere and 10.3 s−1 for the double-cone for 1mm particles,
while the estimated shear rate for 2 mm particles is 9.8 s−1 for the sphere and 8.8 s−1

for the double-cone. (This estimate is difficult to make for the cylinders, because there
is only a single flowing layer length for each cylindrical tumbler instead of a range
of flowing layer lengths, as for the double-cone and spherical tumblers.) Additional
experiments were conducted at different rotation rates using the 1mm particles and
all tumbler geometries. The varying rotation rates produce velocity profiles and
standard deviations similar to those shown in figures 5 and 6. Nonetheless, as shown
in figure 8(a), each rotation rate exhibits a linear relationship between the streamwise
surface velocity and the flowing layer length. It is tempting to try to collapse the
data by assuming that γ̇ (0, 0) and α in equation (1.14) are constant for all tumbler
geometries and rotation rates and by plotting usurf as a function of

√
ωL, shown in

figure 8(b). Although there is a tendency toward collapse, the collapse is imperfect
because of the range of shear rates: 8.7, 9.8, 11.5, and 12.2 s−1 for 1.5, 2.0, 2.5, and
3.0 r.p.m., respectively (estimated from each data set at a particular rotation rate using
equation (1.15)). Thus, the shear rate γ̇ (0, 0) is a weak function of rotation rate. This
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Figure 8. The local streamwise surface velocity for different rotation rates as a function of:
(a) the local flowing layer length; (b) the local flowing layer length scaled by the square
root of rotation rate. Rotation rates are: *, 1.5 r.p.m.; +, 2.0 r.p.m.; �, 2.5 r.p.m.; ×, 3.0 r.p.m.
Particle size is 1mm and all tumbler geometries with a maximum diameter of 13.6 cm to 14.0 cm
are represented.

is consistent with existing theory, which indicates that shear rate is indirectly related
to the rotation rate (Khakhar et al. 2001). This theory estimates the shear rate as

γ̇ (0, 0) =

[
g sin(βm − βs)

cd cos βs

]1/2

(3.1)

where g is acceleration due to gravity, c is an empirical fitting parameter, d is the
particle diameter, βs is the static angle of repose, and βm is the dynamic angle of
repose. Since βm is a function of rotation rate, the shear rate must depend on the
rotation rate. However, it is quite difficult to directly relate the shear rate estimated
from figures 7 or 8 to the prediction of equation (3.1). The values of βs and βm are
difficult to measure accurately in the apparatus shown in figure 3, and equation (3.1)
is quite sensitive to the values of βs and βm. In addition, the value of the empirical
fitting parameter c is based on quasi-two-dimensional tumblers (Orpe & Khakhar
2001). The value of c has not been determined for flow in three-dimensional tumblers,
and it is likely that it differs substantially from the value for quasi-two-dimensional
tumblers due to endwall effects.

4. Conclusions
The fundamental nature of granular flow in thin shear layers suggests that the

assumption of a relationship between surface velocity and flowing layer length
is a useful approach to modelling granular flows in three-dimensional tumblers
(Gilchrist & Ottino 2003). Alexander et al. (2002) indicated that streamwise particle
velocities are scaled by the radius in half-full cylinders. Our work expanded this idea
based on the theoretical relationship of equation (1.16) that the magnitude of the
local streamwise surface velocity is a linear function of the local flowing layer length,
and we showed that the concept is valid despite significant variations in the tumbler
shape, tumbler size, particle size, rotation rate, and fill fraction. Furthermore, there
is negligible net axial motion at the midpoint of the flowing layer for all tumblers.
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However axial flow has been observed in the upstream and downstream portions
of the flowing layer near the perpendicular endwalls of a cylindrical tumbler. The
standard deviation of the axial velocity in three-dimensional tumblers is independent
of axial position, which suggests that axial diffusion is not affected by the shape of
the tumbler, the flowing layer length, or the axial gradients of the streamwise velocity.

The results reported in this paper are limited to steady continuous flat free-surface
flow of granular particles for tumblers in which the flowing layer length changes
smoothly with respect to axial position. Clearly this work suggests other areas of
investigation. Of particular interest is the higher streamwise velocity near the endwalls
of cylindrical tumblers and the axial velocity components of particles upstream and
downstream of the midpoint of the flowing layer. In addition, changes in the flowing
layer depth along the axis of rotation may be related to the observed increase in
streamwise velocity near the endwalls. In fact, it has not escaped our attention that
given the relationship between usurf (x) and δ(x) in equation (1.11), the flowing layer
depth at the midpoint, δ(0), can be predicted from the measurement of usurf . For a
50% fill fraction and assuming α = 1, δ(0) can be estimated to range from 0.3 cm for
L = 2 cm to 1.2 cm for L = 8 cm. However, the nature of the experimental apparatus
did not permit confirming these estimates of the flowing layer thickness. Another
interesting phenomenon observed was a series of avalanches of decaying amplitude
in the initial flow upon start-up. Further investigation of the transient character of
flow prior to steady-state motion may provide insight into other flow regimes.

Two other issues, more speculative, should be mentioned to point out avenues
for future investigations. One is the influence of particle diameter on shear rate
and diffusion. Theoretical guidance in this case is limited. The theory developed by
Khakhar, Orpe & Ottino (2001) suggests that the shear rate should be proportional
to d−1/2 as indicated in equation (3.1). Our data, however, cover only two particle
diameters. More data are needed before firm conclusions can be extracted about
the effect of particle size. The second issue is whether the standard deviation of the
streamwise and axial velocity fluctuations, σ , which are the same order of magnitude,
can be somehow connected to collisional diffusivity, D, via σ times a characteristic
length such as the particle diameter, d . If this is the case, using Savage’s relationship
of D being proportional to d2γ̇ (Savage 1993), we conclude that σ should scale as
dγ̇ as appears to be the case to a first approximation when comparing σ for 1 mm
and 2 mm particles (table 1), though more data are needed. Finally, the limitations
of the linear relationship of streamwise velocity with flowing layer length should be
explored. For instance, the surface velocity may approach an asymptotic value when
the flowing layer length becomes large enough, or the surface velocity may have a
different dependence on flowing layer length when a skewed velocity profile occurs at
higher tumbler rotation rates (Alexander et al. 2002).
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