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The size of a pressure transducer will affect the accuracy of measurements of the wall pressure
beneath a turbulent boundary layer because of spatial averaging over the sensing area of the
transducer. The effect of transducer size on the wall pressure spectrum was investigated by
numerically applying wave-number filters corresponding to various size and shape transducers to a
database of wall pressure generated from a direct numerical simulation of turbulent channel flow.
Circular transducers with piston-type and deflection-type sensitivities were modeled along with
square transducers having piston-type sensitivity. The rms wall pressure is attenuated less for a
deflection-type transducer than for a piston-type transducer of the same area. The wave-number
spectrum of the wall pressure measured using a large transducer has lobes and zeros corresponding
to those in the wave-number response function of the transducer. These lobes and zeros in the
wave-number spectrum are also evident in the frequency spectrum, although they are smeared.
Using Taylor’s frozen field hypothesis, an approximate upper bound on the frequency of wall
pressure fluctuations that can be measured before the zeros in the wave-number response function
is wd/U_.<C, where o is the frequency, d the dimension of the transducer, U_ the convection
velocity, and C 6.3, 7.7, and 11.0 for square piston, circular piston, and circular deflection
transducers, respectively. The Corcos correction to the wall pressure spectrum recovers the true

spectrum within this bound.
PACS numbers: 43.60.Cg, 43.30.Xm, 47.27.Nz

INTRODUCTION

The pressure fluctuations at the wall beneath a turbulent
boundary layer are the result of the integral effect of fluctua-
tions in the velocity field. The size of a wall pressure trans-
ducer limits the accuracy of measurements of the fluctuating
wall pressure because spatial averaging over the face of the
transducer effectively low-pass filters the signal. As a result,
small transducers are more accurate than large transducers in
measuring wall pressure fluctuations.

The problem of spatial resolution has been addressed
both theoretically and experimentally.! Corcos®>™* estimated
the attenuation resulting from the finite size of the wall pres-
sure transducer with a uniform sensitivity across its sensing
surface for both circular and square transducers using a
model that separates the streamwise and spanwise depen-
dence of the cross-spectral density of the wall pressure. The
amplitudes of the one-dimensional cross-spectral density
functions were based on measurements of the wall pressure
field. Corcos’ scheme has been used extensively to correct
wall pressure frequency spectra. Although Willmarth and
Roos® questioned the validity of the Corcos correction, the
Corcos model was recently reexamined in the wave-number
domain.” The attenuation predicted by the wave-number
model matched that of Corcos quite well. White® and Kirby®
extended Corcos’ analysis to elliptical, rectangular, fish-
shaped, and diamond-shaped transducers with uniform sen-
sitivity. The Corcos correction method has been used to de-
velop a cormrection for a hydrophone based on its
experimentally measured sensitivity.'® Chase!! considered
the effect of nonuniform sensitivities and transducer shapes
on different portions of the wave-number spectrum of the
wall pressure. Ffowcs-Williams'? extended the Corcos and
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Chase theories to include constraints in the low-wave-
number portion of the wall pressure spectrum for a trans-
ducer with uniform sensitivity. In spite of these attempts to
modify the Corcos theory, the original Corcos model® is most
commonly used to correct experimental wall pressure spec-
tra.

The effect of transducer resolution on the measurement
of the wall pressure has been studied experimentally as well.
Geib"® devised a scheme using a pair of microphones of
different sizes but with similar spatial sensitivity that was
capable of experimentally correcting the attenuation of the
wall pressure spectrum resulting from spatial averaging. Bull
and Thomas'* measured the attenuation resulting from spa-
tial averaging over the face of the transducer and found that
the transducer size directly affects the measured rms wall
pressure, although the effect of the Reynolds number cannot
be neglected.> Schewe'® measured the frequency spectrum
of the wall pressure using microphones of different sizes and
found that most of the attenuation in the rms wall pressure
results from loss of transducer response at high frequencies.
Nevertheless, a transducer with diameter d, =19 was ad-
equate to resolve the essential scales of the wall pressure
fluctuations. (The + subscript denotes scaling with the kine-
matic viscosity » and the friction velocity U .) Schewe used
the Corcos correction to account for the attenuation resulting
from spatial averaging. While the Corcos correction worked
reasonably well for d., <160, the correction was inadequate
for larger transducers.

Although d, has typically been the parameter used to
quantify the spatial resolution of a wall pressure transducer,
Keith et al.” showed that it is not the only appropriate mea-
sure of the transducer size. Using dimensional analysis, they
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TABLE I. Parameters of the direct simulation database (sece Refs. 18—20).

Re;=U6/v=3200
Re,=U_,6/v=280
Re.=U,6/v=180

Streamwise: L,/8=4m N,=128 Ax,=17.6 L., =2253

Wall normal: L,/6=2 N,=129 Ay,=0.05 (near wall) to
Ay . =4.4 (centerline)

Spanwise: L,/6=4m/3 N,=128 Az,=59 L,,=755

AtU,/6=3.75x1073

reasoned that the spatial resolution parameter depends upon
the scaling used to present the wall pressure spectrum. For
wall pressure spectra scaled using an inner scaling, based on
the near wall scales of the friction velocity and the kinematic
viscosity, the correct parameter is d*=d_ (U,/U,), where
U, is the centerline or free-stream velocity. For an outer
scaling, based on the free-stream velocity and an integral
length scale such as the displacement thickness 8%, the cor-
rect parameter is d/6*. They also noted that using spectral
correction procedures such as the Corcos correction cannot
fully recover the true spectrum.

The availability of a numerical database for turbulent
channel flow!® allows the analysis of the problem of spatial
resolution of wall pressure transducers in a controlled set-
ting. Quite simply, wall pressure transducers of different
sizes, shapes, and sensitivities can be applied numerically to
the database and the resulting wall pressure spectrum calcu-
lated. The goal of this work was to determine the effect of
transducer spatial resolution on a known, computationally
derived wall pressure field by applying the spatial filtering
characteristics of circular and square transducers of several
different sizes. Furthermore, the Corcos method was used to
correct the spectra to determine the effectiveness of this
commonly used method for a known wall pressure field.

|. SPATIAL AVERAGING IN THE NUMERICAL
DATABASE

A direct numerical simulation of turbulent channel flow,
described in detail by Kim et al.,'® was used to generate the
pressure statistics presented in this paper. This database is the
same as that used by Kim'® and Choi and Moin?® for analysis
of the structure and space-time characteristics of turbulent
wall pressure fluctuations. It is based on the direct solution of
the Navier—Stokes equations using a spectral method for
spatial derivatives and time advancement by a semi-implicit
scheme.’® The computational domain for the simulation is
L,XLyXL, of 4w6X28X(4m/3)d in the streamwise x, wall-
normal y, and spanwise z directions, where & is the half-
channel width. The streamwise and spanwise boundary con-
ditions are periodic. The number of grid points N and other
details of the computational domain and flow parameters are
provided in Table 1. The simulation was carried out for
25 640 time steps, saving the pressure for the entire plane of
one of the walls at every tenth step corresponding to At
=0.0667 6/U,.

The circular and square pressure sensors that were mod-
eled were assumed to respond instantaneously in time. Uni-
form sensitivity and deflection-type sensitivity were consid-
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ered for circular sensors, while only uniform sensitivity was
considered for square sensors. Uniform sensitivity transduc-
ers have an invariant sensitivity across the entire sensing
surface of the transducer. This model reflects the sensitivity
of ceramic piezoelectric transducers. The sensitivity of a
deflection-type sensor is modeled by the first mode of vibra-
tion of a membrane. This sensitivity distribution is typical of
condenser microphones and some hydrophones.?! Pinhole
microphones, often used because of their small size, have a
nonuniform sensitivity, but it is not necessarily that of a
deflection-type transducer.?

The normalized wave-number response function H(K)
for a circular transducer of radius ry with uniform sensitivity
is
2J(krg) )
kg 1

where k=(k2+k2)"/? is the modulus of the wave number k
with streamwise component &, , and spanwise component &,
and J, the Bessel function of order one.! The wave number
kg corresponding to the first zero of the normalized wave-
number response for a circular piston transducer satisfies

H(K)=

koro=3.832. A circular deflection sensor of radlus ro has a
normalized wave-number response of
2
a“Jo(kro)
H(k)= 2= (krg)®’ 2

where J, is the Bessel function of order zero, and a=2.405
so that Jo(a)=0.2! The wave number corresponding to the
first zero of the normalized wave-number response for a cir-
cular deflection transducer occurs at korg=5.520. A square
transducer of side L with a uniform sensitivity has a normal-
ized wave-number response function®! of

_ (sin(k,L/2) sin(k,L/Z))
H (")‘( kL2 )( KLz ) ©)
The first zero of the response occurs where ko, L=2m or

k ozL =2.

The transducer response was modeled using spatial fil-
tering in the wave-number domain. First, a two-dimensional
Fourier transform? was applied to the pressure at the wall
P(x,z,t) for a particular time step ¢ to convert the pressure
into the wave-number domain P(k, ,k,,t). The spatially fil-
tered wave-number Fourier transform P’(k, .k, ,r) was
found using the normalized wave-number response

P’ (ky ky ) =H(ky k) Pk k). @)

A two-dimensional inverse Fourier transform was applied to
P'(k, ,k,,t) to transform the spatially filtered data back into
the space domain to obtain the filtered wall pressure
P’(x,z,t). This process was repeated to obtain the filtered
wall pressure over the flow domain at each time step. The
time records were saved for a grid of 16 uniformly spaced
streamwise locations by 16 uniformly spaced spanwise loca-
tions over the wall domain, for a total of 256 time series.
Typical methods for analysis of wall pressure were used
to examine the filtered wall pressure time series data. The
mms wall pressure was calculated from the mean of the
square of the wall pressure for all points in the domain using
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TABLE II. Resolution of the spectra.

Awd/U,=0.818 O S/U,=837.5

(kO max=31.5
(k0 max=94.5

Ak,85=0.5
Ak,6=1.5

2133 individual time instants. The wall pressure spectrum
was found from the ensemble average of 2048-point Fourier
transforms of the 256 time series using a Hanning window to
prevent anomalies related to the nonperiodic conditions at
the beginning and end of each time series. For larger sensors,
the sensor areas for nearby sampling points in the domain
overlapped substantially so that the individual spectra for
each grid point were not statistically independent. This over-
lap reduced the effective number of records substantially in-
creasing the random error and causing somewhat jagged
spectra for large sensors. A moving average using nine
equally weighted points was used to smooth the spectra,®
resulting in a random error of 0.02, not accounting for over-
lap of the larger sensor areas. Even with the smoothing the
spectra for larger sensors retained a somewhat jagged ap-
pearance, but using more than nine points for smoothing re-
sulted in smearing of important landmarks in the spectra that
are related to the spatial filtering.

Wave-number spectra for the spatially filtered data were
calculated at the first 533 time steps and ensemble averaged
for a random error” of 0.04. Although it would have been
desirable to calculate the wave-number spectra at more time
steps, computational restrictions prevented this. The wave-
number spectra calculated for one particular case using 2133
time steps was nearly identical to that using 533 time steps,
indicating that no errors resulted from using fewer time
steps. No window was used for the calculation of the wave-
number spectra, since the computational domain is periodic
in both the x and z directions. The resolution and other de-
tails of the spectra are provided in Table II.

Data are presented in this paper for sensors as large as
d, =200 and L . =180. Larger sensors were tested but two
problems affected the validity of the data. First, the sensor
areas for large sensors at adjacent sampling locations over-
lapped, resulting in large random error as noted above. Sec-
ond, data obtained with a sensor that is much larger than the
typical length scale of the simulation, one half-channel
width, or U .6/ v=180, may not be meaningful. At the other
extreme, sensors cannot be smaller than the grid resolution.
Data presented for d, =0 and L , =0 actually correspond to
the simulated wall pressure field with no filtering, so the
equivalent sensor dimensions correspond to the resolution of
the grid, Ax,=17.6 by Az, =5.9.

Although this numerical database provides a vast set of
velocity and pressure data that correspond quite well to ex-
perimental results,'”~2 the wall pressure data may not be
completely representative for several reasons. First, the mo-
mentum thickness Reynolds number for the simulation,
Re,=280, is lower than that achieved experimentally, al-
though the low Reynolds number is necessary because of
computational limitations. Second, periodic boundary condi-
tions require that the fluid structures entering the computa-
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FIG. 1. The dependence of the rms wall pressure on the transducer size for
circular transducers (see Refs. 5, 6, 14—16, and 24—30). B pinhole micro-
phone; A deflection microphone; @ piston-type microphone; ¢ unknown
microphone type; deflection microphone (this study); ----- piston-
type microphone (this study).

tional domain be identical to those leaving the domain,
which cannot occur in a real channel flow. Third, the extent
of the computational domain is very limited, 2253 viscous
units in the streamwise direction and 755 viscous units in the
spanwise direction. Finally, the position of the centerline of
the simulated channel is at a very small distance from the
wall corresponding to 6U ,/v=180, suggesting that contri-
butions by the inner region of the flow may dominate be-
cause the outer flow is largely absent.!” While these prob-
lems may make relating this wall pressure database to
practical flows difficult, they do not affect the results de-
scribed here. The focus in this paper is on how averaging in
space by a transducer of finite size affects the frequency
spectrum. While the numerical database may have some
weaknesses, it still has the general character expected for a
turbulent wall pressure field.'”"'>?° Furthermore, it provides
the most detailed “model” to date for a wall pressure field.
For this reason, the results obtained by applying wall pres-
sure sensors of different sizes and sensitivities to this model
wall pressure field should accurately reflect the character of
spatial averaging that occurs when experimentally measuring
the wall pressure field using transducers of finite size.

Ii. RESULTS

Over the years many studies have provided measure-
ments of the rms wall pressure in turbulent wall-bounded
flows using circular sensors of different sizes. Figure 1
shows the rms wall pressure nondimensionalized by the dy-
namic pressure, g=pU?%/2, as a function of sensor diameter
for a number of studies as well as the analysis described
here. Although d*=d_ (U /U_) was shown to be a better
scaling for the sensor diameter,!” we use d because infor-
mation was not always available to determine d*, and 4, is
the more traditional measure. Farabee and Casarella’
showed that p /7, is dependent on the Reynolds number
Re,=U .8/v. But nondimensionalization with g seems to re-
duce the sensitivity to the Reynolds number. The value of
Pms/q calculated in this study decreases with sensor diam-
eter in a similar way to the experimental data in spite of the
low Re, and p_./7,(1.54) in this study compared to most
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FIG. 2. Frequency spectrum of the wall pressure for (a) circular piston-type
microphone, (b) circular deflection microphone, and (c) square piston-type
microphone. Transducer dimensionless diameters d ; or length of a side L ,
are noted in the figure.

experiments. A deflection-type transducer has less attenua-
tion for a given size than a piston-type transducer because of
the lower sensitivity of a deflection-type transducer near its
edge compared to its center, effectively reducing its dimen-
sions. Circular and square piston-type transducers have
nearly identical attenuation of the rms pressure for the same
area, a logical consequence of their uniform sensitivity and
the randomness of the wall pressure field.

The amplitudes of the frequency spectra P, (w) are
also reduced as the transducer increases in size for all three
types of transducers as shown in Fig. 2. Several trends are
notable. First, the high-frequency portion of the spectrum is
increasingly attenuated as the size of the transducer in-
creases. However, the attenuation of the spectral density is
most evident for the largest transducers for
20<wd/U,<150, the middle of the range of frequencies
and not at the highest frequencies. The spectral density does
not drop off uniformly with frequency for the larger trans-
ducers. This is particularly evident for the largest sensors,
where the slope of the spectrum changes at w8/U,~100.
This effect is related to the zeros appearing in the normalized
wave-number response function of the sensor, described
shortly.

An interesting effect of increasing transducer size is that
_the spectrum is attenuated even at the lowest frequencies.
The common wisdom is that the detection of large-scale
structures corresponding to low frequencies is unaffected un-
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less the transducer is larger than the structure. Using the
convection velocity for this pressure field,® structures that
are larger than the largest transducer modeled in this study
correspond to frequencies of wé/U,<72. But in Fig. 2 at-
tenuation is evident below this frequency. The low-frequency
attenuation comes about from the frequency representation
of a wave-number-frequency phenomenon. The frequency
spectrum ®,,(w) can be represented as the integral over all
wave numbers of the wave-number-frequency spectrum,
®,,(k,,k,, ), such that

@)= [ [ @t e HOOP di, di. )

From (5) it is evident that the application of the spatial fil-
tering, H(k), will reduce the contribution of the higher wave
numbers to the frequency spectrum. Since the spectral den-
sity at any particular frequency is the integrated contribution
over all wave numbers, some of which are attenuated by the
spatial filtering of the sensor, the spectral levels are reduced
even at the lowest frequencies. Citriniti et al.>! found similar
attenuation of the low-wave-number portion of the turbulent
velocity spectrum measured using very long hot wires and
showed analytically that this is caused by representing a
three-dimensional wave-number spectrum in one dimension.
A less important cause of low-frequency attenuation is the
elongation of pressure-producing structures in the spanwise
direction.?’ Spatial averaging results when the small dimen-
sion of the structure is less than the sensor dimension.

Although the attenuation of low frequencies is readily
explained, it is important to note that the low-frequency por-
tion of the spectrum for the database may not be representa-
tive of the physical situation. The simulation used in this
study had a periodic boundary condition at its inlet and out-
let, so that a flow structure that leaves the flow domain at the
downstream end simultaneously reenters it at the upstream
end. This becomes a problem when the computational do-
main is not long enough for the streamwise decay of a large
structure, allowing it to continually reenter the domain. Fur-
thermore, Choi and Moin® found ““artificial acoustics” ap-
pearing at the lowest computational wave number that may
be related to the finite time step and the feedback resulting
from periodic boundary conditions.

The wave-number spectrum for different size transduc-
ers is helpful in understanding the character of the frequency
spectrum. The streamwise wave-number spectra E pp(ky) are
shown in Fig. 3. The lobed structure of the spectra is a direct
result of the zeros in the normalized wave-number response
function for the transducer. For instance, the first zero for a
circular piston-type transducer occurs at kry=3.832. Since
the energy in turbulent spectra is centered about k,=0, k can
be approximated by k, . Thus for the transducer with a diam-
eter of d, =200, this zero corresponds to k,6=6.9, where a
low point appears in the spectrum for this transducer as
shown in Fig. 3(a). The zeros in the wave-number spectra of
the circular transducers appear only as small valleys rather
than zeros for two reasons. First, the wave-number resolution
is too coarse to adequately resolve the valleys related to the
zeros. Second, the application of a circular transfer function
to data in a rectangular grid results in some smearing of the
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FIG. 3. Streamwise wave-number spectrum of the wall pressure for (a)
circular piston-type microphone, (b) circular deflection microphone, and (c)
square piston-type microphone.

spectra for the circular transducers. The zeros in the wave-
number spectra are much sharper for the case of a square
piston-type transducer shown in Fig. 3(c). Although the at-
tenuation of the spectrum is related to the roll-off and zeros
in the normalized wave-number response function at higher
wave numbers, attenuation is evident even at low wave num-
bers for the largest transducers as a result of integrating a
two-dimensional wave-number spectrum over the spanwise
dimension.

The spatial resolution and smearing effects are even
worse for the transverse wave-number spectra E,,(k,),
shown in Fig. 4, since the spanwise dimension of the flow
domain-is smaller than-the streamwise dimension. For ex-
ample, in the k,-wave-number spectrum for a circular piston-
type transducer, shown in Fig. 4(a), the zeros appear merely
as a flattening of the wave-number spectrum. The zeros are
sharper for the square transducer, shown in Fig. 4(c), but
even here they are smeared because of poor wave-number
resolution. As with the streamwise wave-number spectra, the
attenuation of the spanwise spectra is evident at low wave
numbers as well as high wave numbers.

The appearance of zeros in the k,-wave-number spec-
trum that result from the zeros in the normalized wave-
number response of the transducer suggests that these zeros
cause the large attenuation in the middle of the range of
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FIG. 4. Spanwise wave-number spectrum of the wall pressure for (a) circu-
lar piston-type microphone, (b) circular deflection microphone, and (c)
square piston-type microphone.

frequencies for frequency spectra of the larger transducers in
Fig. 2. An example of this attenuation occurs at
w8/U,~100 in Fig. 2(a) for d,=200. If the midrange at-
tenuation in the frequency spectrum is simply a result of
zeros in the normalized wave-number response of the trans-
ducer, then frequency spectra derived using Taylor’s frozen
field hypothesis should have similar attenuation to the di-
rectly calculated frequency spectra. Taylor’s frozen field hy-
pothesis requires a nondispersive relationship between the
frequency and wave number such that w=U_ k, and
@, (0)=E,,(k;)/U., where the convection velocity of the
wall pressure field is U,=0.72U.% By comparing the ac-
tual frequency spectrum for this numerical database with that
calculated from the wave-number spectrum, Taylor’s frozen
field hypothesis has been shown to accurately describe the
relationship between the frequency spectrum and the wave-
number spectrum when there is no spatial averaging.’
Applying the frozen field hypothesis to spatially filtered
data is shown in Fig. 5 for three representative cases. At low
frequencies the frequency spectrum derived from the wave-
number spectrum using Taylor’s frozen field matches the ac-
tual frequency spectrum very closely. At higher frequencies
the frequency spectrum calculated from the wave-number
spectrum drops below the actual frequency spectrum. When
the first zero is outside of the range of frequencies, no dips in
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FIG. 5. Comparison of the measured frequency spectrum and the frequency
spectrum calculated from Taylor’s frozen field hypothesis. Measured
frequency spectrum; ----- spectrum from frozen field. (a) Circular piston-
type microphone, d . =40; (b) circular piston-type microphone, 4. =80; (c)
square piston-type microphone, L, =72.

the frequency spectrum occur. For example, the first zero for
a circular piston-type transducer of d,.=20 occurs at
w8/U ,~ 880, which is beyond the limit of frequencies mea-
sured. But for d, =40 the zero occurs at w8/U,~440 and
the resulting roll-off in the frozen field spectrum is severe, as
shown in Fig. 5(a). The zeros in the frequency spectrum
calculated from the wave-number spectrum correspond to
dips in the frequency spectrum for larger transducers. This is
evident in Fig. 5(b) at w8/U,~220, which corresponds to
the zero in the corresponding wave-number spectrum for
d, =80 at k,6=17.2 in Fig. 3(a). It is even more obvious
in Fig. 5(c) for a square transducer at w8/U,~200, which
corresponds to the zero in the corresponding wave-number
spectrum for L ., =72 at k,6=16 in Fig. 3(c). The dips in
the frequency spectra are not nearly as sharp as those in the
frozen field spectra calculated from the wave-number spec-
trum because of smearing of the frequency spectra by imper-
fect convection of the pressure field.

lll. CORCOS WALL PRESSURE CORRECTION

Clearly, a transducer of dimension d will have difficulty
in detecting structures of frequency w traveling at convection
velocity U, when 27U _/w<d as pointed out in several ear-
lier analyses of the effect of transducer size on spectral
measurements.”!"12 But the zeros in the transducer’s wave-
number response function provide a bound on the maximum
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TABLE III. Maximum measurable frequency for different transducers.

Type Frequency of Dimension of
of sensor first zero sensor
Square piston: wg=27U_L Ly,=17
Circular piston: wy=7.7U0.d dy.=21
Circular deflection: wy=11.0U,/d dy+=30

frequency that a transducer of a particular size can measure.
The maximum frequency that a transducer can measure can
be related to the first zero in the transducer’s wave-number
response function by using Taylor’s frozen field hypothesis,
k,= w/U,. Now consider the wave number &, corresponding
to the first zero for a circular piston-type transducer, which is
at koro=3.832 or k,d=7.664. Since most of the energy in
turbulent spectra is centered about k,=0, k can be approxi-
mated by k, . Thus the wave number of the first zero can be
rewritten in terms of frequency as kyd=~(wy/U,/)d~7.7.
Rearranging, the frequency corresponding to the first zero of
the transducer is wy=~7.7U_/d. Expressions for the frequen-
cies of the first zero for the types of transducers in this study
are indicated in Table III. Of course, attenuation in the mea-
sured spectrum should be expected even for frequencies less
than wy, because of the roll-off of the normalized wave-
number response function.

The frequency of the first zero wy should be greater than
the maximum measured frequency w,,, for accurate mea-
surement of the wall pressure spectrum. Setting wy,,, equal to
w, results in a relation for the largest size of transducer that
can be used without exceeding the first zero in the normal-
ized wave-number response. The sensor dimensions found in
this way for this numerical database are shown in Table III.
The diameter of a circular piston-type transducer correspond-
ing to the first zero for this study is dy, =21. For a circular
deflection-type transducer, the diameter is dy, =30. In fact,
the values for which the rms wall pressure begins to deviate
substantially from the true value in Fig. 1 corresponds to
these diameters.

When d =40 and L =36, so that wy<w,,,, the spec-
tra fall substantially short of the true spectrum at high fre-
quencies as shown in Fig, 2. The same result is evident in the
data of Schewe.'® Table IV indicates the values for f, and
fmax for the different sized transducers that he used. For the
three smallest transducers the frequency of the first zero f,
was larger than the maximum measured frequency f,,, and
the wall pressure spectra collapsed when the Corcos
correction® was applied in Schewe’s Fig. 12.16 However, for
the two largest transducers, the spectra fell well below those
for the smaller transducers at the highest frequencies even

TABLE IV. Spatial resolution for Schewe’s data (see Ref. 16).

d, fo=we/27 fmax= @ax/27 (plotted in Schewe’s Fig. 12)
19 5880 1250
39 2800 1600
75 1470 1250
168 650 800
333 330 400
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FIG. 6. Comparison of the Corcos corrected spectrum (true spectrum) with
uncorrected spectrum. ----- True spectrum; uncorrected spectrum.

when the Corcos correction was applied, because f,,>fo-

To further test the effectiveness of the Corcos
correction,® we applied it to the spectra calculated from the
numerical database. The Corcos correction expresses the ra-
tio of the measured spectral density to the true spectral den-
sity, ®,,/®, as a function of wry/U, or wL/U,. For the
purposes of this study Corcos’ tabulated data was fitted to a
polynomial curve. For a circular piston transducer, a tenth-
order polynomial was used for 0<wry/U,<4.514 and a
third-order polynomial was used for 4.514<wry/U.<10.
For a square piston transducer, a tenth-order polynomial was
used for the entire frequency range, 0<wL/U_,<10.

The Corcos correction was first applied to the data for
which no spatial filtering was used, denoted as d, =0 here,
because even the unfiltered data with a grid resolution of
Ax,=17.6 by Az,=5.9 should have some attenuation
from spatial averaging. The correction that was applied was
based on a square transducer with an identical area, since the
Corcos correction is tabulated only for circular and square
transducers. The corrected spectrum, which is called the
“true spectrum,” is shown in Fig. 6. Using the correction for
a circular transducer of the same area provided results that
were nearly identical. This is not surprising since when the
Corcos correction is converted to area instead of radius or
length of a side, the correction for square and circular trans-
ducers are within 1% or 2% of each other.

Representative spectra after the application of the Cor-
cos correction are shown in Fig. 7. At low frequencies the
Corcos correction does not entirely account for the attenua-
tion, although it brings the corrected spectra closer to the true
spectra than with no correction. For a range of frequencies
greater than about w8/U,~20 the corrected spectra nearly
match the true spectrum. Nevertheless, at higher frequencies
the corrected spectra rise above the true spectrum.

The inability of the Corcos method to adequately correct
the low-frequency portion of the spectrum may be related to
the nature of the computationally derived wall pressure field
and not to the Corcos correction. Choi and Moin?® showed
that similarity functions based on the Corcos separation of
variables representation of the wall pressure spectra do not
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FIG. 7. The Corcos correction applied to three piston-type circular sensors.
(a) d,=40; (b) d.=80; (c) d,=200. The lower solid curve is the uncor-
rected spectrum. The upper solid curve is the corrected spectrum. The
dashed curve is the true spectrum. The frequency corresponding to the first
zero is marked with a + on the corrected spectra.

collapse, indicating that the functions are not self-similar for
the computational database. Furthermore, Keith et al.” noted
that the wall pressure frequency spectra based on the com-
putational database have lower than expected spectral levels
at low frequencies, possibly due to small contributions from
the outer region.

Although Corcos tabulated his correction for
0=<wry/U.<10, the frequency of the first zero of the nor-
malized wave-number response function bounds the applica-
tion of the correction. For instance, Table III indicates that
the frequency of the first zero for a circular piston transducer
occurs at wy=~7.7U./d, or wyry/U, ~3.8. Thus the Corcos
correction should only be used for 0< wry/U,<3.8 for cir-
cular transducers. A similar analysis leads to a bound of
0=wL/U_=<6.3 for square transducers. The position of the
frequency corresponding to this limit is marked with a +
along the corrected spectra in Fig. 7. No + appears along the
true spectrum because the maximum frequency encountered
corresponded to wL/U,.=3.70, within the bounds for a
square transducer.

The + appears at the location in the corrected spectrum
where it deviates substantially from the true spectrum. Al-
though the appearance of zeros in the normalized wave-
number response function of the transducer results in attenu-
ating the spectrum, the Corcos correction appears to
overcompensate for this effect. This is not related to the data
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FIG. 8. Corrected frequency spectra for (a) circular piston-type microphone,
(b) circular deflection microphone, and (c) square piston-type microphone.
Curves correspond to those of Fig. 3. Each curve can be identified from its
high-frequency limit, which decreases with transducer size. For the largest
piston-type transducer, the high-frequency limit occurs at wd/U,~85 and is
hidden by the other curves in (a) and (c).

of Willmarth and Wooldridge® upon which Corcos based his
correction, since the data did not exceed the bound on fre-
quency listed in Table III. It is difficult to pinpoint the cause
of the overestimation of the Corcos correction at high fre-
quencies. It may have resulted from errors in the experimen-
tal data that Corcos used, the curve fit to that experimental
data, or the numerical integration used to obtain the tabulated
results. In any case, the range of frequencies for which the
Corcos correction overpredicts the true spectrum corresponds
to a frequency range for which the correction probably
should not be used anyway because of zeros in the normal-
ized wave-number response function of the transducer.

The Corcos corrected spectra corresponding to the spec-
tra in Fig. 2, as limited by the bound related to the first zero
in the response function, are shown in Fig. 8. Consider the
Corcos correction for a circular piston transducer, shown in
Fig. 8(a). Clearly, the Corcos correction inadequately ac-
counts for the attenuation below a frequency of wé/U ~65,
although this may be related to the character of the database
itself and not to the Corcos correction. Above this frequency,
the corrected spectrum follows the true spectrum quite well,
until the frequency nears the first zero cutoff where the cor-
rected spectrum rises above the true spectrum. Although the
Corcos correction was intended for sensors with a uniform
response, it appears to work reasonably well for circular de-
flection transducers as shown in Fig. 8(b). The corrected
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spectra are closer to the true spectrum than uncorrected spec-
tra in Fig. 2(b), but the Corcos method overcorrects as
wro/ U, nears its limit at high frequencies. Applying the Cor-
cos correction to the data for a square piston-type transducer
produces similar results to that for a circular piston-type sen-
sor as shown in Fig. 8(c).

IV. CONCLUSIONS

The attenuation of the wall pressure spectrum resulting
from the spatial averaging over the face of the wall pressure
transducer has two causes. The first cause is attenuation re-
sulting from the appearance of zeros in the wave-number
spectrum related to the lobed structure of the normalized
wave-number response function H(k). Although the zeros
are smeared when the frequency spectrum is considered, they
can greatly reduce the spectral density at higher frequencies.
To avoid the effect of zeros on the measured frequency spec-
trum, the highest measured frequency w,, should be less
than the frequency of the first zero w,. This results in the
simple, approximate relationship that

Opaxd/U.<C, (6)

where C is 27, 7.7, and 11.0 for square piston (d is replaced
by L), circular piston, and circular deflection microphones,
respectively. The second cause of attenuation is the simple
reduction in the spectral density due to integrating a wave-
number-frequency spectrum over the spatially filtered wave-
number domain, Eq. (5). This attenuation is not nearly as
severe as that due to the appearance of zeros. The Corcos
correction provides a good estimate of the true wall pressure
spectrum up to the limit of (6).
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