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Vibrational relaxation accounts for absorption and dispersion of acoustic waves in gases that can be
significantly greater than the classical absorption mechanisms related to shear viscosity and heat
conduction. This vibrational relaxation results from retarded energy exchange between translational
and intramolecular vibrational degrees of freedom. Theoretical calculation of the vibrational
relaxation time of gases based on the theory of Landau and Teller@Phys. Z. Sovjetunion10, 34
~1936!; 1, 88 ~1932!; 2, 46 ~1932!# and Schwartzet al. @J. Chem. Phys.20, 1591~1952!# has been
applied at room temperature to ternary mixtures of polyatomic gases containing nitrogen, water
vapor, and methane. Due to vibrational-translational and vibrational–vibrational coupling between
all three components in ternary mixtures, multiple relaxation processes produce effective relaxation
frequencies affecting the attenuation of sound. The dependence of effective relaxation frequencies
and the attenuation on mole fractions of the constituents was investigated. The acoustic attenuation
in a mixture that is primarily nitrogen is strongly dependent on the concentrations of methane and
water vapor that are present. However, the attenuation in a mixture that is primarily methane is only
weakly dependent on the concentrations of nitrogen and water vapor. The theory developed in this
paper is applicable to other multicomponent mixtures. ©2001 Acoustical Society of America.
@DOI: 10.1121/1.1352087#

PACS numbers: 43.35.Ae, 43.35.Fj@SGK#
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I. INTRODUCTION

The anomalous absorption and dispersion of so
waves in polyatomic gases has been studied for nearly s
decades. The pioneering studies of Zener,1 and Landau and
Teller2–4 laid the foundation of the theory of vibrational en
ergy transfer in diatomic gases. Later, the theory of vib
tional relaxation was successfully applied by Knese5

Schwartzet al. ~SSH!,6 and Tanczos7 to explain the absorp
tion and dispersion of sound waves in polyatomic gases.
further application of the SSH theory to the investigation
sound in pure gases and binary gas mixtures was revie
by Herzfeld and Litovitz,8 Burnett and North,9 and
Lambert.10 The complexity of molecular relaxation process
can lead to a complicated mechanism of vibration
translational and vibrational–vibrational energy transfer
tween different molecular energy levels producing seve
effective relaxation frequencies depending on the vibratio
modes involved in the relaxation process. Consequently,
effective relaxation frequencies of multi-component gas m
tures depend on the concentrations of the gases in the
ture.

Several phenomenological alternatives to the S
theory have been used for binary and multi-component
mixtures. Bauer developed a method to obtain relaxa
equations for the phenomenological theory of simultane
multiple relaxation processes.11 His general theory calculate
the eigenvalues of coupled relaxations in terms of the in
vidual relaxation times including the cross terms. Each
ergy process between two vibrational levels is considere
a reaction. Zuckerwar and Miller applied Bauer’s pheno

a!Electronic mail: r-lueptow@northwestern.edu
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enological treatment to the case of a mixture of nitrog
oxygen, water vapor, and carbon dioxide.12 They provided
analytical expressions for coupled effective relaxation f
quencies of oxygen and nitrogen in air depending on sm
concentrations of water vapor and carbon dioxide. Hend
son and Herzfeld applied a similar analysis to air/water va
mixtures using the semi-empirical dependence of the ef
tive relaxation frequency of oxygen on water vapor.13 The
general formalism of the theory of sound absorption of Ba
has been used to deduce relaxation equations with the f
tional form of relaxation frequencies of moist oxygen a
nitrogen determined empirically from experimental measu
ments of sound absorption in air. A thorough review of t
relaxation frequencies of nitrogen and oxygen as function
humidity is provided by Basset al., with a focus on acoustic
attenuation in the atmosphere.14

Townsend and Meador used the usual gas species
tinuity and momentum equations together with reaction
netics to derive a wave equation for a single parameter~pres-
sure or density! in a binary mixture.15 The absorption
coefficient was decomposed into the sum of two contrib
tions, which cannot be uniquely identified with either of th
two species. This formula was used to calculate the abs
tion coefficient for a nitrogen/water vapor mixture, compa
ing favorably with experimental data of Zuckerwar an
Griffin.16

Experimental results for multi-component mixtures
the gases that we consider in this paper are sparse. The
pendence of the relaxation frequency of nitrogen on m
fractions of carbon dioxide and water vapor was experim
tally investigated at 448 K by Hendersonet al.17 They ob-
served a synergistic effect of both additives resulting in
195509(5)/1955/10/$18.00 © 2001 Acoustical Society of America



ith
n
in

id
th
i

na
ur
S
it
a
rk
to
ly
na

n
ze
ur
an

tit
ng

a
th
um
e
h
s
on
e
om

t
r

tio
rg
el
fe
e

vis
e

re
or
la

-
the

s
ci-

nd

f
-

. The

es

d
e,
s.

with

of
ui-
d

e
of

en-
ss
x-
qua-
rge
ro-

s of

d
of

al
al
nonlinear shift of the relaxation frequency of nitrogen w
the mole fraction of the additives. Zuckerwar and Griffi
experimentally studied the vibrational relaxation peak
nitrogen/water vapor binary mixtures as a function of hum
ity and derived the reaction rate constants assuming
vibrational–vibrational energy transfer provides the dom
nant relaxation path.16

The present study is an investigation of the relaxatio
component of the attenuation coefficient in a ternary mixt
of polyatomic gases at room temperatures based on the
theory. Specifically, we consider two cases: nitrogen w
small amounts of water vapor and methane, and meth
with small amounts of water vapor and nitrogen. This wo
is unique in that it is the first application of SSH theory
multi-component mixtures to our knowledge. Previous
SSH theory has only been applied to pure gases and bi
mixtures of gases.

In this paper the plane acoustic wave propagation i
gas mixture is described by the Euler equations lineari
around the equilibrium density, pressure, and temperat
The total gas energy is the sum of translational energy
internal molecular vibrational energies,6 depending on ki-
netic processes between vibrational modes of the cons
ents. The relaxation equations, which are written followi
Landau and Teller,2 Schwartzet al., 6 and Tanczos7 establish
a link between the internal molecular vibrational ‘‘temper
tures’’ and the translational temperature of the gas. In
case of acoustic attenuation, the deviations from equilibri
temperature are small, and the relaxation system is a lin
system of ordinary differential equations. Coefficients of t
matrix of the relaxation system can be expressed in term
transition probabilities. For the calculation of the transiti
probabilities, the SSH theory, which agrees relatively w
with experimental data for nitrogen and methane at ro
temperature,10 is used.

II. THEORY FOR RELAXATION IN MULTI-COMPONENT
MIXTURES

The theory is based on the Euler gas equations as
model of a continuous medium for a polyatomic gas mixtu
accompanied by nonlinear semi-macroscopic popula
equations for the number of molecules in a given ene
state.18 In the acoustic approximation, these equations yi
acoustical equations and a linear system of ordinary dif
ential equations describing multiple relaxation process
Consequently, we do not include the classical effects of
cosity and heat transfer on the acoustic attenuation. Th
effects can be calculated separately. Assuming that the
no diffusion of gas components, the acoustic equations f
gas mixture including the internal temperatures of molecu
vibrational modes can be written in the form

p

p0
5

T

T0
1

r

r0
,

]r

]t
1r0

]u

]x
50,

]u

]t
1r0

21 ]p

]x
50,

]e

]t
2p0r0

22 ]r

]t
50, ~1!

e5cvT1a1c1
vibT1

vib1a2c2
vibT2

vib1a3~c3
vibT3

vib1c4
vibT4

vib!,
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wherep, r, u, e, T, andTj
vib are small fluctuations of pres

sure, density, velocity, energy, and temperatures around
equilibrium value. Herea i are mole fractions of the three ga
constituents, andcv

i are the translational specific heat capa
ties of mixture constituents,i. For molecular vibrational
mode j, cj

vib are the vibrational specific heat capacities, a
Tj

vib are the internal temperatures.
The fifth equation of Eq.~1! represents the fluctuation o

the total energye of the gas mixture. The total energy de
pends not only on the gas temperatureT, but also on the
internal temperatures of excited molecule modeTj

vib . We
have assumed that there are only three gas components
first two gases having mole fractionsa1 anda2 are assumed
to each have one vibrational mode with energiesc1

vibT1
vib and

c2
vibT2

vib , respectively. We consider two vibrational mod
with energiesc3

vibT3
vib and c4

vibT4
vib for the third gas having

mole fractiona3 . As will be discussed later, nitrogen an
water vapor are modeled with a single vibrational mod
while methane is modeled with two vibrational mode
Clearly the fifth equation of Eq.~1! could be extended to
accommodate any number of constituent gases, each
any number of vibrational modes.

We assume that the translational degrees of freedom
each of the gases in the mixture are in equilibrium at eq
librium temperatureT0 . The mean equilibrium pressure an
density arep0 andr0 , where

p05r0RT0 , R5
R

M
. ~2!

HereR is the gas constant per unit mass,R is the universal
gas constant, andM is the mean molecular weight of th
mixture. By definition, the total fluctuation of gas density
the mixture is

r5(
i 51

3

a ir i . ~3!

Molecules gain and lose vibrational and translational
ergy in collisions. The kinetic nature of the collision proce
is thus of fundamental importance for investigation of rela
ation processes and acoustic absorption. The relaxation e
tions for internal molecular temperatures depend to a la
measure on the model of energy transitions and kinetic p
cesses including:~1! vibrational-translational~V-T! energy
exchange between vibrational and translational degree
freedom for one type of molecule;~2! vibrational-
translational ~V-T! energy exchange for vibrational an
translational degrees of freedom between different types
molecules; ~3! vibrational–vibrational ~V–V! energy ex-
change within a given type of molecule;~4! vibrational–
vibrational ~V–V! energy exchange between vibration
modes of different types of molecules. Thus the collision
reactions of excitation and deexcitation are of the form

M1M⇔M1M* ,

M* ~p11,q!1M ~p,q!⇔M ~p,q!1M* ~p,q11!,
1956Y. Dain and R. M. Lueptow: Acoustic attenuation
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M1N⇔M1N* ,

M* ~p11!1N~q!⇔M ~p!1N* ~q11!.

HereM andN denote species of the mixture, andp andq are
molecular vibrational modes. An asterisk indicates a m
ecule excited to the lowest vibrational level above the grou
level.

Table I provides the vibrational modesn i of nitrogen,
water, and methane. The subscripts are numbered acco
to the spectroscopic convention.19 The frequencies are ex
pressed using the spectroscopic convention in terms of
verse wavelength. Multiplying the numerical value by t
speed of light (3.0031010cm/s) provides the value for th
mode in units of frequency~Hz!.

In this analysis we consider only relatively low temper
tures. We assume that only the lowest modes are signific
since the contribution of higher modes to molecular ene
transfer at room temperature is small. Consequently, en
exchange occurs only between the following vibration
modes:n52331 cm21 of N2, n251596 cm21 of H2O, and
n251534 cm21 andn451306 cm21 of CH4. The second vi-
brational moden2 of CH4 is included along with the lowes
modes of other constituents due to its near resonance
the moden251596 cm21 of H2O. For notational simplicity,
ni denotes the vibrational modes when multiplied by t
speed of light. Thusn1 corresponds to the vibrational mod
of N2 ,n2 corresponds to the lowest vibrational mode of H2O,
andn3 andn4 are the two lowest vibrational modes of CH4.

The vibrational specific heats for the vibrational mod
in Eq. ~1! are given by the Planck–Einstein function20 for a
harmonic oscillator

ci
vib5giRS u i

vib

T0
D 2 exp~u i

vib/T0!

~exp~u i
vib/T0!21!2 , u i

vib5
hni

k
, ~4!

where h56.626310234J s is Planck’s constant,k51.380
310223J/K is Boltzmann’s constant,u i

vib is the characteris-
tic temperature for vibration, andgi is the degeneracy of th
mode ~listed in Table I!, which is related to the geometri
structure of the molecule.

We assume that at room temperature only one-quan
collisional reactions are possible. By analogy to Landau
Teller2 and Schwartzet al.6 we can deduce relaxation equ
tions for the internal energies of the four vibrational mod
nj participating in the relaxation process of the form

TABLE I. Vibrational frequencies and collisional parameters for Lenna
Jones potential~Refs. 10, 19!.

r 0

~Å!
eLJ

~cal mol21!
Normal modes of
vibration ~cm21! g

Vibrational amplitude
coefficients~a.m.u.21!

N2 3.749 159 n52331 1 0.0354
H2O 2.65 760 n153657 1 0.9539

n251596 1 0.9527
n353756 1 0.9241

CH4 3.796 286 n152915 1 0.9921
n251534 2 0.9921
n353019 1 0.9923
n451306 3 0.8368
1957 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
l-
d

ing

n-

-
nt,
y
gy
l

ith

s

m
d

s

dTj
vib

dt
5

T2Tj
vib

t j
tran 1 (

k51
kÞ j

4
1

t j ,k
vib

12exp~2hnj /kT0!

12exp~2hnk /kT0!

3F ~T2Tj
vib!2

nk

nj
~T2Tk

vib!G , j 51,...,4. ~5!

The translational~V-T! relaxation times that appear in Eq
~5! are

1

t j
tran5(

i 51

3
a i

t j ,i
tran,

1

t4
tran5(

i 51

2
a i

t4,i
tran1

a3

t4,4
tran, j 51,...,3; ~6!

t j ,i
trans21

5Z~ j ,i !P0→0
1→0~ j ,i !~12exp~2hnj /kT!!. ~7!

The paired vibrational~V–V! relaxation times for excitation
processes with two vibrational modes involved are

t j ,k
vib21

5akgkZ~ j ,k!P0→1
1→0~ j ,k!,

j ,k51,...,4, j Þk, a35a4 . ~8!

HereZ( j ,k) are collision rates of molecules of speciej with
molecules of speciek. P0→0

1→0( j ,k) andP0→1
1→0( j ,k) are transi-

tional probabilities of V-T and V–V exchange of vibration
energy per collision between different vibrational modes.

The calculation of the number of collisions per molecu
is conveniently based on the kinetic theory expression fo
gas of rigid spheres10

Z~ j ,k!52NkS s j1sk

2 D 2

~2pkT~mj1mk!/mjmk!
1/2, ~9!

whereNk is the number of molecules of speciesk per unit
volume, s j ,sk are collision diameters, andmj ,mk are the
molecular masses of species.

The calculation of transition probabilitiesP0→0
1→0( j ,k)

andP0→1
1→0( j ,k) is a more complicated problem. It is based

a solution of the Schro¨dinger equation for binary collisions
of two molecules in a mixture. The solution depends on
suming special collisional conditions and is based on
molecular properties of the species. There are various
proximations and approaches to estimate such a solu
Here we will use the approximate formulas of transiti
probabilities for polyatomic gases derived by Tanzcos7 @Eq.
~1!# for the evaluation of V-T and V–V transition probabil
ties P0→0

1→0( j ,k) and P0→1
1→0( j ,k). The general Tanczos equa

tion for the transition probabilities is quite complicated a
not included here. Suffice it to say that the equation depe
on geometrical factors, collision cross-section factors, vib
tional factors, the total change in translational energy,
Lennard-Jones potential, and an intermolecular force c
stant. Methods for determining these items are outlined
Tanzcos.7 Values for constants for the three gases of inter
are listed in Table I, based on Tables 1.1, 3.1 and 3.2 in
book by Lambert.10 The values forP0→1

1→0( j ,k) are given in
Table II.

The relaxation system Eq.~6! can be written in the vec-
tor form as

dTvib

dt
52ATvib1qT, ~10!

-

1957Y. Dain and R. M. Lueptow: Acoustic attenuation
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where matrixA5A(a1 ,a2 ,a3) of the system and the vecto
q5q(a1 ,a2 ,a3) depend on the mole fractionsa i of gas
constituents according to:

Aj j 5
1

t j
tran1 (

k51
kÞ j

4
1

t j ,k
vib

12exp~2hnj /kT0!

12exp~2hnk /kT0!
,

Ajk52
1

t j ,k
vib

12exp~2hnj /kT0!

12exp~2hnk /kT0!

nk

nj
, ~11!

qj5
1

t j
tran1 (

k51
kÞ j

4
1

t j ,k
vib

12exp~2hnj /kT0!

12exp~2hnk /kT0! F12
nk

nj
G ,

j ,k51,...,4,j Þk.

To summarize the calculation procedure for molecu
relaxation: The collision ratesZ( j ,k) and transition prob-
abilities P0→0

1→0( j ,k) and P0→1
1→0( j ,k) at a given temperature

and pressure are calculated based on Eq.~9! and the SSH–
Tanzcos theory. Then the relaxation timest j ,k

vib , andt j
tran are

calculated based on the constituent gas concentration
well as the collision rates and transition probabilities us
Eqs. ~7! and ~8!. Substitution of these values into Eqs.~10!
and ~11! provides a system of first order differential equ
tions that can be solved numerically forTj

vib . Then these
values can be substituted into the fifth equation of Eq.~1! for
the total energy of the gas mixture. Finally Eqs.~1! are
solved as described below.

III. SOLUTION PROCEDURE

The calculation of the attenuation of the acoustic wa
in a gas mixture requires the solution of the united system
differential equations~1! and~10!, is sought in the form of a
harmonic plane wave with all quantitiesp, r, u, e, T, andTj

vib

expressed in the plane wave form

f 5 f̄ e2 i ~vt2kx!, ~12!

where f̄ is the amplitude of the quantity. The subsitution
Eq. ~12! into the system of differential equations leads to
homogeneous system of algebraic equations in terms of
amplitudes

p̄

p0
5

T̄

T0
1

r̄

r0
, 2vr̄1r0kū50, vū2r0

21kp̄50,

~13!
ē2p0r0

22r̄50,

where

ē5cvT̄1( a ici
vibT̄i

vib . ~14!

Likewise, the substitution of Eq.~12! into the system of dif-
ferential equations~10! leads to the algebraic equation

TABLE II. P0→1
1→0( j ,k), wherej is the row number,k is the column number.

not used 1.43e2005 1.54e2006 1.12e2005
3.67e2007 not used 0.12 0.41
6.27e2009 0.02 not used 0.05
1.48e2007 0.21 0.16 not used
1958 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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This equation relates the amplitudes of the internal molec
temperaturesT̄vib to the amplitude of the gas temperatureT̄,
where the rows of the matrixA correspond to the vibrationa
modes under consideration, the columns correspond to
vibrational reactions, andI is the identity matrix.

Equations~13!, ~14!, and ~15! can be combined in ma
trix form as

By50, y5~ r̄,ū,p̄,T̄,T̄1
vib ,T̄2

vib ,T̄3
vib ,T̄4

vib!, ~16!

whereB is an 838 matrix of coefficients. These coefficien
depend on the gas concentrationa i , the frequencyv, and
the coefficients of the matrixA calculated for the vibrationa
modesni under consideration. Setting the determinant of m

FIG. 1. Comparison of theoretical sound absorption curves with experim
tal data in N2–H2O mixtures for different H2O concentrations~h!. Symbols:
Experimental data from Zuckerwar and Griffin~Ref. 16!. Curves: Theoreti-
cally predicted attenuation curves (T5297 K,P51 atm).

FIG. 2. Comparison of theoretical relaxation attenuation with experime
data for CH4. Symbols: Experimental data from Edmonds and Lamb~Ref.
22! (T5298.15 K, P51 atm, curve fit through data,1!, and Gravittet al.
~Ref. 24! (T5299.15 K,P51 atm, circles!. Curves: Theoretically predicted
attenuation~lower curve 298.15 K, upper curve 299.15 K!.
1958Y. Dain and R. M. Lueptow: Acoustic attenuation
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ta
trix B equal to zero provides a dispersion relation, which c
be solved numerically to providek as a function ofv. The
wave numberk is in general a complex value:k5kR1 ia.
The real part is proportional to the reciprocal of the wav
length,kR52p/l, and determines the actual speed of wa
propagation,a5v/kR . The dimensionless attenuation coe
ficient per wavelength isal.

To test our procedure, we compared our calculation
sound absorption in a binary N2– H2O mixture with experi-
mental results. In this case, the coefficient matrix is mu
simpler, sincea350. Using the procedure described abov
the attenuation can be calculated as a function of freque
The results of the calculation are compared to the experim
tal data of Zuckerwar and Griffin16 in Fig. 1 for four different
concentrations of water vapor. Although the theory sligh
under-predicts the relaxation frequency at which the ma
mum attenuation occurs, the overall fit of the model to
experimental results is quite good.

The vibrational relaxation of methane has been m
sured based upon reverberation experiments, acoustic
nance tube measurements, and the ultrasonic velo
method.21–25 The experimental results at room temperatu
~shown in Table III! indicate a relaxation frequency eithe
near 1.53105 Hz, which agrees quite well with our calcula
tions, or slightly less than 1.03105 Hz. In two cases,22,24it is
possible to compare results over a range of frequencies
-
o

e
r
n
n
re
e
a

t
ex
g

r
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shown in Fig. 2. The amplitude of the calculated attenuat
is somewhat less than the experimental value, but clearl
the proper range. The relaxation frequency matches one
periment quite well and is only slightly different from th
other. Given the variability in the experimental results e
dent in Fig. 2 and Table III, it is clear that the calculatio
agree quite well with the experiments.

IV. RESULTS

We first consider a N2– H2O–CH4 mixture, when water
vapor and methane are small additives with volume conc
trations of 0.03. Evaluation of matrixA at a temperature o
297 K and a pressure of 1 atm produces the relaxation ma

TABLE III. Comparison of theoretical calculations with experimental da
for CH4 relaxation.

Temperature
~K!

Calculated
relaxation
frequency
(105 Hz)

Experimental
relaxation
frequency
(105 Hz) Reference

382 3.10 1.89 Eucken and Aybar~Ref. 21!
298.15 1.46 0.85 Edmonds and Lamb~Ref. 22!
296 1.43 1.48 Parker and Swope~Ref. 23!
299.15 1.48 1.7 Gravittet al. ~Ref. 24!
303 1.53 0.94 Cottrel and Day~Ref. 25!,

0.3%N2
A5S 1.17e1004 22.95e1003 2715 24.05e1003

24.90e1003 4.28e1008 21.05e1008 22.88e1008

296.05 29.32e1006 4.31e1007 24.15e1007

21.94e1003 28.36e1007 21.36e1008 2.40e1008

D . ~17!
en.
en-
ters

d as
ig-

fre-
or.
on-
ery

t re-
Eigenvaluesl i of matrix ~17! define effective relaxation fre
quenciesf i5l i /2p of the ternary mixture which are equal t

f 151860 Hz, f 252.193104 Hz,
~18!

f 353.123107 Hz, f 458.213107 Hz.

The corresponding normalized eigenvectorsVi of matrix A
for eigenvaluesl i are presented in Table IV. Elements of th
eigenvectors describe the degree of participation of a vib
tional mode in the relaxation of the complex. The first eige
vectorV1 in Table IV indicates that the nitrogen contributio
to the relaxing complex is unity. Therefore, the effective
laxation frequencyf 1 can be considered as the effective r
laxation frequency of nitrogen as modified by the two sm
additives of water and methane. EigenvectorV2 correspond-
ing to the effective relaxation frequencyf 2 has detectable bu
small nitrogen contribution. The effective relaxing compl
comprises water and both modes of methane. The nitro
contribution in relaxing complexes for eigenvectorsV3 and
V4 corresponding to effective relaxation frequenciesf 3 and
f 4 is negligible. The effective complex forf 3 is water and
both modes of methane, whereas the relaxing complex fof 4

is water and moden4 of methane.
a-
-

-
-
ll

en

The results in Eqs.~17!, ~18!, and Table IV are for a
mixture of 3% water vapor, 3% methane, and 94% nitrog
Of course similar results can be obtained for other conc
trations of constituents. The constituent concentration al
the translational and vibrational relaxation times@Eqs. ~6!,
~7!, and ~8!# thereby altering the relaxation matrixA. Thus
the relaxation frequencies and eigenvectors can be foun
functions of concentrations of water vapor and methane. F
ure 3~a! shows the dependence of the lowest relaxation
quencyf 1 on the concentration of methane and water vap
The relaxation frequency is linearly dependent on the c
centration of both methane and water vapor, except at v
low methane concentrations. Likewise, the second lowes

TABLE IV. Normalized eigenvectors Vi of matrix A for
94%N2– 3%H2O– 3%CH4.

V1 V2 V3 V4

N2(n1) 1.000 20.034 20.000 0.000
H2O(n2) 0.005 0.529 0.717 20.956
CH4(n3) 0.006 0.645 20.223 20.007
CH4(n4) 0.005 0.550 0.661 0.293
1959Y. Dain and R. M. Lueptow: Acoustic attenuation



FIG. 3. Dependence of effective relaxation on the concentration in a ternary N2–H2O–CH4 mixture (T5297 K,P51 atm). ~a! Relaxation frequencyf 1 ; ~b!
Relaxation frequencyf 2 ; ~c! Nitrogen contribution term of the eigenvector forf 1 ; ~d! Nitrogen contribution term of the eigenvector forf 2 .
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ant
laxation frequencyf 2 is also linearly dependent on conce
tration except at low methane concentrations, as show
Fig. 3~b!. The reason for the nonlinearity at low concentr
tions of methane is evident from the nitrogen contribution
the relaxation as indicated in the first term of the eigenvec
The value of this term is plotted as a function of concent
tion in Fig. 3~c!. This term has a value near unity except
very low methane concentrations where its value drops
cipitously. The first term of the eigenvector related to t
contribution of nitrogen is much smaller for the second lo
est frequencyf 2 . The plot of its value as a function of con
centration in Fig. 3~d! shows a sharp change in its value
low methane concentration. The concentration for which
value changes sharply corresponds to the concentration
which the second relaxation frequency varies nonlinea
with methane concentration.

The third and fourth relaxation frequencies are linea
dependent on the water vapor and methane concentratio
shown in Fig. 4. In both cases, the contribution of the nit
gen to the relaxation is so small that it does not result in
nonlinearity.

While the variation of the relaxation frequencies wi
concentration is of interest with respect to the physical p
nomenon of vibrational relaxation, the key physical resul
the attenuation of sound. The attenuation of sound is fo
by solving for the dispersion relation of Eq.~16!. For a speci-
fied concentration of constituent gases in the mixture,
1960 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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dispersion relation provides the imaginary part of the wa
numbera, which is the sound absorption, as a function
frequencyv. Figure 5 shows the relaxational and classic
attenuation curves of a 94%N2– 3%H2O– 3%CH4 mixture
of gases as a function of frequency. For comparison,
relaxation attenuation of a 97%N2– 3%H2O and a
97%N2– 3%CH4 binary gas mixtures are also shown in th
figure. Only the peak corresponding to effective relaxat
frequencyf 2 of the ternary mixture~bold curve! is evident.
Effective relaxation frequenciesf 3 and f 4 are at much higher
frequencies and the absorption related to these frequenci
quite small. There is a slight inflection in the N2– H2O–CH4

curve nearf /p>103 Hz/atm that corresponds approximate
to the peak in the N2– H2O curve. The major peak at relax
ation frequencyf 2 in the N2– H2O–CH4 curve corresponds
to the major peak in the N2– CH4 curve, although a slight
inflection is evident in the N2– CH4 curve at a lower fre-
quency, probably corresponding to the interaction with nit
gen.

For comparison, the classical attenuation due to visc
ity and heat conduction was calculated for the gas mixt
using the classical formula.8 The viscosity and thermal con
ductivity used in calculations were based on physical pr
erties software.26 The classical attenuation ranges from 4
31027 to 4.531023 for 100 Hz/atm, f /p,106 Hz/atm.
Thus it is clear that the relaxational attenuation is domin
in the range of effective relaxation frequenciesf 1 and f 2 .
1960Y. Dain and R. M. Lueptow: Acoustic attenuation
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FIG. 4. Dependence of effective relaxation on the concentration in a ter
N2–H2O–CH4 mixture (T5297 K,P51 atm).~a! Relaxation frequencyf 3 ;
~b! Relaxation frequencyf 4 .

FIG. 5. Comparison of relaxation attenuation curves of a tern
N2–H2O–CH4 mixture with that for binary N2–H2O and N2–CH4 mixtures
(T5297 K,P51 atm), and classical attenuation. Bold Solid: Terna
N2–H2O–CH4 mixture with small H2O and CH4 additives. Fine Solid: Bi-
nary N2–CH4 mixture with small CH4 additive. Fine Solid: Binary N2–H2O
mixture with small H2O additive. Dotted: Classical attenuation for the te
nary mixture. In all cases the concentration of the small additives is 0.
1961 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
Classical attenuation dominates at higher frequencies.
Figure 6 shows the attenuation coefficient per wa

length versus concentration of the small additives water
por and methane at different frequencies of the sound wa
At a frequency comparable with the effective relaxation f
quency of nitrogenf 1(1 kHz) the surface of the attenuatio
coefficient demonstrate nonlinear dependence on the con
trations of both small additives. When the concentration
one of the additives is equal to zero the attenuation coe
cient is a monotonically increasing function of remainin

ry

y

.

FIG. 6. Dependence of attenuation due to relaxation processes on s
concentrations of water and methane for ternary N2–H2O–CH4 mixture (T
5297 K,P51 atm). ~a! 1 kHz; ~b! 2 kHz; ~c! 10 kHz.
1961Y. Dain and R. M. Lueptow: Acoustic attenuation
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additive’s concentration. The attenuation coefficient is no
strong function of the concentrations of either constitu
when the concentrations are sufficiently large. At 2 kH
slightly above the lowest relaxation frequencyf 1 , the attenu-
ation almost linearly depends on concentrations of water

TABLE V. Normalized eigenvectors Vi of matrix A for
94%CH4– 3%H2O– 3%N2.

V1 V2 V3 V4

N2(n1) 1.000 20.132 20.000 0.000
H2O(n2) 0.000 20.524 0.734 20.999
CH4(n3) 0.000 20.650 20.172 20.000
CH4(n4) 0.000 20.546 0.657 0.010
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methane. At 10 kHz, a frequency between relaxation f
quenciesf 1 and f 2 , the attenuation is more strongly depe
dent on methane concentration than on water concentra
Again it is helpful to consider the classical attenuation
comparison. The maximum classical attenuation for any
the three frequencies in Fig. 6 is 4.631025 for 100%N2 at
10 kHz/atm. Clearly, the relaxational attenuation is domin
at the frequencies shown in Fig. 6 except at very low me
ane and water concentrations.

Let us now examine attenuation of sound in
CH4– H2O–N2 mixture, when water vapor and nitrogen a
small additives. Evaluation of matrixA at 297 K and 1 atm
for a 94%CH4– 3%H2O– 3%N2 mixture produces the relax
ation matrix
A5S 2.37e1005 22.95e1003 22.24e1004 21.27e1005

2157 1.34e1010 23.31e1009 29.01e1009

23.07 29.32e1006 1.12e1009 21.30e1009

261.8 28.36e1007 24.28e1009 5.10e1009

D . ~19!
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all
The effective relaxation frequencies are

f 153.773104 Hz, f 251.403105 Hz,
~20!

f 359.753108 Hz, f 452.153109 Hz.

The corresponding normalized eigenvectorsVi of matrix A
for the eigenvalues are shown in Table V. Nitrogen play
primary role only in the lowest relaxation frequency. T
higher relaxation frequencies result from the relaxing co
plex of methane and water. In Fig. 7 only one peak cor
sponding to the effective relaxation frequencyf 251.43105

is evident in the attenuation curve for the ternary mixtu
The peak can be attributed to the relaxation of a wa
methane complex modified slightly by the presence of nit
gen. The effective relaxation frequenciesf 1 , f 3 , and f 4 do
not play a significant role. The relaxation attenuation cur
of a 97%CH4– 3%H2O and a 97%CH4– 3%N2 binary gas
mixtures merge and are similar to the attenuation of a tern
mixture, indicating the dominant role of methane. The d
pendence of the effective relaxation frequencyf 2 on the ni-
trogen and water vapor concentrations is quite small, vary
by only about 2% over 0% to 3%CH4 and 0% to 3%N2. The
classical attenuation is negligible in the range of effect
relaxation frequencyf 2 , but dominates at higher frequencie

Figure 8 shows the attenuation versus concentration
the small additives water vapor and nitrogen at different f
quencies of the sound wave. The attenuation linearly
pends on concentrations of water and nitrogen for all f
quencies, although the variation in attenuation is quite sm
At 10 kHz, which is much smaller than the effective rela
ation frequencyf 2 , and at 1 MHz, which is much larger tha
the effective relaxation frequencyf 2 , the attenuation due to
a

-
-

.
r-
-

s

ry
-

g

e

of
-

e-
-
ll.

relaxation is quite small compared to the attenuation at
kHz, which is quite close to the effective relaxation fr
quency f 2 . The maximum classical attenuation over t
range of concentrations is 2.931025 at 10 kHz, 4.431024 at
150 kHz, and 2.931023 at 1 MHz. Thus the classical attenu
ation is quite small compared to the attenuation due to re
ation at the two lower frequencies. However, at the hig
frequency, the classical attenuation is the same order as
relaxational attenuation.

FIG. 7. Comparison of relaxation attenuation curves of a tern
CH4–H2O–N2 mixture with that for binary CH4–H2O and CH4–N2 mixtures
(T5297 K,P51 atm), and classical attenuation. Bold Solid: Terna
CH4–H2O–N2 mixture with small H2O and N2 additives. Fine Solid: Binary
CH4–N2 mixture with small N2 additive and CH4–H2O mixture with small
H2O additive. Dotted: Classical attenuation for the ternary mixture. In
cases the concentration of the small additives is 0.03.
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V. CONCLUSIONS

The attenuation due to relaxation processes is the m
contributor to acoustic attenuation at low frequencies. Unf
tunately, until now the attenuation due to relaxation has b
quite difficult to calculate. In this paper we have applied t
theory for vibrational energy transfer to multicompone
mixtures. Previously this theory had been applied to sing
component and binary mixtures. We have extended
theory to three-component mixtures and indicated how
theory could be extended to mixtures with more compone
The theory matches experimental data quite well for
N2– H2O binary mixture and for pure methane.

We have applied the theory to mixtures of nitrogen, w

FIG. 8. Dependence of attenuation due to relaxation processes on the
centration of water and nitrogen for ternary CH4–H2O–N2 mixtures (T
5297 K,P51 atm). ~a! 10 kHz; ~b! 150 kHz; ~c! 1 MHz.
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ter vapor, and methane where either nitrogen or methane
been the dominant component of the mixture. The relaxa
frequencies that were calculated are strongly dependen
the concentration of small additives, even though the conc
tration of small additives never exceeded 3%. Two relaxat
frequencies appear for a mixture that is primarily nitroge
although one is so strong that it overwhelms the other. O
one relaxation frequency resulted for the attenuation of
gas mixture that was primarily methane.

The important role of small additives is also evident
the acoustic attenuation resulting from the relaxation p
cesses. In the case where nitrogen is the primary compon
the attenuation is strongly dependent upon the small con
tration of the additives. The influence of additives on t
attenuation in a gas mixture that is primarily methane
much smaller. Nevertheless, the attenuation due to relaxa
processes is much larger than that due to classical attenu
at low frequencies.

The analysis in this paper makes it clear that the the
of vibrational relaxation can be extended to multi-compon
mixtures to calculate the attenuation of sound. The weak
portion of the model is the estimation of the transition pro
abilities in SSH–Tanczos model where the quasi-class
approximation was used for the Lennard-Jones potentia
relatively low temperatures. More realistic collision potent
functions and the use of molecular dynamics to determ
transition probabilities could significantly improve th
model. Nevertheless, the model provides a theoretical me
to investigate the influence of various conditions includi
temperature, pressure, and constituent gas concentration
relaxational attenuation.
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