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The influence of intrinsic absorption in a relaxing medium and the resulting three-dimensional
diffraction correction of the magnitude of the acoustic pressure averaged over the surface of a
receiver is investigated for a tone burst. A rigorous formula for the damped acoustic pressure
average at the receiver was obtained for arbitrary pulsed waves in a mono-relaxing medium.
Depending on the pulse oscillation frequency, envelope duration, and relaxation frequency of the
media, the plane wave burst envelope can be reduced, amplified, or otherwise deforni2@D3 ©
Acoustical Society of AmericalDOI: 10.1121/1.1602701

PACS numbers: 43.35.Ae, 43.35.Fj, 43.20.EEH]

I. INTRODUCTION proximate formulas for the average pressure over the piston
in the absence of absorption based on the Lomraed
The prediction of diffraction for a transient burst propa- wjlliams* harmonic wave solutions of the Helmholtz equa-
gating through an acoustic medium that exhibits relaxation igjon in an attempt to account for diffraction effects in the

of interest for interpreting measurements of acoustic attenUs, o osurement of acoustic attenuation. Khimefialso ap-
ation. In this paper, we develop a theory for the three-

: . . X : . = plied the loss-less formula of Williarfior the average har-
dimensional diffraction of a tone burst signal in a relaxing . . . . .

. . “monic pressure to the diffraction correction of attenuation,
medium. Previous research has addressed separately Vanodjesmonstrat'n the influence of intrinsic absorotion on the
pieces of the problem such as attenuation due to three- i Ny it ; ;1 ! . pu q
dimensional diffraction of a harmonic wave, attenuation dug'@/Mmonic average pressure of the piston. Rogers an
to relaxational losses of a plane harmonic wave, or attenua/anBurerf obtained a simple expression for the diffraction
tion of a single plane pulse due to relaxational losses. HowOrrection using Lommel's expression, which is a high-
ever, to our knowledge no previous study has addressed tffeequency limit of Williams’ exact expression.
combined problem of attenuation due to diffractitfor a In addition to attenuation due to diffraction, classical
three-dimensional wave rather than for plane wafee a  attenuation and relaxational attenuation reduce the amplitude
burst signal(as opposed to a harmonic wave or a singleof a harmonic acoustic wave as it propagates. The theory of
pulse, while including attenuation due to relaxational lossesharmonic wave attenuation in relaxing medium was formu-
(as opposed to ignoring relaxational logsgsis this prob-  lated by Knesérand Mandel'shtam and LeontoviétThere
lem that is addressed h_ere. _ _ _ _is a substantial experimental and theoretical literature ad-

We assume that a rigid circular planar piston with a uni-gressing relaxation in gases. We have recently extended the

form.distri-bL.Jtiqn Of normal velocity on its §urface is embed- heoretical prediction of relaxational attenuation for a har-
ded in a rigid infinite baffle and radiates into the half—spacem

of an |_deal homogeneous, |sc_)tr0p|cz relax_lng med|ur_n_. An The evolution of a single plane pulgéeather than a har-
acoustically transparent receiver with uniform sensitivity . . . . S
over its surface and a uniform amplitude-frequency responsrenon'? wave _|n the absence of d|ffra_10t|on or scattering |n_
is coaxial with the piston. We are interested in the rigoroud €/2Xing medium has also been studied. A thorough analysis
calculation of the average pressure exerted on the receiver I%f e propagation of plane pulses in a relaxing media with
the three-dimensional acoustic pressure burst after propagdglaxation laws modeling a variety of homogeneous materi-
ing through a relaxing medium. Although a comprehensiveals was made in the review of Vainshtéfnwith a focus on
investigation of this problem has not been reported, certailectromagnetic waves. Detailed analyses of the propagation
aspects of the problem have been considered by previouws a single plane-wave acoustic pulse in the case of a mono-
researchers. relaxing medium were performed analytically and numeri-
Several methods to correct for the attenuation of a threecally by Dunin!? Dunin and Maksimov® Andreevet al,'*
dimensional harmonic steady-state pressure wave due to difgrichev and MaksimoV? and Andreeet al® Their results
fraction(but_ not attenuation dye to relaxational IoSslwve. show a broadening of the pulse and a decrease in the pulse
bee_n des_cnb(_ad based on various mode!s of tr21e harmon|call¥mpmude as the pulse propagates in space. In some cases,
excited field in a loss-less mediuimSeki et al” used ap- the theory was shown to match experiments reasonably

well,**1¢ although in other cases differences between the

dAuthor to whom correspondence should be addressed. Electronic mailneasurement and theory were attributed to diffraction ef-
r-lueptow@northwestern.edu

onic wave to a three-component gas mixttfre.
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fects, which are not taken into account when assuming a 1
plane wave'® (p(z,1))= gj p(r,z,t)ds, )

The aim of this paper is to calculate analytically the
diffraction correction to the attenuation of a three-WhereSis the area of receiver and angled brackets denote an
dimensional tone burst in a mono-relaxing gas medium. T@veraged value.
put this into context, the three-dimensional effects of diffrac- ~ We suppose for brevity that the radius of the receiver is
tion on a harmonic wave in a lossless medium have beeﬁqua| to that of the transducer. In order to calculate the av-
studied, as have the effects of relaxational losses on a hagrage pressure of E¢3), the Fourier transform in the time
monic wave or a single pulse for a one-dimensional planglomain is applied to Eq(1) using boundary condition Eg.
wave. However, in order to recover the attenuation of sound2). Then the average pressure can be represented for all
from practical experiments in a relaxing medium, it is essenfrequencies in the form of Fourier integral, where use was
tial to formulate a model that can describe both the attenuanade of the formula of average harmonic pressure of
tion due to relaxational acoustical properties of the relaxing/Villiams®*
medium and the attenuation due to the three-dimensional dis- 1 i
tortion of acoustic wave. In addition, since many experi- <p(z’t)>:_f (p(z,0))e"“ dw
ments use a short burst of sound to avoid reflections in the V2m J -
measured quantities, neither the harmonic wave nor the

single pulse analysis is appropriate. Thus, the aim of this :LJM e ik(w)z

paper is to calculate analytically the diffraction correction to NPT =

the attenuation of a three-dimensional tone burst in a mono-

relaxing gas medium. _4 fﬂlzefik(w)(zz+4a2 0f "2 0 dg
The solution will be based on the application of a 7 Jo

Green'’s function to the three-dimensional wave equation for — ot
acoustical pressure in a medium with relaxation and averag- XM(ow—wo)e'” do. (4)

ing the pressure over the surface of the receiver. Consernhe expression in the brackets is identical to that derived by
quently, the dependence of total attenuation of the averag@jilliams® for a harmonically oscillating piston in a lossless
acoustic pressure on diffraction and relaxational attenuatiomedium, where the wave number is real. In &), the wave
can be separated. A result is that the phenomenon of diStOﬁumberk(w), which is the dispersion relation of relaxing
tion of the complex envelope of the oscillating pulse as itmedjum, is a complex function of frequency. The first term
propagates can be represented by a relation that depends jgithe brackets is that for a plane harmonic wave; the second
the relaxation time of medium and the frequency of pulseerm in the brackets is the diffraction correction for a plane
oscillation. acoustic wave.
If the envelope function in Eq2) is set to unity,M(t)

=1, the piston source becomes a harmonic oscillation. In
Il. THEORETICAL TREATMENT such a case the Fourier transformd{t) is the Dirac delta-

function, and the formula for the average oscillating pulse

A linear acoustic wave equation for acoustic pressure "bressure(4) simplifies to the formula of the average har-

a mono-relaxing gas medium has the form suggested by\onic pressure of Williamghis Eq. (16)],* which is based

Rudenko and Soluyat, on Eq.(1) with the relaxation terms omitted. Therefore, Eq.
#p t ap (4) for the average pressure of a burst in a mono-relaxing
P CoAp— mQZ)Af We’(‘*t'ﬂfrmax@tr =0, (1)  medium is a generalization of the Williams formiiahich is

t —

limited to a harmonic wave in a lossless medjum

Where 7,4, is the relaxation time for the relaxation process,  1he dispersion gelanon for Eq1) can be approximated
m=(c2—c(2))/c§ is the net increase in phase speed as frefollowing Vainshteirt! and Andree\et al1* by the expression
qguency varies from zero to infinity which characterizes the
relaxation strengttg, is the equilibrium speed of sound, and k(w)= o 1
C., is the frozen speed of sound. Typically, parametesat- 0

/ ’
Mw T, )] m w
141 (OS] Co 2Coc(1+ | a)Tre|aX)

isfies the conditiorm<<1. with an accuracy ofm’?, where m’'=2(c,,—co)/cy. The
We assume a transient source condition for normalizedwo forms for the net increase in phase speaéndm’, are
pressure, of the same order of magnitude because-m’'=(c.
22
i —Co)“/cg<l.
p(r.00) =H(a-1)M(D)es, @ %%

The dispersion relation E@5) can be used to transform
whereH is the Heaviside function, is radial coordinateais  the average pressure E@}) into a form suitable for the
the radius of the piston, and the burst enveldpét) is a  separate investigation of the attenuation of the oscillating
slowly varying function of time in comparison with the pe- portion of the burst and the envelope of the burst for the
riod of the oscillating componeng' “ot. source Eq(2). First, let
The average pressure on an acoustically transparent re-

ceiver placed coaxial in relati i §= 0w ©

placed coaxial in relation to the piston source depends
on the spacing between transducer and receiver so that so that the Fourier integral E¢4) becomes

J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003 Y. Dain and R. M. Lueptow: Diffraction and attenuation of a tone burst 1417



it 4o . gt ik(wg) +oo 4eik(w0)2
(p(z,t))~ g ket wo)z (p(z,t))=g'wot w0 Zf Omod ¢ trer—S) —
N2 e
4 (w2 . 2 2 00 12 /2 ,
_;f e ik(é+wg)(z°+4a% cos )V gi2 p g X . Omod Z"(0) ,ter—S)
0
XM(§)e' dé. () x e~ k(@0)Z(0) gir? g d 9| M (s)ds, (14)

The form of the dispersion relation E¢p) makes possible

the algebraic transformation in E), leading to a modified Where function/"(6) is calculated by means of E(L3), sis
dispersion relation of the form a dummy parameter of integration, and

Z(60)=(z%+4a%cog 6)2,

k(wo+ &) =k(wp) + Kmod &), (tS)
a 12 (19
where the modified dispersion parameter Z'(0)= g”2+4 G "f' ) co2 9) )
m’
B § m’§ Equation(14) is a generalization of the well-known ex-
Kmod )= —+ ————— 9) ; oo ; . .
cm 2c.(1+iéry, pression for the diffraction correction of harmonic wave in a
lossless medium of William$However, Eq.(14) permits a
depends on new parameters of relaxation burst via the envelophl (t) and includes relaxational effects
via the complex parametet”, which depends on the relax-
o m’ Trelax (10 ation time. It is represented as the product of an oscillatory

function and a convolution integral, which can be interpreted

as the evolution of a complex envelope function. The inte-
Since the integrated function in E(}) decays exponen- gration of the first term in the bracket of the convolution

tially as £ approaches infinity, the Fourier integral E@) can  integral describes the evolution of the burst envelope in a

[1+i Trelaxwo]z C T [1+i7Treiawo]

be represented using the dispersion relation(Bpas one-dimensional relaxing medium, whereas the integration
of the second term describes the evolution of its diffraction
gioot—ik(wg)z ryo — 4giwat correction. The attenuation of the harmonic wave portion of
(p(z,1))= T . elétkmod 20V (&) dE— - the burst signal does not depend on attenuation of the enve-
m lope functionM (t). However, the evolution of the complex
a2l 1 ik (62442 cof o)1 envelope function represented by the iqtegral in @49) is '
X fo Ef mo affected by the frequency of the oscillation of the harmonic

wave portion of the signal due to the modified kernel for the
relaxing medium with modified parameters related to the net
X M(g)dg) ~ik(wg)(z+4a” cof 02 g2 g g g, (11)  increase in phase speed and the relaxation time(TH.
It is convenient for analysis purposes to transform the
convolution integral in Eq(14) to a dimensionless form. We

ZzereF(l);;f(; Ik:‘ tegr?é??;;gsnrls]?gh;?%;fe t(r)mfeEvtjle)IICI?r?ownierduce the dimensionless retarded time normalized by the
P y 9 9 relaxation timer,q.y, and the dimensionless separation be-

expression for the Green’'s function as suggested b¥ . .
' X . ween piston and receiver
Vainshteirt! and Dunint? P

Y . T="1et/ Trelax: =5/ Trelaxs { =M Z/2C., Trgjax, (16)
Omod £ tred =XP(— £") (te) + H (1o

so that
( g -)1/2 p( t aj) N
ret
X - exp —| "+ - " 2 CooTreIaxa
tretTrela Trel Z'(0)=|{°+4 m’ cog 6| . (17)
X11[ 20" tret) Therand ™7, (12 Then the average pressure Etg) can be written as

which describes the evolution of a delta-function input in a ; oot —ik(wgz [ N =
relaxing medium with modified parameters of relaxation Eq. (p(z1))=e | BT 00, Trela)
(10). Herel ; is the modified Bessel function of the first kind. »
In addition,t ¢ is the retarded time ang” is the dimension- A€ (“’O)ZJ /ZG(Z( P )
less complex number depending on the separatibaving T 0 T~ T @0, Trela
the forms
—ik(wg)Z(0) i N

ter=t— z/c.,, é,w m”Z/ZCgcTrelax (13) x e~ Slnz 0 d@} M ( T)dT, (18)
Using variables Eq(13) for brevity, the convolution integral where the dimensionless Green’s functiGi{, 7, wg, Treiay
Eq. (11) takes the form takes the form
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l attenuated by the factors preceding it, but is not distorted in
G(Z,T,wo,fremx):eﬂ{—m o(m)+H(7) any way.
relx0 Another simplification of Eq(18) is to consider a plane
2\ 12 ) burst rather than a three-dimensional burst in a relaxing me-
x| 2] exd = (14 Treawo) ] dium. In this case, the second term in the brackets in(Eg).
drops out. Thus,
X|1[2(§T)1/2] ) (19) <p(z,t)>:eiwot—ik(u)0)2
+ oo
In Eqg. (18), the first term in the large brackets is the plane xf G(¢, 7= 7,00, Trao M (7)d T
wave portion, while the second term in the brackets reflects -
the three-dimensional character of the wave. =glwot-ik(woz\g (7)) (22)

The diffraction correction integral term in EL8) for
the average pressure depends on the slowly varying envelogdlis is an exact equation, which is a generalization of the
functionM () and the plane harmonic wave oscillatieg. ~ Solution for a single pulse in a relaxing meditimi® that
However, it is possible to asymptotically simplify the diffrac- allows for a plane burst rather than a single pulse.
tion correction in the case of the short wave limit by apply-
ing Laplace’s method for contour integralsee Ref. 18,
Theorem 6.1, p. 1250 the internal integral over a nonzero ||I. ANALYSIS AND NUMERICAL EXAMPLES
separatiorz, comparable with the radius of the piston. This
yields an asymptotic series in powers@f=aw,/c.., cal- We analyze evolution of a planar burst in a relaxing
culated in two stationary point8=0 and #==/2. Only the ~ Medium using the exact expression E2p), in which relax-
point #=m/2 contributes to the leading term in this ation and the burst envelope are factors. The convolution
asymptotic representation. This is a result of the edge of théttegral in Eq.(22) with kernel Eq.(19) describes evolution
circular piston dominating the diffraction correction term. At of & complex burst envelopé o 7), of an oscillating
high frequency(2,>0, the asymptotic representation of the Pulse in the same form as the evolution of a single ptfise.

average pressure is An important distinction from the case of single pulse propa-
gation is the oscillatory nature of the complex kernel as the
_ 27 _ _ function of retarded time, depending on the relaxation time
<D(Z,t)>%( 1-e '™/ —2) glwotiklwo)z and the frequency of oscillation. The interplay of these inde-
mK(wo)a pendent parameters results in an anomalous behavior of the
+oo0 L o complex envelope, which is quite different from that for a
% |6t T, ran MDA (20 single pulse

To demonstrate the interplay between the burst fre-
Here, the term in parentheses is the three-dimensional difiuency and the burst envelope, we calculate the absolute
fraction correction, the factor expft—ik(wg)z) describes Value of the burst envelope for different separations between
the plane wave evolution of harmonic oscillation includingthe piston and the receiver for a variety of oscillation
the effect of attenuation due to relaxational losses, and thBequencies using a Gaussian  envelopéM(t)
integral describes the evolution of the enveldpét) of the — =exp(-t¥2y?r%,). The following parameters were used
burst Eq.(2). The form resembles the appearance of the evofor the calculation: radius of pistoa=0.01m, the frozen
lution of a single pulse if the frequency of oscillatian, ~ Speed of sound..=300m/s, relaxation time;e=10""s,

=0 and the product,e o in the kernel Eq(19) is set to  and the net increase in phase spegd- 102, These param-
zerot eters are typical of ultrasonic transducers in air. The param-

If, in addition, the period of harmonic oscillation etery defines the width of the envelope. The dimensionless
1T o IS Much less than the envelope duration, E2f) separationy between the piston and the receiver is defined by

can be simplified to Eq. (16).
It is instructive to investigate the evolution of the enve-
_ 2z _ lope using Eq(22) and varying the duration of the Gaussian
<p(z,t)>%( 1-e”'™ m) eleot T IM(1). envelope and dimensionless frequemgyrax. First let the
0

1) parametery=1 in the Gaussian envelope and let the dimen-
sionless frequency of the oscillations in the burst be 0

Here a=m’'/2c,, 7,¢ax, Which does not depend on the fre- <wg7e=20. In Fig. Xa), the shape of the transmitted
guency of modulatiomg, is the relaxational attenuation at a burst and its envelope are shown for
frequency well above the frequency associated with thevy7e = 0,0.5,1,2,3,3.5,10,20, corresponding to O to 20 os-
maximum relaxational attenuation. Instead of the envelopeillations within the burst envelope. Figuréb]l shows the
M(t) being part of a complex integral as in EQO), the evolution of the burst envelopeVl .. {(7), which corre-
envelope in Eq.21) appears as the initial envelope. The sponds to the integral in ER2). Here the horizontal axis is
relaxational attenuation of the modulated pulse depends onithe dimensionless retarded time=t o/ 7c1ax, and envelope
on exp{wgt—a2) and the diffraction correction in parenthesesprofiles are the calculated at dimensionless distances from
in Eqg. (21). Thus, the result is that the envelop(t) is  the piston 0f{=0,2,4,6,8. The curve faf=0 is the Gaussian
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FIG. 1. (a) Gaussian bursts fop=1 for different values of the dimensionless parameigt,.,,=0,0.5,1,2,3,3.5,10,2@b) Evolution of the burst envelopes
for woTe=0,0.5,1,2,3,3.5,10,20 at dimensionless separatiogs-0f2,4,6,8. The Gaussian curveratO corresponds tg=0; the bold curve corresponds to
=8 for all cases excepby 7= 10, 20 where all curves overlap.

curve centered at=0; the curve for{=8 is bold; curves for  the amplification decreases, so that @7 a= 10, 20 the

{=2,4,6 lie between thé=0 and{=38 curves. amplification is negligible and the burst duration is un-
For woTrelax= 0, Which is the case of a single pulse, the changed because the oscillating pulse attenuates as a plane

evolution of the complex envelope degenerates to the evolitharmonic wave.

tion of the Gaussian single pulse. The pulse amplitude de- The maxima of the envelope magnitudes are shown in

creases with distance, while the pulse duration increases. Affsig. 2 as functions of the dimensionless parametgr ey

dreevet al® observed a similar broadening of a single pulsefor distances from the piston @=0,2,4,6,8. The horizontal
and a decrease in the pulse amplitude.

For wg7eax= 0.5, similar envelope broadening occurs, 30
accompanied by decreasing amplitude for short distances
from the piston. However, faf=6 the maximum of the burst

envelope increases with distance. Such amplification cause: %
the attenuation of the oscillating pulse to differ substantially

from the attenuation of a harmonic wave or a single pulse. % 2°[
The combined effects of the burst oscillation, the burst enve- £
lope, and the relaxation of the media produce this result. This g 151

amplification can be quite large, noting the different vertical =
scales used in Fig.(f). The amplification reaches a maxi- 10b
mum for the case 0bg7eia= 2, Where the maximum ampli-

tude of the burst envelope is over a magnitude larger than

that of the transmitted burst. For<dwgre,=3.5, the am- °

plification weakens and the envelope splits into in two : - - -

humps. The weakening may be attributed to the oscillation of 0o 2 4 6 8 10
the second term in the kernel E(L9) as a function ofr, 0% relax

which leads to degradation of its convolution with the burst . .

. ; . . FIG. 2. Maximum values of the Gaussian burst envelopes calculated at
enve_lope and eventual QOm_lnatlon of the_ConV()lUt'On Withgimensional separations af=0,2,4,6,8 fory=1. The horizontal line at
the first term. As the oscillation frequency increases furtherm g, ma—=1 corresponds t¢=0; the bold curve corresponds te-8.
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FIG. 3. (a) Gaussian bursts fop=0.5 for different values of the dimensionless parametgr,..=0,1,2,4,6,7,20,4Qb) Evolution of the burst envelopes for
WoTrela= 0,1,2,4,6,7,20,40 at dimensionless separations=df,2,4,6,8. The Gaussian curvet0 corresponds tg=0; the bold curve corresponds {&-8
for all cases excepbg7ea= 20, 40 where all curves overlap.

line atM rjax max=1 corresponds tg=0; the bold curve cor- tude of unity. However, the degree of amplification and the
responds t@=8. The magnitude of the envelope grows quitefrequency at which the maximum occurs both increase as the
large as the separation distangéncreases for £wgrea  €NVElOpe shortens. It appears that when the period of the
3. pulse is similar to the duration of the envelope, the amplifi-
Now we compare this result foy=1 with the evolution ~ cation occurs. For example, the combinationgfeja= 4,
of the Gaussian envelope for shorter and longer durationsy=0.5), (0o Tela= 2, Y=1), and (@qTrela= 1, y=2) all con-
y=0.5 andy=2. In Fig. 3a) for y=0.5, half as many oscil- Sist of one full wave within the burst envelofsee Figs.
lations are included in the shorter burst envelope than for the

durationy=1 at the sam@7,eax- IN Fig. 3b), the amplifi- 70
cation of the envelope occurs over a wider range of the di-
mensionless frequency, <lwgTe=6. In addition, the 60}
maximum amplitudes are higher than those for a wider en-
velope, y=1 in Fig. 1(b). This is also reflected in Fig. 4, 50t

when compared to Fig. 2. The maximum amplification can
be more than twice as much for the shorter envelope, noting
the differences in the vertical scales in the figures.

For y=2, more oscillations are included within the <~ 30|
longer envelope than foy=1 at the sameg7cax @S Shown
in Fig. 5(@), noting the different horizontal scale from previ-
ous similar figures. Like the previous two cases, amplifica-
tion of the envelope occurs as shown in Figo)5but in this
case the range of frequencies is smaller=0uy 7,5 =2. In o - ; . i
addition, the maximum amplitudes are much smaller. These (] 2 4 6 8 10

. . . . o7

results are more evident comparing Fig. 6 to Figs. 2 and 4, 0 ‘relax
noting the substantially different vertical scales. FIG. 4. Maximum values of the Gaussian burst envelopes calculated at

In spite of the differences in the three cases, the ampligimensional separations @=0,2,4,6,8 fory=0.5. The horizontal line at
fication always occurs wheg 7o has an order of magni- M g ma=1 corresponds t¢=0; the bold curve corresponds ge-8.

40f

relax—-max

10t
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FIG. 5. (a) Gaussian bursts foyp=2 for different values of the dimensionless parametgf,e.,= 0,0.5,1,1.5,2,2.5,5,1@b) Evolution of the burst envelopes
for woTea=0,0.5,1,1.5,2,2.5,5,10 at dimensionless separatioids-6f2,4,6,8. The Gaussian curvezat0 corresponds tg=0; the bold curve corresponds
to (=8 for all cases excepbg7. 20,10 Where all curves overlap.

1(a), 3(a), and %a)]. In all three cases, the maximum ampli- lution with the Gaussian envelope. Its second term oscillates
fication occurs very near these frequencies, as shown in Figas expCiwgea - When the period of Gaussian envelope is
2,4, and 6. comparable with the period of oscillation, the second term in
The nature of the amplification of the burst envelope carthe brackets dominates, and the convolution of the oscillating
be understood by looking into dependence of the kernel E¢term withM(7) is an increasing function of distangeCon-
(19 on the dimensionless frequenay .- The kernelG, sequently, the maximum amplitude of the envelope increases
is a product of two factors: the first one, expf/(1  with distance. However, the rate of the growth of the enve-
+iwgTelay), depends on the distance from the piston; thelope’s amplitude is modulated by the factor in the kernal
second factor, which is in brackets in Eq9), is the convo-  preceding the bracketed term, exg{(1+iwg7iead). Of
course, for largemwq7.qax, this term is less significant. Thus,

10 r r " r for small y, where amplification occurs for a larger value of
woTrelax: the envelope is amplified more than for large
where the amplification occurs at a smaller valu@gf,qjax-

8r ] From Figs. 2, 4, and 6 there appears to be frequency at
which there is a change from amplification to a situation of
5 o nearly no amplification, which is characteristic of a harmonic
g . . e )
7 wave. This occurs whemwg Ty IS sufficiently high so that
% the oscillation of the second term in the kernel yields a con-
= 4 volution integral with very small magnitude, and the expo-
nential factor expt J/(1+iwg7ea) dominates the evolution
of the complex envelope.
2.
=4 IV. CONCLUDING REMARKS
% 2 4 6 8 10 Equation(18) describes the interaction between the dif-

0.7 . . . .
0 ‘relax fractional attenuation and the relaxational attenuation as a
FIG. 6. Maximum values of the Gaussian burst envelopes calculated ttone burst propagates between circular transducers in a re-

dimensional separations af=0,2,4,6,8 fory=2. The horizontal line at ﬁa}xmg medium. Applying this formulation to th? more
M retax max=1 corresponds tg=0; the bold curve corresponds ge-8. simple case of a planar burst demonstrates the interaction
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