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The influence of intrinsic absorption in a relaxing medium and the resulting three-dimensional
diffraction correction of the magnitude of the acoustic pressure averaged over the surface of a
receiver is investigated for a tone burst. A rigorous formula for the damped acoustic pressure
average at the receiver was obtained for arbitrary pulsed waves in a mono-relaxing medium.
Depending on the pulse oscillation frequency, envelope duration, and relaxation frequency of the
media, the plane wave burst envelope can be reduced, amplified, or otherwise deformed. ©2003
Acoustical Society of America.@DOI: 10.1121/1.1602701#
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I. INTRODUCTION

The prediction of diffraction for a transient burst prop
gating through an acoustic medium that exhibits relaxatio
of interest for interpreting measurements of acoustic atte
ation. In this paper, we develop a theory for the thre
dimensional diffraction of a tone burst signal in a relaxi
medium. Previous research has addressed separately va
pieces of the problem such as attenuation due to th
dimensional diffraction of a harmonic wave, attenuation d
to relaxational losses of a plane harmonic wave, or atten
tion of a single plane pulse due to relaxational losses. H
ever, to our knowledge no previous study has addressed
combined problem of attenuation due to diffraction~for a
three-dimensional wave rather than for plane wave! for a
burst signal~as opposed to a harmonic wave or a sin
pulse!, while including attenuation due to relaxational loss
~as opposed to ignoring relaxational losses!. It is this prob-
lem that is addressed here.

We assume that a rigid circular planar piston with a u
form distribution of normal velocity on its surface is embe
ded in a rigid infinite baffle and radiates into the half-spa
of an ideal homogeneous, isotropic, relaxing medium.
acoustically transparent receiver with uniform sensitiv
over its surface and a uniform amplitude-frequency respo
is coaxial with the piston. We are interested in the rigoro
calculation of the average pressure exerted on the receive
the three-dimensional acoustic pressure burst after propa
ing through a relaxing medium. Although a comprehens
investigation of this problem has not been reported, cer
aspects of the problem have been considered by prev
researchers.

Several methods to correct for the attenuation of a thr
dimensional harmonic steady-state pressure wave due to
fraction ~but not attenuation due to relaxational losses! have
been described based on various models of the harmoni
excited field in a loss-less medium.1 Seki et al.2 used ap-

a!Author to whom correspondence should be addressed. Electronic
r-lueptow@northwestern.edu
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proximate formulas for the average pressure over the pis
in the absence of absorption based on the Lommel3 and
Williams4 harmonic wave solutions of the Helmholtz equ
tion in an attempt to account for diffraction effects in th
measurement of acoustic attenuation. Khimunin5,6 also ap-
plied the loss-less formula of Williams4 for the average har-
monic pressure to the diffraction correction of attenuatio
demonstrating the influence of intrinsic absorption on
harmonic average pressure of the piston. Rogers
VanBuren7 obtained a simple expression for the diffractio
correction using Lommel’s expression, which is a hig
frequency limit of Williams’ exact expression.

In addition to attenuation due to diffraction, classic
attenuation and relaxational attenuation reduce the ampli
of a harmonic acoustic wave as it propagates. The theor
harmonic wave attenuation in relaxing medium was form
lated by Kneser8 and Mandel’shtam and Leontovich.9 There
is a substantial experimental and theoretical literature
dressing relaxation in gases. We have recently extended
theoretical prediction of relaxational attenuation for a h
monic wave to a three-component gas mixture.10

The evolution of a single plane pulse~rather than a har-
monic wave! in the absence of diffraction or scattering
relaxing medium has also been studied. A thorough anal
of the propagation of plane pulses in a relaxing media w
relaxation laws modeling a variety of homogeneous mat
als was made in the review of Vainshtein,11 with a focus on
electromagnetic waves. Detailed analyses of the propaga
of a single plane-wave acoustic pulse in the case of a mo
relaxing medium were performed analytically and nume
cally by Dunin,12 Dunin and Maksimov,13 Andreevet al.,14

Larichev and Maksimov,15 and Andreevet al.16 Their results
show a broadening of the pulse and a decrease in the p
amplitude as the pulse propagates in space. In some c
the theory was shown to match experiments reasona
well,14,16 although in other cases differences between
measurement and theory were attributed to diffractionil:
114(3)/1416/8/$19.00 © 2003 Acoustical Society of America
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fects, which are not taken into account when assumin
plane wave.16

The aim of this paper is to calculate analytically t
diffraction correction to the attenuation of a thre
dimensional tone burst in a mono-relaxing gas medium.
put this into context, the three-dimensional effects of diffra
tion on a harmonic wave in a lossless medium have b
studied, as have the effects of relaxational losses on a
monic wave or a single pulse for a one-dimensional pla
wave. However, in order to recover the attenuation of so
from practical experiments in a relaxing medium, it is ess
tial to formulate a model that can describe both the atten
tion due to relaxational acoustical properties of the relax
medium and the attenuation due to the three-dimensional
tortion of acoustic wave. In addition, since many expe
ments use a short burst of sound to avoid reflections in
measured quantities, neither the harmonic wave nor
single pulse analysis is appropriate. Thus, the aim of
paper is to calculate analytically the diffraction correction
the attenuation of a three-dimensional tone burst in a mo
relaxing gas medium.

The solution will be based on the application of
Green’s function to the three-dimensional wave equation
acoustical pressure in a medium with relaxation and ave
ing the pressure over the surface of the receiver. Con
quently, the dependence of total attenuation of the aver
acoustic pressure on diffraction and relaxational attenua
can be separated. A result is that the phenomenon of di
tion of the complex envelope of the oscillating pulse as
propagates can be represented by a relation that depen
the relaxation time of medium and the frequency of pu
oscillation.

II. THEORETICAL TREATMENT

A linear acoustic wave equation for acoustic pressure
a mono-relaxing gas medium has the form suggested
Rudenko and Soluyan,17

]2p

]t2
2c0

2Dp2mc0
2DE

2`

t ]p

]t8
e2~ t2t8!/trelax]t850, ~1!

wheret relax is the relaxation time for the relaxation proces
m5(c`

2 2c0
2)/c0

2 is the net increase in phase speed as
quency varies from zero to infinity which characterizes
relaxation strength,c0 is the equilibrium speed of sound, an
c` is the frozen speed of sound. Typically, parameterm sat-
isfies the conditionm!1.

We assume a transient source condition for normali
pressure,

p~r ,0,t !5H~a2r !M ~ t !eiv0t, ~2!

whereH is the Heaviside function,r is radial coordinate,a is
the radius of the piston, and the burst envelopeM (t) is a
slowly varying function of time in comparison with the pe
riod of the oscillating component,eiv0t.

The average pressure on an acoustically transparen
ceiver placed coaxial in relation to the piston source depe
on the spacingz between transducer and receiver so that
J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003 Y. Dain
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^p~z,t !&5
1

SE p~r ,z,t !dS, ~3!

whereS is the area of receiver and angled brackets denote
averaged value.

We suppose for brevity that the radius of the receive
equal to that of the transducer. In order to calculate the
erage pressure of Eq.~3!, the Fourier transform in the time
domain is applied to Eq.~1! using boundary condition Eq
~2!. Then the average pressure can be represented fo
frequencies in the form of Fourier integral, where use w
made of the formula of average harmonic pressure
Williams4

^p~z,t !&5
1

A2p
E

2`

1`

^p~z,v!&eivt dv

5
1

A2p
E

2`

1`Fe2 ik~v!z

2
4

p E
0

p/2

e2 ik~v!~z214a2 cos2 u!1/2
sin2 u duG

3M̄ ~v2v0!eivt dv. ~4!

The expression in the brackets is identical to that derived
Williams4 for a harmonically oscillating piston in a lossles
medium, where the wave number is real. In Eq.~4!, the wave
numberk(v), which is the dispersion relation of relaxin
medium, is a complex function of frequency. The first te
in the brackets is that for a plane harmonic wave; the sec
term in the brackets is the diffraction correction for a pla
acoustic wave.

If the envelope function in Eq.~2! is set to unity,M (t)
51, the piston source becomes a harmonic oscillation.
such a case the Fourier transform ofM (t) is the Dirac delta-
function, and the formula for the average oscillating pu
pressure~4! simplifies to the formula of the average ha
monic pressure of Williams@his Eq. ~16!#,4 which is based
on Eq.~1! with the relaxation terms omitted. Therefore, E
~4! for the average pressure of a burst in a mono-relax
medium is a generalization of the Williams formula~which is
limited to a harmonic wave in a lossless medium!.

The dispersion relation for Eq.~1! can be approximated
following Vainshtein11 and Andreevet al.14 by the expression

k~v!5
v

c0
S 11

mvt relax

11 ivt relax
D 1/2

'
v

c`
1

m8v

2c`~11 ivt relax!
~5!

with an accuracy ofm82, where m852(c`2c0)/c0 . The
two forms for the net increase in phase speed,m andm8, are
of the same order of magnitude becausem2m85(c`

2c0)2/c0
2!1.

The dispersion relation Eq.~5! can be used to transform
the average pressure Eq.~4! into a form suitable for the
separate investigation of the attenuation of the oscillat
portion of the burst and the envelope of the burst for
source Eq.~2!. First, let

j5v2v0 ~6!

so that the Fourier integral Eq.~4! becomes
1417and R. M. Lueptow: Diffraction and attenuation of a tone burst
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^p~z,t !&'
eiv0t

A2p
E

2`

1`Fe2 ik~j1v0!z

2
4

p E
0

p/2

e2 ik~j1v0!~z214a2 cos2 u!1/2
sin2 u duG

3M̄ ~j!ei jt dj. ~7!

The form of the dispersion relation Eq.~5! makes possible
the algebraic transformation in Eq.~7!, leading to a modified
dispersion relation of the form

k~v01j!5k~v0!1kmod~j!, ~8!

where the modified dispersion parameter

kmod~j!5
j

c`
1

m9j

2c`~11 i jt relax9 !
~9!

depends on new parameters of relaxation

m95
m8

@11 i t relaxv0#2
, t relax9 5

t relax

@11 i t relaxv0#
. ~10!

Since the integrated function in Eq.~7! decays exponen
tially asj approaches infinity, the Fourier integral Eq.~7! can
be represented using the dispersion relation Eq.~8! as

^p~z,t !&5
eiv0t2 ik~v0!z

A2p
E

2`

1`

ei jt2 ikmod~j!zM̄ ~j!dj2
4eiv0t

p

3E
0

p/2S 1

A2p
E

2`

1`

ei jt2 ikmod~j!~z214a2 cos2 u!1/2

3M̄ ~j!dj D e2 ik~v0!~z14a2 cos2 u!1/2
sin2 u du. ~11!

The Fourier integrals on the right-hand side of Eq.~11! can
be replaced by a convolution integral using the well-kno
expression for the Green’s function as suggested
Vainshtein11 and Dunin,12

gmod~z9,t ret!5exp~2z9!d~ t ret!1H~ t ret!

3S z9

t rett relax9
D 1/2

expS 2Uz91
t ret

t relax9
U D

3I 1@2~z9t ret/t relax9 !1/2#, ~12!

which describes the evolution of a delta-function input in
relaxing medium with modified parameters of relaxation E
~10!. HereI 1 is the modified Bessel function of the first kind
In addition,t ret is the retarded time andz 9 is the dimension-
less complex number depending on the separationz having
the forms

t ret5t2z/c` , z95m9z/2c`t relax9 . ~13!

Using variables Eq.~13! for brevity, the convolution integra
Eq. ~11! takes the form
1418 J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003
y

.

^p~z,t !&5eiv0t2 ik~v0!zE
2`

1`Fgmod~z9,t ret2s!2
4eik~v0!z

p

3E
0

p/2

gmod~Z9~u!,t ret2s!

3e2 ik~v0!Z~u! sin2 u duGM ~s!ds, ~14!

where functionz 9~u! is calculated by means of Eq.~13!, s is
a dummy parameter of integration, and

Z~u!5~z214a2 cos2 u!1/2,
~15!

Z9~u!5S z9214S 2c`t relax9 a

m9
D 2

cos2 u D 1/2

.

Equation~14! is a generalization of the well-known ex
pression for the diffraction correction of harmonic wave in
lossless medium of Williams.4 However, Eq.~14! permits a
burst via the envelopeM (t) and includes relaxational effect
via the complex parameterZ9, which depends on the relax
ation time. It is represented as the product of an oscillat
function and a convolution integral, which can be interpre
as the evolution of a complex envelope function. The in
gration of the first term in the bracket of the convolutio
integral describes the evolution of the burst envelope i
one-dimensional relaxing medium, whereas the integra
of the second term describes the evolution of its diffract
correction. The attenuation of the harmonic wave portion
the burst signal does not depend on attenuation of the e
lope functionM (t). However, the evolution of the comple
envelope function represented by the integral in Eq.~14! is
affected by the frequency of the oscillation of the harmo
wave portion of the signal due to the modified kernel for t
relaxing medium with modified parameters related to the
increase in phase speed and the relaxation time Eq.~10!.

It is convenient for analysis purposes to transform
convolution integral in Eq.~14! to a dimensionless form. We
introduce the dimensionless retarded time normalized by
relaxation timet relax, and the dimensionless separation b
tween piston and receiver

t5t ret/t relax, t̄5s/t relax, z5m8z/2c`t relax, ~16!

so that

Z9~u!5S z214S 2c`t relaxa

m8 D 2

cos2 u D 1/2

. ~17!

Then the average pressure Eq.~14! can be written as

^p~z,t !&5eiv0t2 ik~v0!zE
2`

1`FG~z,t2 t̄,v0 ,t relax!

2
4eik~v0!z

p E
0

p/2

G~Z~u!,t2 t̄,v0 ,t relax!

3e2 ik~v0!Z~u! sin2 u duGM ~ t̄ !dt̄, ~18!

where the dimensionless Green’s functionG(z,t,v0 ,t relax)
takes the form
Y. Dain and R. M. Lueptow: Diffraction and attenuation of a tone burst
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G~z,t,v0 ,t relax!5expS 2
z

11 i t relaxv0
D Fd~t!1H~t!

3S z

t D 1/2

exp@2t~11 i t relaxv0!#

3I 1@2~zt!1/2#G . ~19!

In Eq. ~18!, the first term in the large brackets is the pla
wave portion, while the second term in the brackets refle
the three-dimensional character of the wave.

The diffraction correction integral term in Eq.~18! for
the average pressure depends on the slowly varying enve
function M (t) and the plane harmonic wave oscillationv0 .
However, it is possible to asymptotically simplify the diffra
tion correction in the case of the short wave limit by app
ing Laplace’s method for contour integrals~see Ref. 18,
Theorem 6.1, p. 125! to the internal integral over a nonzer
separationz, comparable with the radius of the piston. Th
yields an asymptotic series in powers ofV05av0 /c` , cal-
culated in two stationary pointsu50 andu5p/2. Only the
point u5p/2 contributes to the leading term in th
asymptotic representation. This is a result of the edge of
circular piston dominating the diffraction correction term.
high frequency,V0@0, the asymptotic representation of th
average pressure is

^p~z,t !&'S 12e2 ip/4A 2z

pk~v0!a2D eiv0t2 ik~v0!z

3E
2`

1`

G~z,t2 t̄,v0 ,t relax!M ~ t̄ !dt̄. ~20!

Here, the term in parentheses is the three-dimensional
fraction correction, the factor exp(iv0t2ik(v0)z) describes
the plane wave evolution of harmonic oscillation includi
the effect of attenuation due to relaxational losses, and
integral describes the evolution of the envelopeM (t) of the
burst Eq.~2!. The form resembles the appearance of the e
lution of a single pulse if the frequency of oscillationv0

50 and the productt relaxv0 in the kernel Eq.~19! is set to
zero.11

If, in addition, the period of harmonic oscillatio
1/t relaxv0 is much less than the envelope duration, Eq.~20!
can be simplified to

^p~z,t !&'S 12e2 ip/4A 2z

pk~v0!a2D eiv0t2azM ~ t !.

~21!

Here a5m8/2c`t relax, which does not depend on the fre
quency of modulationv0 , is the relaxational attenuation at
frequency well above the frequency associated with
maximum relaxational attenuation. Instead of the envel
M (t) being part of a complex integral as in Eq.~20!, the
envelope in Eq.~21! appears as the initial envelope. Th
relaxational attenuation of the modulated pulse depends
on exp(iv0t2az) and the diffraction correction in parenthes
in Eq. ~21!. Thus, the result is that the envelopeM (t) is
J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003 Y. Dain
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attenuated by the factors preceding it, but is not distorted
any way.

Another simplification of Eq.~18! is to consider a plane
burst rather than a three-dimensional burst in a relaxing
dium. In this case, the second term in the brackets in Eq.~18!
drops out. Thus,

^p~z,t !&5eiv0t2 ik~v0!z

3E
2`

1`

G~z,t2 t̄,v0 ,t relax!M ~ t̄ !dt̄

5eiv0t2 ik~v0!zM relax~t!. ~22!

This is an exact equation, which is a generalization of
solution for a single pulse in a relaxing medium11–16 that
allows for a plane burst rather than a single pulse.

III. ANALYSIS AND NUMERICAL EXAMPLES

We analyze evolution of a planar burst in a relaxi
medium using the exact expression Eq.~22!, in which relax-
ation and the burst envelope are factors. The convolu
integral in Eq.~22! with kernel Eq.~19! describes evolution
of a complex burst envelope,M relax(t), of an oscillating
pulse in the same form as the evolution of a single puls16

An important distinction from the case of single pulse prop
gation is the oscillatory nature of the complex kernel as
function of retarded time, depending on the relaxation ti
and the frequency of oscillation. The interplay of these ind
pendent parameters results in an anomalous behavior o
complex envelope, which is quite different from that for
single pulse.

To demonstrate the interplay between the burst f
quency and the burst envelope, we calculate the abso
value of the burst envelope for different separations betw
the piston and the receiver for a variety of oscillatio
frequencies using a Gaussian envelopeM (t)
5exp(2t2/2g2t relax

2 ). The following parameters were use
for the calculation: radius of pistona50.01 m, the frozen
speed of soundc`5300 m/s, relaxation timet relax51027 s,
and the net increase in phase speedm851023. These param-
eters are typical of ultrasonic transducers in air. The para
eterg defines the width of the envelope. The dimensionle
separationz between the piston and the receiver is defined
Eq. ~16!.

It is instructive to investigate the evolution of the env
lope using Eq.~22! and varying the duration of the Gaussia
envelope and dimensionless frequencyv0t relax. First let the
parameterg51 in the Gaussian envelope and let the dime
sionless frequency of the oscillations in the burst be
<v0t relax<20. In Fig. 1~a!, the shape of the transmitte
burst and its envelope are shown f
v0t relax50,0.5,1,2,3,3.5,10,20, corresponding to 0 to 20
cillations within the burst envelope. Figure 1~b! shows the
evolution of the burst envelope,M relax(t), which corre-
sponds to the integral in Eq.~22!. Here the horizontal axis is
the dimensionless retarded timet5t ret/t relax, and envelope
profiles are the calculated at dimensionless distances f
the piston ofz50,2,4,6,8. The curve forz50 is the Gaussian
1419and R. M. Lueptow: Diffraction and attenuation of a tone burst



o

FIG. 1. ~a! Gaussian bursts forg51 for different values of the dimensionless parameterv0t relax50,0.5,1,2,3,3.5,10,20.~b! Evolution of the burst envelopes
for v0t relax50,0.5,1,2,3,3.5,10,20 at dimensionless separations ofz50,2,4,6,8. The Gaussian curve att50 corresponds toz50; the bold curve corresponds t
z58 for all cases exceptv0t relax510, 20 where all curves overlap.
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curve centered att50; the curve forz58 is bold; curves for
z52,4,6 lie between thez50 andz58 curves.

For v0t relax50, which is the case of a single pulse, t
evolution of the complex envelope degenerates to the ev
tion of the Gaussian single pulse. The pulse amplitude
creases with distance, while the pulse duration increases.
dreevet al.16 observed a similar broadening of a single pu
and a decrease in the pulse amplitude.

For v0t relax50.5, similar envelope broadening occur
accompanied by decreasing amplitude for short distan
from the piston. However, forz>6 the maximum of the burs
envelope increases with distance. Such amplification ca
the attenuation of the oscillating pulse to differ substantia
from the attenuation of a harmonic wave or a single pu
The combined effects of the burst oscillation, the burst en
lope, and the relaxation of the media produce this result. T
amplification can be quite large, noting the different vertic
scales used in Fig. 1~b!. The amplification reaches a max
mum for the case ofv0t relax52, where the maximum ampli
tude of the burst envelope is over a magnitude larger t
that of the transmitted burst. For 3<v0t relax<3.5, the am-
plification weakens and the envelope splits into in tw
humps. The weakening may be attributed to the oscillation
the second term in the kernel Eq.~19! as a function oft,
which leads to degradation of its convolution with the bu
envelope and eventual domination of the convolution w
the first term. As the oscillation frequency increases furth
1420 J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003
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the amplification decreases, so that forv0t relax510, 20 the
amplification is negligible and the burst duration is u
changed because the oscillating pulse attenuates as a
harmonic wave.

The maxima of the envelope magnitudes are shown
Fig. 2 as functions of the dimensionless parameterv0t relax

for distances from the piston ofz50,2,4,6,8. The horizonta

FIG. 2. Maximum values of the Gaussian burst envelopes calculate
dimensional separations ofz50,2,4,6,8 forg51. The horizontal line at
M relaxImax51 corresponds toz50; the bold curve corresponds toz58.
Y. Dain and R. M. Lueptow: Diffraction and attenuation of a tone burst
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FIG. 3. ~a! Gaussian bursts forg50.5 for different values of the dimensionless parameterv0t relax50,1,2,4,6,7,20,40.~b! Evolution of the burst envelopes fo
v0t relax50,1,2,4,6,7,20,40 at dimensionless separations ofz50,2,4,6,8. The Gaussian curve att50 corresponds toz50; the bold curve corresponds toz58
for all cases exceptv0t relax520, 40 where all curves overlap.
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line at M relaxImax51 corresponds toz50; the bold curve cor-
responds toz58. The magnitude of the envelope grows qu
large as the separation distancez increases for 1<v0t relax

<3.
Now we compare this result forg51 with the evolution

of the Gaussian envelope for shorter and longer duratio
g50.5 andg52. In Fig. 3~a! for g50.5, half as many oscil-
lations are included in the shorter burst envelope than for
durationg51 at the samev0t relax. In Fig. 3~b!, the amplifi-
cation of the envelope occurs over a wider range of the
mensionless frequency, 1<v0t relax<6. In addition, the
maximum amplitudes are higher than those for a wider
velope,g51 in Fig. 1~b!. This is also reflected in Fig. 4
when compared to Fig. 2. The maximum amplification c
be more than twice as much for the shorter envelope, no
the differences in the vertical scales in the figures.

For g52, more oscillations are included within th
longer envelope than forg51 at the samev0t relax as shown
in Fig. 5~a!, noting the different horizontal scale from prev
ous similar figures. Like the previous two cases, amplifi
tion of the envelope occurs as shown in Fig. 5~b!, but in this
case the range of frequencies is smaller, 0.5<v0t relax<2. In
addition, the maximum amplitudes are much smaller. Th
results are more evident comparing Fig. 6 to Figs. 2 and
noting the substantially different vertical scales.

In spite of the differences in the three cases, the am
fication always occurs whenv0t relax has an order of magni
J. Acoust. Soc. Am., Vol. 114, No. 3, September 2003 Y. Dain
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tude of unity. However, the degree of amplification and t
frequency at which the maximum occurs both increase as
envelope shortens. It appears that when the period of
pulse is similar to the duration of the envelope, the ampl
cation occurs. For example, the combinations (v0t relax54,
g50.5!, (v0t relax52, g51!, and (v0t relax51, g52! all con-
sist of one full wave within the burst envelope@see Figs.

FIG. 4. Maximum values of the Gaussian burst envelopes calculate
dimensional separations ofz50,2,4,6,8 forg50.5. The horizontal line at
M relaxImax51 corresponds toz50; the bold curve corresponds toz58.
1421and R. M. Lueptow: Diffraction and attenuation of a tone burst
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FIG. 5. ~a! Gaussian bursts forg52 for different values of the dimensionless parameterv0t relax50,0.5,1,1.5,2,2.5,5,10.~b! Evolution of the burst envelopes
for v0t relax50,0.5,1,1.5,2,2.5,5,10 at dimensionless separations ofz50,2,4,6,8. The Gaussian curve att50 corresponds toz50; the bold curve correspond
to z58 for all cases exceptv0t relax5,10 where all curves overlap.
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1~a!, 3~a!, and 5~a!#. In all three cases, the maximum amp
fication occurs very near these frequencies, as shown in F
2, 4, and 6.

The nature of the amplification of the burst envelope c
be understood by looking into dependence of the kernel
~19! on the dimensionless frequencyv0t relax. The kernel,G,
is a product of two factors: the first one, exp(2z/(1
1iv0t relax)), depends on the distance from the piston;
second factor, which is in brackets in Eq.~19!, is the convo-

FIG. 6. Maximum values of the Gaussian burst envelopes calculate
dimensional separations ofz50,2,4,6,8 forg52. The horizontal line at
M relaxImax51 corresponds toz50; the bold curve corresponds toz58.
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s.

n
q.

e

lution with the Gaussian envelope. Its second term oscilla
as exp(2iv0t relax). When the period of Gaussian envelope
comparable with the period of oscillation, the second term
the brackets dominates, and the convolution of the oscilla
term withM (t) is an increasing function of distancez. Con-
sequently, the maximum amplitude of the envelope increa
with distance. However, the rate of the growth of the en
lope’s amplitude is modulated by the factor in the kern
preceding the bracketed term, exp(2z/(11iv0t relax)). Of
course, for largerv0t relax, this term is less significant. Thus
for small g, where amplification occurs for a larger value
v0t relax, the envelope is amplified more than for largeg,
where the amplification occurs at a smaller value ofv0t relax.

From Figs. 2, 4, and 6 there appears to be frequenc
which there is a change from amplification to a situation
nearly no amplification, which is characteristic of a harmon
wave. This occurs whenv0t relax is sufficiently high so that
the oscillation of the second term in the kernel yields a c
volution integral with very small magnitude, and the exp
nential factor exp(2z/(11iv0t relax)) dominates the evolution
of the complex envelope.

IV. CONCLUDING REMARKS

Equation~18! describes the interaction between the d
fractional attenuation and the relaxational attenuation a
tone burst propagates between circular transducers in a
laxing medium. Applying this formulation to the mor
simple case of a planar burst demonstrates the interac

at
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between the burst duration, the harmonic frequency, and
relaxation time constant. When the duration of the burst
incides with the relaxation time and the period of the wa
amplification of the burst envelope occurs. When the du
tion of the burst is substantially longer than the period of
wave the attenuation is similar to that for a harmonic wa
Provided that the relaxation time is known, Eq.~18! provides
a means for determining the combined effect of diffracti
and relaxation on the attenuation of a tone burst.
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