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We study, numerically and analytically, the singular limit of a vanishing flowing layer in tumbled
granular flows in quasi-two-dimensional rotating containers. The limiting behavior is found to be
identical under the two versions of the kinematic continuum model of such flows, and the transition
to the limiting dynamics is analyzed in detail. In particular, we formulate the no-shear-layer dy-
namical system as a piecewise isometry. It is shown how such a discontinuous map, through the
concordant mechanism of streamline jumping, leads to the physical mixing of granular matter. The
dependence of the dynamics of Lagrangian particle trajectories on the tumbler fill fraction is also
established through Poincaré sections, and, in the special case of a half-full tumbler, chaotic be-
havior is shown to disappear completely in the singular limit. At other fill levels, stretching in the
sense of shear strain is replaced by spreading due to streamline jumping. Finally, we use finite-time
Lyapunov exponents to establish the manifold structure and understand “how chaotic” the limiting
piecewise isometry is. © 2010 American Institute of Physics. �doi:10.1063/1.3368695�

A successful approach to studying mixing in granular
flows is based on chaotic advection. Numerous studies
have shown that the mixing and segregation of tumbled
particulate matter is to a large extent controlled by the
shape of the container and can be related to the Poincaré
section for a kinematic model of the flow. While fluid
mixing is fundamentally about modulating the flow so
that particles can switch between different streamlines,
granular flows appear to exhibit a related, but fundamen-
tally different, behavior, namely, that particles can dis-
continuously jump between streamlines. This is possible
because tumbled granular flows consist of a thin flowing
layer above a fixed bed of particles, meaning it is physi-
cally possible to make the region of streamline crossing
arbitrarily small—a classical singular perturbation prob-
lem. Even though the limiting dynamics do not possess
the same stretching characteristics as chaotic flows, they
can nevertheless lead to the successful, and seemingly
chaotic, mixing of granular matter in a tumbler.

I. INTRODUCTION

The study of the stability of fixed and periodic points in
flows �both physical and mathematical� is one of the corner-

stones of deterministic chaos.1,2 Among the various tools
available to investigate periodic points, and determine “how
chaotic” a flow is, none is more revealing and visually ap-
pealing than the Poincaré section. Although strictly speaking
only applicable to flows with built-in periodicity �spatial,
temporal, or both�, this stroboscopic map captures the loca-
tion of a “particle” �used here in the most general sense� at a
uniform sequence of instants of time �i.e., multiples of the
underlying flow’s period� as it is advected by the flow. In the
study of mixing of fluids in particular, Poincaré sections have
become a type of visual guide that immediately shows where
to expect “good” and “bad” mixing in a given flow.3,4 In the
study of mixing of granular matter �e.g., powders, grains,
and sands�, on the other hand, there is a surprising connec-
tion between the Poincaré section and the antithesis of mix-
ing: the segregation of bidisperse particles.5,6 What is more,
the Poincaré section has proven to be a useful tool for ana-
lyzing experimental data �e.g., from mixing studies7 or mo-
tion of diamagnetic particles8� and in the theory of collective
granular dynamics �e.g., of sheared packings9 or vibrated
beds10�, to name a few.

The utility of the Poincaré section lies in its ability to
visualize the “islands,” i.e., regions indicative of “poor” mix-
ing and potential segregation.11 Here, we should note that
while a Poincaré section is completely determined once the
flow �in the sense of a dynamical system or in the sense of
physical motion� is given, there is a significant difference
between the two types of granular mixing experiments it can
be used in, namely, monodisperse and bidisperse. For mono-
disperse granular matter, regions of mixing of particles of
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different colors �for example� is predicted by the Poincaré
section; for bidisperse granular matter, the segregation pat-
tern �due to either particle density or size differences� is pre-
dicted.

Recently, finite-time Lagrangian transport analysis,12,13

through the concept of a finite-time Lyapunov exponent
�FTLE�, has proven to be a tool that is as useful as the
Poincaré section for studying mixing in general �i.e., not nec-
essarily periodic� nonautonomous dynamical systems. Since
the usual asymptotic definitions of dynamical systems theory
are not well suited for characterizing transient behavior, this
has led to the development of the concept of a Lagrangian
coherent structure �LCS�.14,15 These analogs of separatrices
and manifolds can be determined from a finite number of
particle trajectories, even experimentally obtained ones.16

Thus, LCSs provide a simple way of identifying the mani-
fold structure associated with �hyperbolic� periodic points,
which has also been shown to characterize segregation
patterns,6 in tumbled granular flows without the need to even
locate the periodic points.

Making heavy use of Poincaré sections to capture the
time-periodic behavior and LCSs to identify the manifold
structure of the underlying flows, in the present work, we
focus purely on the kinematics of motion in what is known
as a tumbled granular flow, i.e., the motion of particles in a
convex �for our purposes� quasi-two-dimensional �meaning
thickness is negligible compared with height and width� con-
tainer. The granular matter in the container is assumed to fill
a certain fraction � of the available volume and to be in the
continuous flow17 regime, i.e., the regime where some of the
particles are continuously flowing down a thin lens-shaped
fluidized (shear) layer18 at the free surface, while the rest are
in solid body rotation with the container. Moreover, it is
assumed that this process is not fast enough to deform the
free surface to the point where it is no longer flat. All these
assumptions and the geometry are illustrated in Fig. 1 for an
example square tumbler.

In particular, we are interested in the dynamics of La-
grangian �particle� trajectories under this mathematical
model as the shear layer becomes vanishingly thin. We wish
to establish whether chaotic, or otherwise complicated, dy-
namics can persist if the flowing layer has zero thickness,
and we wish to establish precisely how the transition to the
limiting behavior occurs. In contrast with the earlier math-
ematical analysis19 of the limiting case, we show how the
limiting dynamical system emerges from the kinematic
model of tumbled granular flow and study the transition to
this state.

The effects of a vanishing flowing layer thickness are
also briefly explored elsewhere for a quasi-two-dimensional
square20 and more completely for a half-full three-
dimensional spherical tumbler.21,22 In two dimensions,
streamline jumping leads to complicated particle trajectories,
while cutting and shuffling leads to mixing in three dimen-
sions. In both cases, an unexpected connection is with piece-
wise isometries,23,24 an emergent branch of dynamical sys-
tems theory. Much like how linked twist maps are the
fundamental underlying feature of good fluid mixing,25 it
appears that piecewise isometries are the roadmap to mixing
in tumbled granular flows.

Here, we present an in-depth study based on detailed
numerical simulations of the governing dynamical system
and show that the dynamics of particle trajectories are non-
trivial and quite complex, which we quantify using FTLE
calculations. The effect of the fill fraction on the limit is also
established, showing the hallmarks of a classical singular
perturbation.

II. A CONTINUUM MODEL OF TUMBLED GRANULAR
FLOW

A number of continuum models �i.e., models that replace
the discrete effects of particle interactions with a continuous
macroscopic medium possessing certain stress-strain rela-
tions, etc.� exist in the literature. Some focus on the phenom-
enology of axial segregation26,27 leading to a system of non-
linear partial differential equations, while others focus on the
kinematics of the flow28,29 giving rise to finite-dimensional
nonlinear dynamical systems �i.e., ordinary differential equa-
tions�. Geometric models play an important role in three di-
mensions: the flow can be treated in terms of the angles of
rotation of the tumbler30 or a variational formulation based
on energy conservation.31 Modeling the rheology32,33 and the
resulting mass, momentum, and energy conservation partial
differential equations34,35 of the “granular continuum” has
also received much attention. Yet this is just the beginning of
the list, for which more details can be found in recent re-
views on the topic.36,37

Focusing on the situation illustrated in Fig. 1, it is clear
that the governing equations of the motion must be piecewise
defined. First, near the free surface of the flow, there is the
flowing layer �i.e., the thin lens-shaped light gray region of
shear in Fig. 1�. Second, below the flowing layer, there is the
bulk or fixed bed �i.e., the dark gray region in Fig. 1� of
particles that are in solid body rotation. To express this math-

ematically, let î, ĵ, and k̂ denote the unit vectors in the x, y,
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FIG. 1. Diagram of a 70% full square quasi-two-dimensional tumbler,
which has been rotated backward by the dynamic angle of repose so the
surface of the flowing layer is horizontal, showing the coordinate system
and notation. The thickness of the tumbler is assumed much smaller than its
width and height, so it is not shown. The boundary of the flowing layer is
represented by a dashed curve.
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and z coordinate directions, respectively, which are defined
with respect to the midpoint of the flowing layer O. Analo-
gously, we can define the coordinates x̃, ỹ, and z̃ with respect
to the center of rotation of the tumbler C. In this notation, the

angular velocity of the container is �=�zk̂.
Following the kinematic approach to advection,4,38 if we

let r�t�=x�t�î+y�t�ĵ be a pathline �i.e., a Lagrangian trajec-
tory of a particle� in this tumbled flow, then the dynamic
equations of its evolution in the moving frame are

d

dt
x�t� = �vx�x�t�,y�t�,t� , y�t� � − ��x�t�,t� ,

�z�y�t� + h�t�� − ġ�t� , otherwise,
� �1a�

d

dt
y�t� = �vy�x�t�,y�t�,t� , y�t� � − ��x�t�,t� ,

− �z�x�t� + g�t�� − ḣ�t� , otherwise, �
�1b�

where �vx ,vy�� is the Eulerian velocity field in the flowing
layer, a superimposed dot indicates a time derivative, and
�z��0� is the clockwise rotation rate. Although simple to
write, this is a rather intricate dynamical system, as the in-
terface between the two cases on the right-hand side moves
in space with time; its motion is solely determined by the
tumbler shape, so it is known a priori.

In particular, it is generally the case that

vx�x,− ��x,t�,t� � �z�− ��x,t� + h�t�� − ġ�t� , �2a�

vy�x,− ��x,t�,t� � − �z�x + g�t�� − ḣ�t� . �2b�

Although, as far as the physics is concerned, this is not an
issue,36 this discontinuity qualifies Eq. �1�, mathematically,
as a nonsmooth39 or Filippov-type40 dynamical system, with
a discontinuity boundary �also know as switching manifold�
given by y=−��x , t�. Simply put, this means that a number of
mathematical techniques for studying nonlinear dynamics1,2

do not directly apply to such systems, which makes the
analysis quite challenging, especially with regard to bifurca-
tion theory.40 Fortunately, some “classical” results for
smooth dynamical systems, such as the Kolmogorov–
Arnold–Moser �KAM� theorem,2,3 carry over.39 As a result,
qualitative methods and numerical simulation of the govern-
ing equation are a fruitful approach to studying the vanishing
flowing layer limit.

Below, we cover the two choices for the flowing-layer
velocity field �vx ,vy�� found in the literature, both of which
presume that the streamwise velocity component vx varies
linearly with the depth y in the flowing layer, a result based
on a first approximation to the experimentally obtained ve-
locity profile.41,42 Then, the transverse component vy is found
by invoking mass conservation for a homogeneous incom-
pressible continuum.11,28,29,36 The model assumes a simple
rheology as a first approximation of the experimental
results,28,29,41,42 although granular flows can exhibit a great
variety of rheological properties depending on the type of
deformation.43,44

At this point, the paradigm of chaotic advection,4,38 or
Lagrangian chaos, is typically applied to tumbled granular
flows. Its essence lies in the realization that the kinematic

continuum model satisfies11,29 the �heuristic� sufficient con-
dition for chaotic mixing, namely, streamline crossing4—an
idea that has been formalized mathematically using linked
twist maps.25 This refers to the fact that if we were to super-
impose the streamlines of the velocity field �i.e., the right-
hand sides of Eq. �1�� at two close but distinct times, say at
t and t+�t, then we would see intersecting streamlines. Fig-
ure 2 illustrates this for two different tumbler cross sections
in which streamline crossing occurs as a consequence of the
changing length and thickness of the flowing layer. It is also
possible to create streamline crossing in tumbled granular
flows in circular containers, where the flowing layer’s length
and depth remain fixed, by varying the rotation rate in time.45

Finally, we note that other complementary ways to charac-
terize mixing a priori have been developed recently, such as
the notion of transversely oriented shears.46

A. Depth-averaged streamwise velocity does not vary
with position

Under the original model of Khakhar et al.,29 which we
refer to by an A superscript, omitting the effects of diffusion
due to interparticle collisions, the velocity field in the flow-
ing layer takes the form

vx
A�x,y,t� = 2v̄x�t��1 + y/�A�x,t�� , �3a�

vy
A�x,y,t� = − �zx�y/�A�x,t��2, �3b�

where

�A�x,t� = �0�t��1 − � x

L�t��2�, v̄x�t� =
�zL�t�2

2�0�t�
�4�

are the shape of the flowing layer and the depth-averaged
streamwise velocity in the flowing layer, respectively.

Here, the maximal depth of the flowing layer �0�t� and
the half-length of the free surface L�t� are known functions
of time alone and are such that �ª�0�t� /L�t� can be assumed
to be a constant independent of time.11,29 This experimentally
motivated the assumption that �=const is termed the geomet-
ric similarity of the flowing layer because, physically, it
means that the flowing layer adjusts instantaneously to
changes in the container’s orientation, for instance, when it
intersects a corner. Moreover, experiments41,42 have shown
that the maximal flowing layer depth �0 is typically 5–12

��� ��� ��		 
���� ����	� ��� ��� ��		 		����� ����	�

�

�

�

�

FIG. 2. �Color online� Illustration of streamline crossing in two tumbler
geometries. Solid �blue� and dot-dashed �red� streamlines correspond to the
flow when the tumbler is in orientations A and B, respectively. Note that
they cross in the region where the flowing layers of the two orientations
overlap, but they do not cross in the bulk. Orientation B is orientation A
rotated �a� 22.5° and �b� 45° clockwise.
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particle diameters, which is much smaller than the length of
the free surface 2L, so ��1.

Now, we introduce the dimensionless variables

x� = x/�, y� = y/�, L� = L/� ,

�5�
�0

� = �0/�, t� = �zt, v� = v/���z� ,

where � is some reference length, e.g., a square tumbler’s
side-length S. Then, upon substituting the relations in Eq. �4�
into Eq. �3�, switching to the dimensionless variables, and
leaving all star superscripts understood we obtain

vx
A�x,y,t� =

L

�2	� +
yL

L2 − x2
 , �6a�

vy
A�x,y,t� = −

x

�2	 yL

L2 − x2
2

. �6b�

B. Simple shear rate is constant

Under the constant-simple-shear model of Makse47 �see
also the discussion by Meier et al.36�, which we refer to by a
B superscript, the velocity field in the flowing layer is

vx
B�x,y,t� = �̇�B�x,t��1 + y/�B�x,t�� , �7a�

vy
B�x,y,t� = �zxy/�B�x,t� , �7b�

where

�B�x,t� = �0�t��1 − � x

L�t��2

, �̇ = �z� L�t�
�0�t��2

�8�

are the shape of the flowing layer and the simple shear rate in
the flowing layer, respectively. Note that the expressions for
the shape of the flowing layer differ in the two versions of
the model; still, there are arguments that can lead to other
shapes as well.48

Once again, upon introducing � as the small parameter
and nondimensionalizing the equations using the variables in
Eq. �5�, we can rewrite Eq. �7� as

vx
B�x,y,t� =

1

�2�y + ��L2 − x2� , �9a�

vy
B�x,y,t� =

xy

��L2 − x2
. �9b�

III. PARAMETER SPACE STUDY

The model described in Sec. II has one free parameter,
namely, �, which is typically fitted based on experimental
observations,29 and, once the geometry of the tumbler is
fixed, the fill fraction � can also be varied. This results in a
two-dimensional parameter space for the dynamical system.
Establishing the effect of the fill fraction on the mixing prop-
erties of a tumbler is of significant practical interest.49

Without loss of generality, since all polygonal tumblers
share the same basic geometric features,5 we use a square
tumbler as the featured example in the present work. Also,
all simulations shown are performed using model A from

��� � � ������ �	� � � 
����� ��� � � ���� ��� � � ��� ��� � � ���� � � ����

�
��
��


�
��
��

�
��
�


�
��
��

��� � � �����

FIG. 3. �Color online� Evolution of the 500-period Poincaré section of the tumbled granular flow in �� ,�� phase space as � increases �from top to bottom�
and � decreases �from left to right�. In each plot, the different shades correspond to different initial positions of the advected tracer particles �see Appendix�,
and the thick curves correspond to the flowing layer boundary y=−��x ,0�.
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Sec. II A �depth-averaged streamwise velocity is indepen-
dent of position�, since the Poincaré sections are qualitatively
the same for all the various flowing layer shapes and velocity
profiles.5,36,50

A. Overview of the dynamics

Figure 3 contains four progressions, each for a different
fill fraction �, of Poincaré sections showing the effects of
diminishing �.51 This illustrates qualitatively how the struc-
ture of the flow changes as the flowing layer vanishes �from
left to right� and the effect of increasing the fill fraction �
�from top to bottom�. Although many transitions and bifur-
cations occur in the Poincaré section’s pattern as � and � are
varied, Fig. 3 illustrates the basic trends. As � decreases, for
�	0.5 the large island �i.e., elliptic periodic points sur-
rounded by the KAM curves3� on the main diagonal of the
tumbler are “pushed out” toward the corners and eventually
disappear, giving way to several rings of island chains.
Meanwhile, for ��0.5, the largely regular pattern present
for �=O�1� breaks up as �→0, giving rise to a “chaotic sea”
punctuated by islands whose locations coincide with symme-
tries of the tumbler.5

Furthermore, at ��10−1, for any given fill fraction, the
Poincaré section has qualitatively reached a consistent pat-
tern. That is, the location of the periodic points �specifically,
the elliptic ones and the corresponding islands� does not
change significantly for any �
10−1 at that fill fraction. In
other words, the dynamics are not structurally different for
any values of � below this threshold, as �→0.

Naturally, there are differences in the Poincaré sections
for different fill fractions �. However, the most striking is
that �=0.5 is an exception, in that the dynamics for �=0.5
and �→0 differ significantly from those for ��0.5 and
�→0. The chaotic region in the 50% full tumbler vanishes
with the flowing layer. This also occurs in a 50% full ellip-
tical tumbler, as shown in Fig. 7 of Khakhar et al.29 While
for all non-half-full tumblers a significant chaotic region re-
mains for all ��1, the corresponding one in the half-full
tumbler diminishes with �, and the elliptic regions dominate
the limiting Poincaré section for finite �. This observation led
to the discovery of the streamline jumping mechanism,20

upon which we elaborate below.
Based on the discussion of streamline crossing in Sec. II,

the presence of a significant chaotic region in the Poincaré
sections for ��0.5 as �→0 is unexpected. This is because
streamline crossing can only occur in the flowing layer of
this tumbled granular flow. If the flowing vanishes, stream-
line crossing cannot occur. Yet, complicated �perhaps even
chaotic in some sense yet to be made precise� dynamics per-
sist due to streamline jumping.

Finally, note that this numerical exploration of the pa-
rameter space constitutes a qualitative perturbation analysis
of the governing dynamical system. Figure 3 clearly shows
that the �=0 dynamics form the basic state �i.e., the “skel-
eton”� for the dynamics at any ��1. Of course, this follows
from perturbation theory, whereby one seeks solutions of the
form ��x ,y , t ;��=i=0

� �i�i�x ,y , t�, because setting �=0 in
the formal expansion yields the basic state ��x ,y , t ;0�

��0�x ,y , t�. Then, for 0	��1, ���0 to the leading or-
der. The similarity between the seventh column �correspond-
ing to �0� and the fifth and sixth columns �corresponding to
�0+O���� in Fig. 3 illustrates this reasoning. Although, as
mentioned earlier, not all theorems carry over to the nons-
mooth dynamics of tumbled granular flows, this observation
shows clearly that the fundamental ideas do apply, and the
limiting behavior is the template for the dynamics of nearby
states in the parameter space.

B. Sensitivity of the half-full state as �\0

From the qualitative perturbation analysis point of view,
it is worthwhile to focus further on the exceptional case of
�=0.5. In fact, the Poincaré section �as a function of ��
changes very quickly for fixed ��1 and ��0.5,51 suggest-
ing that in some sense this state is an “unstable equilibrium.”
Figure 4 depicts the behavior near �=0.5 for �a� �=10−1 and
�b� �=10−2. Each column of the figure shows the transition
of the Poincaré section pattern as � is varied from a value
slightly below to a value slightly above 0.5. Note that, for the
two choices of �, different ranges of � are shown, chosen so
that the left and right columns are dynamically similar. That
is, the location of the elliptic periodic points �and the atten-
dant islands� on the diagonals of the tumbler is approxi-
mately the same for the given pairs of the parameters � and
�. It is immediately evident that as the flowing layer thick-
ness decreases, the range of � for dynamic similarity de-
creases.

� = 0.450

� = 0.500

� = 0.550

��� � � ����

� = 0.500

� = 0.495

� = 0.505

��� � � ���	

FIG. 4. �Color online� Two progressions of 500-period Poincaré sections
near the exceptional fill fraction �=0.5, illustrating the concept of dynamic
similarity of the patterns for two values of � and the sensitive behavior of
the �=0.5 state as �→0.
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The sensitive behavior near �=0.5 has been observed
previously;11 however, we are now able to explain its origin.
Based on the notion of dynamic similarity, we can conclude
that as �→0 similar patterns occur at values of � increas-
ingly closer to 0.5, eventually “collapsing” onto the �=0.5
state. That is, for �=0, the square tumbler does not possess a
Poincaré section whose prominent feature is two large ellip-
tic islands on its diagonal, for any � near 0.5. This behavior
clearly illustrates the singular perturbation nature of the
�→0 limit; a “solution” �or Poincaré section pattern in our
qualitative perturbation analysis language� is lost as the
small parameter goes to zero.

IV. THE VANISHING FLOWING LAYER LIMIT

The limit �→0 is singular, and it is a particularly diffi-
cult one to study analytically because the dynamical system
is nonsmooth. Fortunately, due to the geometrically con-
strained nature of tumbled flows, it is possible to derive the
governing limiting dynamical system as the flowing layer
vanishes.

A. An infinitely thin, infinitely strong flowing layer

The most basic consequence of letting �→0 is that �0

��L→0 also, since L is finite for all t. Thus, under both
versions of the continuum model presented in Sec. II, the
flowing layer becomes an infinitely thin interface as � van-
ishes, collapsing onto the free surface of the granular matter
in the container.

To understand the dynamics of the infinitely thin flowing
layer, we can evaluate the surface velocity �i.e., the velocity
at the free surface� from Eqs. �6� and �9�,

vx
A�x,0,t� =

L

�
, vy

A�x,0,t� = 0, �10a�

vx
B�x,0,t� =

1

�
�L2 − x2, vy

B�x,0,t� = 0, �10b�

where Eq. �10a� is under the assumption of a depth-averaged
streamwise velocity independent of the position within the
flowing layer, and Eq. �10b� is under the assumption of a
constant simple shear rate within the flowing layer. Note that
vy

A�x ,0 , t�=vy
B�x ,0 , t�=0 must always be the case because the

free surface of the flow is a “rigid lid” �no particles can leave
or enter through it�.

Now, we can define the average speed of a particle over
the length of the free surface over a period of the flow as

V̄surf =
1

Tf
�

0

Tf 1

2L
�

−L

+L

�vx
2 + vy

2�y=0 dxdt , �11�

which can be combined with the results in Eq. �10� to yield

V̄surf
A =

L̄

�
, V̄surf

B =
L̄

4�
, �12�

where L̄=1 /Tf�0
TfL�t�dt and Tf =2 /n is the �dimensionless�

flow period as defined in the Appendix. The second result
generalizes that for a circular tumbler presented by Sturman

et al.21 Taking the limit �→0, both V̄surf
A , V̄surf

B →�. There-
fore, the particle velocities in the vanishingly thin flowing
layer become infinite.

Turning to the mechanics of the infinitely thin flowing
layer, we can evaluate the shear rate at the free surface,

�̇surf�x,t� ª �̇yx�x,0,t� = �	 �vy

�x
+

�vx

�y

�

y=0
. �13�

Then, from Eqs. �6� and �9�, respectively, we have

�̇surf
A �x,t� =

1

�2	 L2

L2 − x2
, �̇surf
B �x,t� =

1

�2 . �14�

Of course, �̇surf
B =const as required by the assumption under

which this model is derived. Letting �→0, we have
�̇surf

A →�, since L2 / �L2−x2� is bounded away from zero for
all x� �−L ,L� and all t�0; similarly, �̇surf

B →� as �→0. This
means that the shear rate in the flowing layer becomes un-
bounded as its thickness vanishes, which is why we referred
to the vanishing shear layer as “infinitely strong” in the Sec.
IV A heading. As was the case with the mean surface speed,
both continuum models introduced in Sec. II give the same
result. Therefore, the limiting ��→0� governing dynamical
system is identical for both versions of the continuum model.

To an extent, the result that the surface velocity and
shear rate are infinite in the infinitely thin flowing layer limit
seems obvious. Nevertheless, it is important to establish this
directly from the continuum model�s� of the flow.

At this point, one detail remains, namely, how do par-
ticles traverse a region with infinite shear rate? To elucidate
this, consider a circular tumbler. Under both versions of the
continuum model, the flowing layer shape � is symmetric
about x=0. In this geometry, the horizontal displacement of
the free surface midpoint, i.e., g�t�, is identically zero, so the
flowing layer is also symmetric about x̃=0. This combined
with the fact that �0=const �since L=const� means that the
streamlines in the flowing layer are symmetric about x̃=x=0.
Consequently, if a particle reaches the infinitely thin flowing
layer �y=0� at the horizontal location xenter�	0� at time
t= tenter, then it leaves the flowing layer at xexit=−xenter

�equivalently, x̃exit=−x̃enter� at some later time.
In a noncircular tumbler, �0=�0�t� for finite � but

lim�→0 �0�t�=0, so �0 becomes constant in the limit. This
combined with the fact that particles traverse the infinitely
thin flowing layer instantaneously �Vsurf=��, so they do not
“feel” the change in g�t� with time, means that particles
must, as in the circular tumbler, leave the flowing at the
streamwise location xexit �on the interface� corresponding to
the reflection of the position xenter they entered across the free
surface midpoint, i.e., xexit=−xenter, which justifies the as-
sumption made in the literature.19 Using the rigid coordinate
system with origin at C, x̃exit=−x̃enter+2g�tenter� is the new
location of the particle; clearly, if g�tenter��0 then the par-
ticle will not remain on the same streamline after crossing
the flowing layer.
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B. How streamline jumping leads to physical mixing
in the absence of a flowing layer

As we have just established, in a noncircular tumbler, the
time-dependent horizontal motion of the midpoint of the
flowing layer O allows particles to “jump” from one solid-
body-rotation streamline to a different one. This streamline
jumping mechanism20 is illustrated in Fig. 5. For a 73% full
tumbler, in Fig. 5�a�, a particle initially, i.e., at t=0 when the
tumbler is in orientation A, on the solid blue streamline
jumps onto the dashed red streamline upon reaching the
flowing layer �illustrated by the light blue arrow� at some
time t�0 when the tumbler is in orientation B. The location
of the flowing layer’s midpoint in tumbler orientation A is
denoted by a small diamond, while that for tumbler orienta-
tion B is denoted by a small triangle; they do not coincide for
�=0.73. In Fig. 5�b�, where the case of a 50% full square
tumbler is illustrated, the midpoint of the flowing layer re-
mains coincident with the center of rotation of the tumbler
for all times, i.e., the horizontal and vertical displacements of
the moving coordinate system g�t�=h�t��0 ∀t. Clearly, no
streamline jumping is possible, and particles are always
transferred to the same solid-body-rotation streamline.
Therefore, the precise mechanism leading to complex dy-
namics in a granular tumbled flow with no shear layer is
streamline jumping, not simply time periodic disturbances
due to the shape of the container leading to chaos in the flow,
which has been suggested previously.19

Now, it is clear from Fig. 5�b� why the Poincaré section
of a tumbled granular flow in a 50% full square tumbler with
�=0 shown in Fig. 3�g� should consist only of dots on the
lower halves of the main diagonals of the square. This is
because all the tracer particles that are initially seeded on the
diagonal �see Appendix� remain on closed circular stream-
lines for all time. Thus, the stroboscopic map captures them
twice at their initial location and twice at the mirror-image
location on the opposite diagonal for each full rotation of the
tumbler �four flow periods for a square tumbler�. This geo-
metric reasoning is valid for any convex noncircular tumbler,
not just the square one used to illustrate the concept in Fig. 5.
The fundamental result is that the necessary �but certainly
not sufficient� condition for complicated particle trajectories
in a tumbled granular flow with a vanishing flowing layer is
that, at the given fill fraction �, the displacements g and h
vary with time.

To better understand how streamline jumping leads to
physical mixing of matter in the tumbler, we present a
“blob deformation” computational experiment in Fig. 6. In
each column, the evolution of a square “blob” of tracer par-
ticles over six consecutive flow periods Tf is illustrated. In
each plot, the initial �i.e., at t= �p−1�Tf, where
p� �1,2 ,3 ,4 ,5 ,6�� shape and location of the blob are shown
in red; subsequently, the location and shape are plotted at
intervals of 0.2Tf up to t= pTf; the superimposed orientation
of the container also corresponds to t= pTf. The simulation is
performed for both �a� a finite flowing layer ��=10−1� and
�b� an infinitely thin one ��=0�.

Clearly, the evolution of the “blobs” in Figs. 6�a� and
6�b� is similar. As discussed in Sec. III A, this is expected

�

�

�

�

��� � � ���� �	� � � ��
�

FIG. 5. �Color online� Illustration of how streamline jumping occurs in two
tumblers with infinitely thin flowing layers ��=0� but with different fill
fractions. Note the absence of a streamline jumping mechanism in �b�. In
both, the rotation is clockwise.
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FIG. 6. �Color online� Spread of a square blob of tracer particles in a square
tumbler over six flow periods for both a finite and a vanishingly thin flowing
layer. The tumbler rotates clockwise.
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since the �=0 dynamics are the template for the dynamics
with ��1. This illustrates, even more conclusively than the
Poincaré sections in Fig. 3, that the underlying geometric
effects that make streamline jumping possible are very sig-
nificant in realistic parameter regimes �e.g., �=10−1, a value
easily achieved experimentally�.

To elucidate this further, imagine a line segment of tracer
points �“particles”� reaching the infinitely thin flowing layer
parallel to it. The entire line segment is reflected across O
instantaneously, and its length remains unchanged; this ap-
pears to occur for t� �0,Tf� in the first row of Fig. 6�b�.
However, this is not the typical case. If the segment enters
the flowing layer at an angle, each point on it reflects across
O at a slightly different time and tumbler orientation. This
shifts the points on the segment to nearby streamlines, even-
tually spreading them further apart than they were initially,
which results in mixing; this is very clearly seen to occur for
t� �2Tf ,3Tf� in the third row of Fig. 6�b�.52 Similarly, this
kind of spreading of nearby points, due entirely to the hori-
zontal motion of the flowing layer’s midpoint O, persists in
the case of a finite-thickness flowing layer �Fig. 6�a��, al-
though the stretching due to shear within it spreads the points
even further apart as the last two rows show.

It is important to note that this mechanism of mixing is
unrelated to diffusion �i.e., particle dispersal through random
collisions� and works despite the absence of a flowing layer
and streamline crossing; it is purely geometric. Of course, in
experiments, diffusion due to the finite size of particle cannot
be eliminated but its effect on mixing is weak compared with
that of advection.29 Moreover, this new geometric insight
into the physics of granular mixing represents a fundamental
departure from the “traditional” way of thinking about cha-
otic advection and brings with it new mathematical insights,
which we discuss in Sec. V.

C. Finite-time Lyapunov exponents and manifold
structure

A more quantitative way to identify the geometric effects
that lead to mixing in the absence of a flowing layer is
through the �largest� FTLE field of the flow, which is defined
as14,15

��X,Y ;t0,�� =
1

���
ln��max�C�X,Y ;t0,��� , �15�

where �X ,Y�� are the coordinates in the initial �i.e., refer-
ence� configuration of the tumbler at t= t0, C�X ,Y ; t0 ,�� is
the �right� Cauchy–Green deformation tensor3 at time
t= t0+� with respect to time t= t0, �max� · � represents the
maximum eigenvalue �in absolute value� of its argument, and
� is a free parameter that can be either positive or negative.
Taking the limit �→�, assuming the flow satisfies the req-
uisite conditions, Eq. �15� becomes the usual definition of an
infinite-time Lyapunov exponent.2,15 This measure of the lo-
cal “stretching” of the underlying continuum by the flow is
related to a well-known quantity in fluid mixing, namely, the
length stretch3,4 ���C :MM�1/2 of a material filament with
initial orientation M. From the Rayleigh–Ritz theorem,
which states that max�M�=1C :MM=�max�C�, it is clear that
��max�C� is precisely the maximal local length stretch. Also,
note that C is a positive definite tensor so that ��max�C� is
always real and nonzero.

Figure 7 shows how the FTLE field � varies with � in a
75% full square tumbler.53 First, it is important to note that a
LCS is defined as a ridge of �, i.e., a curve across which the
normal gradient n̂ ·�� has a local maximum.15 Without
dwelling on the technical details of this definition, it suffices
to qualitatively identify the ridges with the darkest areas in
the plots in Fig. 7. The importance of the ridges is that the
mass flux across them is negligible.15 In addition, they are
analogs �in flows with arbitrary time dependence� to the
stable �if ��0� or the unstable �if �	0� manifolds of time-
independent �or time-periodic� flows.12–15 Indeed, it is imme-
diately clear that Fig. 7�b� is almost identical to Fig. 12 of
Meier et al.,6 where the unstable manifold of the hyperbolic
periodic points of the tumbled granular flow in a 75% full
square is traced out.

Likewise, the elliptic periodic points and their corre-
sponding KAM curves, which can be seen on the lower di-
agonals of the tumbler in the bottom row of Fig. 3, appear as
large bright regions �i.e., low �� in the FTLE fields shown in
Fig. 7. Figure 7 complements Fig. 3 in that the former clearly
illustrates the effects of the hyperbolic periodic points �mani-
folds�, while the latter clearly illustrates the effects of the
elliptic periodic points �KAM islands�. The hyperbolic peri-

��� � � ���� ��� � � ���	�
� � � 	x���� ��� � � �
�

���

���

���

���

�

���

FIG. 7. �Color online� FTLE field ��X ,Y ; t0=0 ,�=−14Tf� in a 75% full square tumbler for four different values of �, revealing the manifold structure of the
flow and how it is affected by the flowing layer’s thickness.
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odic points are more difficult to locate visually, but numeri-
cal calculations6 have shown that they are located on the
outer ridges to the left, right, and below the main unmixed
core in the tumbler. Two of them are roughly on the horizon-
tal centerline of the tumbler, while the third is slightly below
the horizontal line connecting the elliptic points on the lower
diagonals of the tumbler.

Note that the thin horizontal line of large � through the
lower-left unmixed core in Fig. 7 is not part of the manifold
but merely an artifact of the FTLE calculation. At the mo-
ment the flow is “frozen” �i.e., at t= t0+� for any given ��
and the FLTE field computed, there is a slice �its thickness
proportional to that of the flowing layer� of material points of
the continuum that were initially close to each other but are
now on opposite ends of the flowing layer, leading to an
artificially high value of � for these points. Of course, if � is
chosen slightly larger, these points will once again be on the
same side of the flowing layer, but there will be a different
slice of points that become separated.

Figure 7 reveals �quantitatively� two features of the
�→0 limit of quasi-two-dimensional granular tumbled flows.
First, the FTLEs of material points in the continuum �with
the exception of the regions of unmixed material typical for
this tumbler geometry and fill fraction� are largely indepen-
dent of �, and therefore independent of the shear in the flow-
ing layer. Thus, mixing is dominated by the underlying geo-
metric effects that cause streamline jumping. Second, the
manifold structure of the flow for �=0 is the template for the
manifold structure of flows with ��1. This corroborates the
conclusions drawn from the Poincaré section study in
Sec. III A.

V. THE LIMITING DYNAMICS AS A PIECEWISE
ISOMETRY

In Sec. IV, it was shown that when �=0 particles in the
tumbled granular flow undergo solid body rotation until they
reach the flowing layer interface and jump across it. In the
most general sense, this kind of dynamical system is termed
an impacting hybrid system,40 hybrid because of the coexist-
ence of discrete �streamline jumping� and continuous �rota-
tion� movements, impacting because of the discontinuous na-
ture of the discrete movement. Furthermore, solid body
rotation is just one example of a distance-preserving map-
ping or isometry.

Therefore, according to the definition of Deane,24 the
limiting ��=0� dynamical system is, specifically, a piecewise
isometry �PWI�—a type of discontinuous dynamical system
studied in detail only recently.23 A number of results have
been established showing that PWIs can exhibit the usual
behaviors of nonlinear dynamical systems, namely, periodic
points, quasiperiodicity, fractal structure, global attractors,
and generally complex dynamics.21,23,24,54,55

To make the connection clearer, we construct the PWI
explicitly in the spirit of previous efforts19,28 to write the
tumbled flow as a discrete-time map. First, we define the
domain and range of the map in the coordinate system with
origin at C �Fig. 1�,

D�t� = ��x̃, ỹ���ỹ = h�t�, 0 	 x̃ − g�t� 	 L�t�� , �16a�

R�t� = ��x̃, ỹ���ỹ = h�t�, − L�t� 	 x̃ − g�t� 	 0� , �16b�

these are simply the left and right halves, respectively, of the
flowing layer interface at time t. Then, the PWI takes the
form of an affine transformation ��t1 , t2� :D�t1�→R�t2� that
can be represented as

��t1,t2� = T�t2� � R � Q�t1,t2� , �17�

where Q�t1 , t2� is a rigid rotation from the initial position of
the particle on the flowing layer at t= t1 to its final position
upon reaching the flowing layer again at t= t2 �to be deter-
mined�, R is a reflection about the ỹ-axis, and T�t2� is a shift
along the x̃-axis at t= t2. Each individual map of the PWI can
be easily computed, and the composition of them is

��t1,t2� = �− cos��zt̄� − sin��zt̄� 2g�t2�

− sin��zt̄� cos��zt̄� 0

0 0 1
� . �18�

Here, t̄ is the first positive solution of h�t1+ t̄�=r0 sin��0

−�zt̄�, where r0= �x̃1
2+ ỹ1

2�1/2, �0=tan−1�ỹ1 / x̃1�, and �x̃1 , ỹ1��

�D�t1� is a given starting position; clearly, t2= t1+ t̄. Note
that � must be applied to the homogeneous coordinates
�x̃ , ỹ ,1�� and, in the present work, rotation is always clock-
wise with �z�0. It is possible that no solution t̄ exists, e.g.,
when a trajectory never reaches the flowing layer because it
remains in the central unmixed core. Then, we can set t̄=�.

Qualitatively speaking, Eq. �17� can be understood in
terms of cutting and shuffling dynamics21,22 as follows: Q
“shuffles” by mapping each initial position on the flowing
layer interface to a new location on the flowing later at a later
time �and location in space�, while R �T “cuts” by reflecting
and translating points along the flowing layer.

An important point here is that this map depends on the
initial position of the trajectory; that is, for each �x̃1 , ỹ1��

�D�t1� the value of t2 is different. Thus the image of all
points in D�t1� under the action of � is quite complicated. In
some sense, it is appropriate to call this a nonlinear PWI
because map depends on the spatial coordinates implicitly
through the need to determine when a given trajectory inter-
sects the �moving� flowing layer again, unlike the PWIs
found in the literature.21–24

An analysis of the PWI �18� goes beyond the scope of
the present work, but a few comments can be made a priori.
First, a crucial difference exists between a �discontinuous�
PWI exhibiting complex behavior and a �continuous� dy-
namical system exhibiting chaotic behavior: in the case of
the former there are no positive �infinite-time� Lyapunov
exponents.54 The latter is characterized precisely by its posi-
tive Lyapunov exponents. Second, under certain conditions,
PWIs have been shown to have zero topological entropy,56

while continuous chaotic dynamical systems have a positive
one. This shows that typical PWIs do not possess the stretch-
ing characteristics that are universal for �continuous� chaotic
dynamics2 and fluid flows.3,57 Indeed, it is easy to verify that
all of the eigenvalues of the map � have unit magnitude.
Therefore, since the “basic state” of tumbled granular flows
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is a PWI, as we have shown, granular mixing is fundamen-
tally and mathematically very different from fluid mixing.

The questions of to what extent and in what sense can
the complex dynamics resulting from the PWI discussed here
be called “chaotic” remains open. For example, it was re-
cently shown55 that certain PWIs exhibit chaotic dynamics in
the sense of Devaney: that is, the dynamical system exhibits
�i� sensitive dependence on the initial conditions and �ii� is
topologically transitive.58 Although this result represents
mathematical progress, the most important questions regard-
ing physical mixing are those relating to the ergodic theory
of PWIs.

VI. CONCLUSION

In the present work, we studied a class of flows of granu-
lar matter in quasi-two-dimensional rotating tumblers
through numerical simulation and the qualitative theory of
dynamical systems. Although the governing Eq. �1� is quite
difficult �if not intractable� to study analytically, we were
able to successfully extract the dynamics using tools such as
the Poincaré section and FTLEs. In addition, we established
that a small parameter �namely, the ratio of the flowing lay-
er’s maximal depth to half its length� and the fill fraction of
the container define a two-dimensional phase space where
the dynamics occur. An important result is that the fill frac-
tion has a significant effect on the limiting �i.e., no-shear-
layer� dynamics, with the 50% fill level being an exceptional
case in even-sided polygonal tumblers �and, in general, tum-
blers for which there exists a � such that the horizontal dis-
tance between the flowing layer’s midpoint and the center of
rotation remains unchanged for all time�. This exceptional
case also illustrates the singular perturbation nature of the
limit as the chosen small parameter tends to zero.

The main result is that as the flowing layer vanishes and
streamline crossing �the hallmark of chaotic mixing� be-
comes impossible, complex dynamics persist due to stream-
line jumping. This is, as far as we know, a new mechanism
leading to complex dynamics in this type of nonsmooth dy-
namical system. Without parallel in the mixing of fluids,
where linked twist maps describe the geometry of mixing,
streamline jumping shows that the underlying geometric de-
scription of granular flows is in the form of a PWI. Indeed,
PWIs were also found to play an important role in three-
dimensional spherical tumblers.21,22 Although, previously,
PWIs were only applied in signal processing,24 it is clear
now that they also provide the framework for granular mix-
ing. In addition, this cutting and shuffling mechanism of
granular mixing may be present in geophysical thrust
systems59 and periodically reoriented potential flows.60,61

Much remains to be done, however, with regard to the
applicability to mixing in granular tumbled flows of previous
theoretical results on �infinite-time� Lyapunov exponents54

and topological entropy.56 Mathematical mixing also de-
serves attention as the ergodic properties of PWIs have yet to
be studied in detail. Also, the analysis of various errors in the
computation of mixing in chaotic systems62 should be ex-
tended to the nonsmooth dynamical systems presented here.
In addition, it is also important to reproduce the present the-
oretical and computational results in the laboratory. Prelimi-

nary experimental results show that the kinematics of mono-
disperse tumbled granular mixtures are essentially
determined by the �=0 case studied herein. The effects of a
diminishing flowing layer on the segregation patterns of
tumbled bidisperse granular mixtures also require further
study—the question of whether a thinner flowing layer leads
to more or less segregation in the mixture is of practical
significance.
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APPENDIX: NUMERICAL IMPLEMENTATION DETAILS

Following Cisar et al.,5 to solve the governing equations
numerically we convert them to the rigid coordinate system
with origin at the center of rotation of the tumbler C, which
is also the geometric centroid of the container in the present
work. Then, the appropriate coordinate transformation is
x→ x̃−g�t�, y→ ỹ−h�t�, where g�t� and h�t� are the horizon-
tal and vertical �signed� distances, respectively, between the
center of rotation of the tumbler C and the midpoint of the
free surface O �see Fig. 1�. In the rigid coordinate system,
the vertical and horizontal directions are defined with respect
to the initial configuration of the tumbler, which we choose
to be such that one side is horizontal.

We employ the time-stepping �as opposed to event-
driven� approach40 to the numerical simulation of nonsmooth
dynamical systems. The classical fourth-order Runge–Kutta
time-integration scheme is used for the equations in the flow-
ing layer, while the symplectic Euler63 scheme is used to
integrate the equations of solid-body rotation. A time step
�t=5�10−5Tf is taken, where Tf =T /n is flow period for an
n-sided tumbler, and T=2 /�z is the period of rotation. In
terms of the dimensionless variables introduced in Eq. �5�,
T=2 and Tf =2 /n. For simulations with ��10−3, the time
step was reduced to �t=10−6Tf for numerical stability.

In all Poincaré sections shown, 13 tracer particles �uni-
formly distributed along the line connecting the point
�0,min�h�0� ,0�� to the lower-right corner of the tumbler� are
advected in this manner for 500 periods. The angular speed
of the tumbler is always �z=2 in the clockwise �i.e., “nega-
tive” mathematical� direction. Finally, the tumbler “radius” is
taken equal to 1 or, equivalently, the side length is S=�2.

In computing the FTLE field of the flow, the granular
continuum in the initial configuration, taken to be at time
t= t0=0 for all cases presented here, is discretized into
210�210 uniformly distributed points throughout the filled
area of the tumbler. These are advected with flow, for the
length of time �, as described above for the Poincaré sec-
tions. At the final time t= t0+���, the deformation gradient
F=�x /�X �where x and X are the coordinates in the de-
formed and reference configurations, respectively� is com-
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puted by a central finite difference approximation,6,15 whence
the �right� Cauchy–Green deformation tensor is simply
C=F�F.
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