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We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine

flow computationally using a mapping method with operator splitting. We specifically consider

three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive

autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and

homochirality, and competitive autocatalytic reactions with recycling. In competitive autocatalytic

reactions, species B and C both undergo an autocatalytic reaction with species A such that

Aþ B! 2B and Aþ C! 2C. Small amounts of initially spatially localized B and C and a large

amount of spatially homogeneous A are advected by the velocity field, diffuse, and react until A is

completely consumed and only B and C remain. We find that local finite-time Lyapunov exponents

(FTLEs) can accurately predict the final average concentrations of B and C after the reaction

completes. The species that starts in the region with the larger FTLE has, with high probability, the

larger average concentration at the end of the reaction. If B and C start in regions with similar

FTLEs, their average concentrations at the end of the reaction will also be similar. When a

recycling reaction is added, the system evolves towards a single species state, with the FTLE often

being useful in predicting which species fills the entire domain and which is depleted. The FTLE

approach is also demonstrated for competitive autocatalytic reactions in journal bearing flow, an

experimentally realizable flow that generates chaotic dynamics. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862153]

In many physical systems where chemical reactions occur,

the chemicals are also moved in space by the action of ve-

locity fields (e.g., currents in the ocean or the atmosphere)

and by molecular diffusion. We have developed a compu-

tational method that accurately and efficiently simulates

these reacting, flowing, and diffusing systems—a task

which in general is quite difficult. Our method allows us to

quickly perform many simulations and thereby statisti-

cally study the chemical state of the system after the reac-

tion is complete. We find that the degree of small scale

stretching of the fluid elements at the initial spatial posi-

tions of the reactants that occurs early in the flow can

accurately predict the final chemistry.

I. INTRODUCTION

In advection-reaction-diffusion (ARD) systems, chemi-

cal species simultaneously are advected by a velocity field,

diffuse, and undergo a chemical reaction. ARD systems are

relevant to many natural systems, for example, plankton

populations1,2 and ozone depletion in the Arctic,3 as well as

to engineering applications such as polymer processing4

and micromixers.5 ARD systems with nonlinear chemical

reactions have been previously used to study the fingering

dynamics of reaction-diffusion acidity fronts in the

chlorite-tetrathionate reaction,6 Marangoni convection pat-

terns driven by a neutralization reaction,7 and barriers to

front propagation in the Belousov-Zhabotinsky reaction

(i.e., “burning invariant manifolds”).8–11 In ARD systems,

the underlying velocity field is critical in determining final

species concentrations. By analyzing the velocity field

using techniques from dynamical systems theory, specifi-

cally the finite-time Lyapunov exponent, we are able to

accurately predict the average final species concentrations

from the initial conditions in spite of the complex dynamics

that often take place within ARD systems.

To study the relation of the finite-time Lyapunov expo-

nent on ARD systems, we consider autocatalytic reactions

where species B is autocatalyzed by species A

Aþ B! 2B: (R1)

One notable example of autocatalytic reactions in ARD sys-

tems is the asymmetry in the autocatalysis of NaClO3 crys-

tals with a particular chirality.12 In crystallization, a “mother

crystal” of either type (levo- or dextro-rotatory) generates
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secondary crystals of the same chirality through autocatalytic

secondary nucleation, a nonlinear process.13 Experiments14

in crystallization of NaClO3 show that, if the crystallization

occurs in an unstirred fluid, equal numbers of levo- and

dextro-rotatory crystals are produced, and the mixture is said

to be racemic. However, if stirred, there is typically a great

disparity in the number of levo- and dextro-rotatory crystals,

which is called a homochiral mixture, implying that chaotic

advection plays a critical role in this form of crystalliza-

tion.12 Additional experimental studies have observed homo-

chirality in the autocatalysis of chiral pyrimidyl alkanol,15

and of various inorganic16 and organic17–19 molecules via

chaotic advection and grinding, where glass beads grind

larger crystals into smaller pieces which can be dissolved in

solution. Homochirality can be useful in many applications.

For instance, in pharmaceuticals, molecules of different chir-

ality can have different properties, and only one may be

desirable.20

Motivated by the NaClO3 symmetry breaking experi-

ments,14 Metcalfe and Ottino21 studied competitive autocata-

lytic reactions within a Lagrangian framework. In a

competitive autocatalytic reaction, two species, B and C,

undergo an autocatalytic reaction with species A

Aþ B! 2B;

Aþ C! 2C: (R2)

Initially, one B and one C particle are placed in a domain

with many A particles, and all the particles are advected by a

velocity field. If an A particle gets “close enough” to a B/C
particle, it turns into a B/C particle. In their simulations, a

large inequality in the final number of B and C particles is

observed after all the A particles are consumed,21 analogous

to the homochiral state observed in experiments.14

Moreover, differences in the initial location of the reacting

particles in relation to the unstable manifold of a hyperbolic

point gave drastically different results for the final relative

numbers of B and C particles.

Several other computational and analytic studies have

attempted to model homochirality. The earliest model is

from Frank,22 who added a recycling reaction to the two

competitive autocatalytic reactions: Bþ C! 0. In the ab-

sence of chaotic advection and diffusion, this set of reac-

tions yields a homochiral state. To better understand

homochirality, more recent modifications to Frank’s

model have incorporated spontaneous generation of B
and C particles from achiral reactants (primary nuclea-

tion),23,24 higher order autocatalytic reactions,25 Ostwald

ripening,20,26,27 and grinding.27,28 Other studies have sto-

chastically considered homochirality to determine the

final probability distribution of levo- or dextro-rotatory

crystals.29–31

There are still several questions associated with our

understanding of autocatalytic reactions in ARD systems.

First, many numerical simulations approach this problem

from a Lagrangian framework in the limit of infinitely fast

reactions, an assumption that makes it difficult to study auto-

catalytic reactions across a broad range of physical parame-

ters, including dependence on the diffusion coefficient and

the reaction rate. Second, several studies26–28 simulate cha-

otic advection by randomly redistributing the particles,

which ignores the importance of the chaotic velocity field.

Finally, there is not yet a predictive model for the depend-

ence of the final average concentrations on the initial spatial

conditions.

Previous studies have considered autocatalytic reactions

in terms of global properties of the flow. Muzzio and Liu32

showed that reactions occur more quickly for fully chaotic

flows as compared to partially chaotic or regular flows. More

recently, it has been shown that, depending on the parame-

ters, the reaction speed (i.e., how quickly the average

concentration of the reactants decreases) can depend on the

Lyapunov exponent,33,34 the spatial distribution of the finite-

time Lyapunov exponent,35 the dynamics of an effective

fractal dimension,34,36 and an effective diffusivity.35 While

the decay rate of the reactants can be quantified in terms of

global properties of the flow, there has not yet been an

approach to explain the dependence of the reaction speed on

the initial conditions, and these ideas have not been extended

to competitive autocatalytic reactions.

In this paper, we first present an accurate and efficient

numerical method for solving ARD systems that enables a

large number of simulations with different physical parame-

ters to be investigated in a relatively short amount of time.

Using this method, we show how the time for the reaction to

complete and the final average concentrations vary depend-

ing on initial spatial conditions and the physical parameters

of the problem. Finally, we present and develop a relatively

simple approach that predicts final average concentrations

using only the finite-time Lyapunov exponent at the initial

placements of B and C, despite the complex dynamics asso-

ciated with competitive autocatalytic reactions in the ARD

system we examine.

II. METHODS

Successful modeling of autocatalytic reaction (R1) in

ARD systems can, in general, be difficult, so infinitely fast

(or diffusion limited) reactions37 are often considered to

simplify the modeling. In this limit, reactions only occur at

the interface between A and B, and therefore, from an

Eulerian viewpoint, each species has a concentration of 0 or

1 everywhere. When slow diffusion occurs at this interface,

A is consumed by B, thus advancing the interface towards

A. The infinitely fast reaction limit, described in detail else-

where,38 has been used to study autocatalytic reactions in

relation to the unstable manifold of a hyperbolic fixed

point,39,40 fractal dimension and escape rate in an open

flow,41,42 and barriers to front propagation.8–10 From an

Eulerian point of view, the infinitely fast reaction limit

requires the tracking of material lines in a chaotic flow,

which is a difficult numerical problem.43 For this reason, it

is convenient to consider the infinitely fast reaction limit

from a Lagrangian point of view. While convenient numeri-

cally, the Lagrangian framework has several shortcomings

in ARD systems. First, Lagrangian methods have several

artificial numerical parameters, such as the density of par-

ticles in the domain and a length scale related to how close
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the particles must be to react. While these quantities relate

to the physical parameters of the problem (e.g., the reaction

rate and the diffusion coefficient), the precise mathematical

relation is unclear. Second, the infinitely fast reaction limit,

while appropriate for some applications, cannot capture reac-

tions where the reaction timescale is comparable to or longer

than the diffusion or advection timescales. In ARD systems in

general, the concentrations of A and B vary continuously from

0 to 1 throughout the domain, and the infinitely fast reaction

limit is not valid.

It is therefore useful to consider the full ARD problem

from an Eulerian viewpoint. ARD systems have been previ-

ously solved using finite differences32 and Galerkin spectral

methods.35,44–46 In this paper, we solve the ARD equation

using an Eulerian framework by generalizing an operator

splitting method. This method is accurate and has relatively

low computational cost, allowing a large number of simula-

tions to be performed over a wide range of physical parame-

ters in a relatively short time. Operator splitting schemes for

advection-diffusion problems, which have been verified to

be accurate,47 have been used to study magnetic field diffu-

sion in fast dynamos,48 tracer trajectories in turbulent

flows,49 and strange eigenmodes in granular flows.50 In

reacting flows, many Lagrangian studies implement operator

splitting techniques as well (i.e., particles advect for some

time, then instantaneously react),39–42,51,52 but these studies

are subject to the limitations of the Lagrangian approach

mentioned above.

A. Eulerian advection-reaction-diffusion

The non-dimensional ARD equation for species i is51

@ci

@t
þ u � rci ¼

1

Pe
r2ci þ DaRiðcA; cB; cCÞ; (1)

where ciðx; tÞ is the concentration of species i (i.e.,

i ¼ A; i ¼ B, or i¼C), u is the advective velocity field, and

Ri is a rate function that characterizes the chemical reaction.

The P�eclet number is Pe ¼ UL=D and the Damk€ohler num-

ber is Da ¼ kL=U, where L is a characteristic length, U is a

characteristic velocity, D is the diffusion coefficient, and k is

a reaction rate. Physically, Pe represents the ratio of an

advection rate to a diffusion rate, and Da represents the ratio

of a reaction rate to an advection rate. If the velocity field is

incompressible (r � u ¼ 0), each species has the same diffu-

sion coefficient,53 and
P

i Ri ¼ 0, then the total species con-

centration is conserved, i.e., if
P

i ciðx; t ¼ 0Þ ¼ 1 for all x,

then
P

i ciðx; tÞ ¼ 1 for all x and t > 0. For the autocatalytic

reaction in reaction scheme (R1),

RBðcA; cBÞ ¼ �RAðcA; cBÞ ¼ cAcB: (2)

The advective velocity field we consider here is time-

periodic sine flow (TPSF),54,55 a two-dimensional flow used

in several other ARD studies.1,32,44,56 The velocity field of

TPSF (shown schematically in Figs. 1(a) and 1(b)), which is

defined on the unit square ð0 � x; y � 1Þ with periodic

boundary conditions, is

uðx; y; tÞ ¼ sin 2pyð Þx̂; 0 � mod ðt; TÞ < T=2;

sin 2pxð Þŷ; T=2 � mod ðt; TÞ < T:

(
(3)

The period of the flow, T, is free to be chosen, and different

values for T can give a partially chaotic flow (visible islands

of regular flow) or a fully chaotic flow (no visible islands).57

We use T ¼ 1:6, which makes the velocity field fully chaotic

in the entire domain. Concentration distributions for

advection-diffusion (Eq. (1) with Pe ¼ 104 and Da ¼ 0)

under TPSF are shown in Figs. 1(c)–1(e) for a segregated

initial condition (c¼ 1 for x < 0:5 and c¼ 0 for x > 0:5).

The concentration distributions show that TPSF is fully cha-

otic with substantial blurring of striations due to diffusion at

t ¼ 4T for T ¼ 1:6.

B. Numerical method

Similar to the approach in Schlick et al.,47 to evolve the

system from time t ¼ mDt to t ¼ ðmþ 1ÞDt, we first solve

the advection step

@c�i
@t
¼ �u � rc�i ; t 2 ½mDt; ðmþ 1ÞDt�; (4)

for c�i ððmþ 1ÞDtÞ using ciðmDtÞ as the initial condition.

Next, the diffusion step is solved,

@c��i
@t
¼ 1

Pe
r2c��i ; t 2 ½mDt; ðmþ 1ÞDt�; (5)

for c��i ððmþ 1ÞDtÞ using c�i ððmþ 1ÞDtÞ as the initial condi-

tion. Finally, the reaction step is solved

@ci

@t
¼ DaRiðcA; cB; cCÞ; t 2 ½mDt; ðmþ 1ÞDt�; (6)

for ciððmþ 1ÞDtÞ using c��i ððmþ 1ÞDtÞ as the initial

condition.

FIG. 1. Schematic of the velocity field of TPSF for (a) 0 � mod ðt; TÞ <
T=2 and (b) T=2 � mod ðt;TÞ < T. Concentration distributions for TPSF of

a single species under advection-diffusion with Pe¼ 104 (c) for the initial

condition, (d) after 1 period, and (e) after 4 periods. 0 � x; y � 1, where x is

the abscissa and y is the ordinate.
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To solve each step, the domain is subdivided into an Nx

by Ny grid (with Nx ¼ Ny ¼ 300). The advection step

(Eq. (4)) is solved with a matrix mapping method.47,50,58,59

The matrix mapping method uses an NxNy � NxNy matrix,

Ut0;Dt, where each entry Uðj1;j2Þt0;Dt is the proportion of material in

cell j1 carried by the velocity field u from cell j2 from time t0
to time t0 þ Dt. Letting ci be an NxNy � 1 column vector of

the concentrations in each grid cell, then c�i ðt0 þ DtÞ
¼ Ut0;Dtc

�
i ðt0Þ. To solve the diffusion step, a backward Euler

scheme is implemented as in Marchuk–Yanenko operator

splitting.60 To solve the reaction step, a 4th order

Runge-Kutta scheme is used in each grid cell.

C. Finite-time Lyapunov exponent

To characterize the local dynamics of the flow field, we

use the finite-time Lyapunov exponent (FTLE). Following

Shadden et al.,61 consider the differential equation

dx

dt
¼ uðx; tÞ; (7)

which describes the Lagrangian motion of a particle under a

velocity field u. If a tracer is started at an initial location x at

t ¼ t0, let /t0;sðxÞ be the location of the tracer after time s.

The finite-time right Cauchy-Green deformation tensor is

then given as

Dðt0;sÞðxÞ ¼
d/t0;sðxÞ

�

dx

d/t0;sðxÞ
dx

; (8)

where the * indicates the complex conjugate. From here, the

finite-time Lyapunov exponent is

kðt0;sÞðxÞ ¼ 1

jsj log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmax Dðt0;sÞðxÞ

� �r
; (9)

where KmaxðDÞ is the largest eigenvalue of D. Thus, the

FTLE represents the maximum separation of two nearby

points over a finite interval of time. For the rest of this paper,

we take t0 ¼ 0, so kðsÞðxÞ � kðt0;sÞðxÞ. In this definition, s can

be either positive or negative, and taking s!1 gives the

typical definition of the (infinite-time) Lyapunov exponent.

Figure 2 shows the FTLE for TPSF for different values

of s. For s ¼ T=2, the flow is independent of x, so the FTLE

is also independent of x. As s increases, a more complex

structure emerges: since the velocity field is chaotic, initially

nearby points move away from each other and can undergo

very different dynamics as time progresses.

III. AUTOCATALYTIC REACTIONS

A. Autocatalytic reaction with one species

Consider a single autocatalytic reaction (R1) (with Ri

given by Eq. (2)). Initially, the concentration of B; cB, is 0

everywhere except in one grid cell, where cB ¼ 1. The rest

of the domain is filled with species A by setting cA ¼ 1.

Thus, cA þ cB ¼ 1 everywhere in the domain. Let kðsÞB be the

finite-time Lyapunov exponent at the center of the single

starting grid cell for B.

Figure 3 shows an example of the evolution of cA and cB

based on Eq. (1) for an autocatalytic reaction (R1) where B
is initially placed in the region indicated by the square sym-

bol in Figure 2(b). In Figure 3, white represents species A
and black (blue online) represents species B. For short times

(t ¼ T=2), B remains localized. However, as time evolves, B
stretches, diffuses, and reacts, until it nearly fills the entire

domain at t ¼ 5T=2. For intermediate times, species B aligns

with the unstable manifold of a hyperbolic fixed point in the

FIG. 2. FTLE for TPSF for various s on a log scale. In (b), the symbols indi-

cate the initial conditions for Figures 3–5. The maximum values of k (white)

are (a) max(k)¼ 27.22, (b) max(k)¼ 741.4, and (c) max(k)¼ 2018.

FIG. 3. Concentration distributions of ARD for an autocatalytic reaction

(R1) under TPSF. A (white) and B (black, blue online).

kðTÞB ¼ 33:61; Pe ¼ 104; Da ¼ 5. Starting location of B in relation to the

FTLE for s ¼ T is indicated by the square symbol in Figure 2(b).
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flow, causing the unstable manifold to appear “fattened,” as

reported in previous studies.39,40

Figure 4(a) shows the average concentration of A as a

function of time for three different initial placements of B in

the domain. In each case, there is a long transient where

hcAi 	 1, after which hcAi decreases exponentially, which is

consistent with earlier studies.34–36 For the three different

initial conditions, hcAi decays at the same rate after the tran-

sient; however, the length of the transient varies with the ini-

tial conditions. For kðTÞB small, the transient is longer, as there

is less initial stretching of B, and B spreads more slowly

throughout the domain. For kðTÞB large, B stretches signifi-

cantly initially, and spreads out more quickly; thus the tran-

sient is shorter. Despite a difference of almost three orders of

magnitude in kðTÞB , the time to achieve hcAi ¼ 10�3 only dif-

fers by about 610%. While the FTLE does not significantly

influence single autocatalytic reactions, Sec. III B shows that

the FTLE is immensely important for competitive autocata-

lytic reactions, since a small initial bias in one of the species

is greatly amplified.

To demonstrate the effect of different P�eclet and

Damk€ohler numbers, Fig. 4(b) shows the reaction time as a

function of Da for three different values of Pe. We define the

reaction time, tr, as the time (averaged over 50 randomly

chosen initial placements of B) for the average concentration

of A to be reduced to 10�3. The reaction time decreases as

Da increases, with the fastest reaction occurring for the low-

est Pe, as expected. For Da small (reaction-limited), there is

little difference in tr for different Pe (2% difference between

Pe ¼ 103 and Pe ¼ 105 for Da ¼ 1). In this regime of slow

reactions, B spreads (due to chaotic advection and diffusion)

through the entire domain more quickly than the reaction can

occur, so the reaction takes approximately the same time to

complete regardless of Pe.

B. Competitive autocatalytic reaction

Consider now competitive autocatalytic reactions (R2)

in which B and C compete for A, and the system is evolved

until species A is exhausted. In this reaction, the reaction

functions Ri from Eq. (1) are

RB ¼ cAcB;

RC ¼ cAcC;

RA ¼ �cAcB � cAcC:

(10)

This reaction scheme was previously studied by Metcalfe

and Ottino21 and was motivated by NaClO3 symmetry break-

ing experiments.14 In simulations, initially both B and C are

localized to single, distinct grid cells, and the rest of the do-

main is composed of A, so cA þ cB þ cC ¼ 1 everywhere in

the domain. We define the ratio of the finite-time Lyapunov

exponents at the starting locations of B and C as

LðsÞ ¼ kðsÞB =kðsÞC : (11)

After a simulation has completed, hcAi ¼ 0, and the spatially

averaged final concentrations of B and C; c1B � hcBðt ¼ 1Þi
and c1C � hcCðt ¼ 1Þi, are calculated.62 Note that c1B
þ c1C ¼ 1, since hcAi þ hcBi þ hcCi ¼ 1 for all t. The ratio of

the final concentrations, defined as c1 ¼ c1B =c1C , indicates

the relative final concentrations of B and C.

Figure 5 shows the evolution of A (white), B (black,

blue online), and C (grey, red online) for two sample simula-

tions with different initial conditions, and Figure 6 shows the

average concentration of the three species as a function of

time. The initial placements of B and C are indicated on

Figure 2(b) to show their relation to the FTLE for s ¼ T. In

the first simulation (S1), LðTÞ 	 1 and c1 	 1, meaning both

B and C end up covering about the same area in the domain

in the long run (see t ¼ 5T=2 for S1 in Figure 5). In this

case, both B and C undergo approximately the same amount

of initial stretching in the flow, as indicated by similar values

for the FTLE at their initial location and as evident in S1 in

Figure 5 at t¼ T. However, in the second simulation (S2),

LðTÞ 
 1, indicating that B is initially stretched more than C.

This is evident for t ¼ T=2 and t¼T for S2 in Figure 5,

where B has stretched significantly (kðTÞB is large), while C
has been stretched very little (kðTÞC is small). This asymmetry

in the stretching creates a small initial bias (which can be

seen for t 	 T in Figure 6(b)) that is amplified as time goes

on, as described in Bonner63,64 and observed in experi-

ments.15 The final result is that B dominates C, as is evident

FIG. 4. (a) Average concentration of A vs. time for different initial placements

of B: kðTÞB ¼ 689:7 (�), kðTÞB ¼ 33:61 ðwÞ, and kðTÞB ¼ 1:667 ð�Þ. Starting loca-

tions for B are indicated in Figure 2(b) (by corresponding symbols). Spatial

concentration distributions at various times for kðTÞB ¼ 33:61 ðwÞ are shown in

Figure 3. Pe¼ 104 and Da¼ 5. (b) Average time for reaction to complete vs.

Da for Pe¼ 103 (�), Pe¼ 104 (w), and Pe¼ 105 (�).
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for t ¼ 5T=2 for S2 in Figure 5, and c1 	 5, indicating that

B ends up covering nearly five times more of the domain

than C, as seen for later times in Figure 6.

To capture the range of final possible configurations,

Figure 7 shows histograms of different outcomes (c1B ) for

different P�eclet and Damk€ohler numbers. Each histogram

includes 1000 trials, and in each trial, the initial placements

of B and C are randomly chosen. Panels (a)–(c) show the

effect of the Damk€ohler number on c1B with constant

Pe ¼ 104. For Da small (Figure 7(a)), there is little spread in

the data (0:37 < c1B < 0:63), as the reaction occurs so

slowly that both species spread across most of the domain

due to diffusion and chaotic advection before they react

much. Consequently, both species are approximately equally

spread throughout the domain after the reactions complete.

For Da large (Figure 7(c)), the reaction occurs quickly, and

the initial concentrations of B and C grow rapidly, not allow-

ing time for stretching. This nullifies the effects of chaotic

advection and again produces a state with approximately

equal average concentrations of B and C. However, for inter-

mediate values of Da (2 < Da < 20), the reaction is neither

too slow nor too fast. Consequently, the initial stretching of

fluid elements plays an important role in determining the

final state.

In Figures 7(d)–7(f) (Da¼ 5, varying Pe), it is evident

that increasing Pe broadens the histogram. For smaller Pe, B
and C diffuse more quickly, reducing the importance of cha-

otic advection at the specific initial placements of reactants

and resulting more frequently in states with c1B 	 0:5. For

Pe <103, the histogram would continue to narrow, since both

species will spread equally throughout the domain before

they react much, similar to panel (a). As Pe increases, the ef-

ficacy of diffusion decreases, and the small scale interactions

of fluid elements by chaotic advection become more impor-

tant. Therefore, as in simulation S2 in Figure 5, either B or C
can be stretched more initially. As a result, it is more likely

that a large disparity in the final concentrations occurs by the

end of the reaction.

To quantitatively determine the effect of the finite-time

Lyapunov exponent on final average concentrations, Figure 8

FIG. 5. Concentration distributions of ARD for a competitive autocatalytic

reaction (R2) under TPSF. A (white), B (black, blue online), and C (grey,

red online). (S1) LðTÞ ¼ 193:0=194:5 ¼ 0:99 and c1 ¼ 0:539=0:461 ¼ 1:17.

(S2) LðTÞ ¼ 425:3=1:03 ¼ 412:9 and c1 ¼ 0:822=0:178 ¼ 4:62. Pe¼ 104

and Da¼ 5. Initial placements of B and C are shown in relation to the FTLE

for s ¼ T in Figure 2(b) for S1 (�) and S2 (�).

FIG. 6. Average concentrations of A (�), B (w), and C (�) vs. time for the

simulations shown in Figure 5.
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shows scatter plots of c1 as a function of LðsÞ. When LðsÞ 	 1

(B and C start at locations of approximately equal FTLE), a state

with nearly equal average concentrations of B and C is typically

formed and c1 	 1. When LðsÞ > 1; B is stretched more ini-

tially and c1B > c1C ðc1 > 1Þ. Similarly, when LðsÞ < 1; C is

initially stretched more than B and c1 < 1. The relationship

can be approximated as

c1 ¼ LðsÞð Þc; (12)

where c can be determined by fitting the data in Figure 8 to a

line. This simple relation connects the small scale stretching

(given by the FTLE) to the averaged long term behavior of

the system, dramatically simplifying the complex dynamics

associated with the solution to the ARD equation (1). Similar

results were obtained for 103 < Pe < 105 and 2 < Da < 20,

since these values result in a wider spread for c1 (see Figure

7). Outside these ranges, histograms of c1B are narrow (like

Figures 7(a) and 7(c)) as chaotic advection is less important,

FIG. 7. Histograms of c1B for 1000 trials of ARD for competitive autocatalytic reactions (R2) under TPSF with various values of Pe and Da. Note that panels

(b) and (e) both correspond to Pe¼ 104 and Da¼ 5 with different vertical scales.

FIG. 8. Effect of the FTLE ratio LðsÞ

on the concentration ratio c1 for TPSF

for Da¼ 5, 10 and Pe¼ 103, 104.

(a) s ¼ T; c ¼ 0:168. (b) s ¼ T;
c ¼ 0:330. (c) s ¼ T=2; c ¼ 0:326.

(d) s ¼ T=2; c ¼ 0:371. Each data set

(for each pair of parameters) includes

1000 trials with different randomly

chosen initial placements of B and C.
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and Eq. (12) does not effectively describe the reaction

dynamics.

The results shown in Figure 8 are weakly dependent on

s. In general, choosing s ¼ T=2; T, or 3 T=2 is sufficient to

achieve good results (i.e., high R2 value of the fit of a line to

the data in Figure 8) in the given parameter range

(103 < Pe < 105 and 2 < Da < 20). The values for s used in

Figure 8 are chosen by calculating the largest R2 value (for

s ¼ T=2; T, or 3 T=2) of the fit of equation (12) to the data in

Figure 8. The optimal value for s is related to how long it

takes to complete the reaction (see Figure 4(b)). For exam-

ple, when Da¼ 5 (Figures 8(a) and 8(b)), the reaction takes

longer to complete than when Da¼ 10. Thus, the s used for

Da¼ 5 is larger than that used for Da¼ 10. The parameter c,

which is obtained by fitting the data to a power law, is

related to the range of the data in Figure 7. In Figure 7(d),

the range for c1B is narrower than in Figure 7(e), so for

Da¼ 5, the value for c for Pe¼ 103 is smaller than the value

for c for Pe 104.

From the results in Figure 8, it is possible to predict the

histogram of final concentration distributions (Figure 7)

from the FTLE distribution. From Eq. (12) and noting that

c1 ¼ c1B =c1C ¼ c1B =ð1� c1B Þ, we obtain the relation

c1B ¼
1

1þ LðsÞð Þ�c : (13)

To obtain a probability density function for LðsÞ; 106 pairs of

points were randomly chosen, and the ratio of the FTLE at

those points was calculated. The results for the predicted

probability density function from the FTLE distribution

(using Eq. (13)) are compared to the actual probability den-

sity function obtained from numerical simulations of the

ARD equation (1) in Figure 9. Indeed, the predicted distribu-

tion matches the simulations. While it is necessary to know s
and c to predict the histogram, these can be obtained from

relatively few simulations. The probability density function

can then be extrapolated from the FTLE distribution using

Eq. (13), which is generally less computationally expensive

than running many simulations of the ARD equation (1).

C. Competitive autocatalytic reaction with recycling

The addition of a recycling reaction to the competitive

autocatalytic reactions (R2) is a means to drive the system to

a state with only B or C

Aþ B! 2B;

Aþ C! 2C;

Bþ C! 2A:

(R3)

This is a variation of the recycling reaction studied by

Frank,22 which is Bþ C! 0. Modifying Eq. (1) slightly to

include both the autocatalytic reactions and the recycling

reaction yields

@ci

@t
þ u � rci ¼

1

Pe
r2ci þ DaRiðcA; cB; cCÞ

þDarRr;iðcA; cB; cCÞ; (14)

where Rr;i and Dar are the reaction functions and the

Damk€ohler number associated with the recycling reaction.

The initial conditions are the same as those used for competi-

tive autocatalytic reactions in Sec. III B. The reaction func-

tions for the autocatalytic reactions (first two reactions of

(R3)) Ri are given in Eq. (10), and the reaction functions for

the recycling reaction (last reaction of (R3)) Rr;i are

Rr;B ¼ �cBcC;

Rr;C ¼ �cBcC;

Rr;A ¼ 2cBcC:

(15)

In Figure 10, the average concentrations of the three

species are plotted as functions of time for three different

simulations. In Figure 10(a), LðTÞ 
 1, so B dominates C. C
increases in concentration initially, but once most of A has

been consumed, B and C react together (3rd reaction in

(R3)), consuming most of C in the process, leaving B to

eventually occupy the entire domain. The initial bias in con-

centration generated from the difference in FTLE at the start-

ing location of B and C is amplified to create a final state that

contains only B, analogous to results from studies on homo-

chirality.15 In contrast, Figure 10(b) shows a simulation

where LðTÞ 	 1. In this case, both species stretch similarly

early in the flow, so neither species is able to obtain a strong

initial bias. This reaction takes much longer to complete than

FIG. 9. Probability density functions from simulations (�) and predicted

from the FTLE distribution using Eq. (13) (curve) for Da¼ 5. (a) Pe¼ 103,

corresponding to Figures 7(d) and 8(a). (b) Pe¼ 104, corresponding to

Figures 7(e) and 8(b).
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the reaction shown in Figure 10(a), as B is unable to quickly

overtake C.

In Figure 10(c), the recycling reaction rate is increased

(from Dar ¼ 1 to Dar ¼ 10), with the same initial place-

ments of B and C as in panel (b). In this case, C fills the

entire domain while B is depleted, showing the sensitivity of

the simulation to the recycling reaction rate for LðTÞ 	 1.

Additionally, small oscillations occur in the average concen-

trations around t=T 	 4, a somewhat counterintuitive result

that indicates a competition between the reactions in (R3).

Initially, the autocatalytic reactions are prevalent, causing

hcAi to decrease. Next, the recycling reaction becomes more

prevalent, causing hcAi to increase slightly. The prevalence

of the two types of reactions switches back and forth a few

times, until eventually hcAi decreases to 0, and only C
remains.

Determining which of the two species eventually fills

the entire domain depends again on the initial placements of

B and C. Whichever species is initially stretched more typi-

cally develops a larger average concentration, and this bias

is amplified as time progresses.15,63 Therefore, the species

that has a larger FTLE at its starting location should eventu-

ally end up filling the entire domain (i.e., if LðsÞ > 1; B
will usually fill the entire domain and hcBi � hcCi ! 1, and

vice-versa.

To examine this predictive potential, we define

L
ðsÞ
� ¼ maxðLðsÞ; 1=LðsÞÞ. If L

ðsÞ
� 
 1, one species will ini-

tially be stretched significantly more than the other, and that

species should end up filling the entire domain. However, if

L
ðsÞ
� 	 1, both species experience similar degrees of initial

stretching, so predicting which species will fill the domain is

less certain. To quantify the predictive potential of the

FTLE, we define j to be the probability, over a given range

of L
ðsÞ
� , that the species that starts at the higher FTLE fills

the entire domain at the end of the simulation. If j ¼ 1, then

FIG. 10. ARD for an autocatalytic reaction with recycling (R3) under TPSF.

Average concentration hci of A (�), B (w), and C (�) as a function of time

for Da¼ 5 and Pe¼ 104. In (a) and (b), simulations are shown for Dar¼ 1

for two different initial placements of B and C: (a) LðTÞ ¼ 689:65=

33:61 ¼ 20:52, (b) LðTÞ ¼ 39:72=33:61 ¼ 1:18. In (c), Dar¼ 10, with the

same initial placements of B and C as in (b).

FIG. 11. Bar graphs showing the predictive potential of the FTLE in com-

petitive autocatalytic reactions with recycling for Pe¼ 103 (black, blue

online) and Pe¼ 104 (grey, green online). j is the probability over a given

range of L
ðsÞ
� that the species that starts at the location with the higher FTLE

fills the entire domain. The same values of s used in Figure 8 are used here:

s ¼ T for Da¼ 5 and s ¼ T=2 for Da¼ 10.
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the FTLE correctly predicts the species that fills the entire

domain for every simulation in the given range of L
ðsÞ
� ; if

j ¼ 0:5, then there is no correlation between the FTLE and

which species fills the entire domain. Figure 11 shows the

values for j for different ranges of L
ðsÞ
� over 1000 simula-

tions at each combination of parameters: Da¼ 5, 10,

Dar¼ 1, 2,64 and Pe ¼ 103; 104 (8 total different combina-

tions). Results (not shown) indicate that j does not strongly

depend on Dar in the parameter range studied, so the simula-

tions for Dar ¼ 1 are combined with the simulations for

Dar¼ 2 (yielding 4 parameter combinations of interest with

2000 simulations each). The range of L
ðsÞ
� (abscissa of Figure

11) is chosen such that each bar contains approximately the

same number of simulations (approximately 400 per bar).

For L
ðsÞ
� small, j is close to 0.5, indicating that the FTLE

does not accurately predict which species will fill the entire

domain. However, as L
ðsÞ
� increases to larger values (one spe-

cies starts at a location with a much larger FTLE than the

other), j approaches 1 for all parameter values, indicating

that the FTLE approach can always predict which species

will fill the entire domain if L
ðsÞ
� is large enough.

IV. JOURNAL BEARING FLOW

To test the wider applicability of our approach, we con-

sider journal bearing flow, a Stokes flow examined in other

ARD studies.13,20,21 This flow has been extensively studied

both computationally and experimentally by Swanson and

Ottino,65 and an analytic solution for the stream function is

given by Wannier.66 Journal bearing flow occurs between

two counter rotating cylinders and is shown schematically in

Figure 12(a). During each period, the inner cylinder rotates

clockwise (at angular speed 2p) for time T1, and then the

outer cylinder rotates counterclockwise (again at angular

speed 2p) for time T2 (so T ¼ T1 þ T2). Here, we use the ra-

dius of the inner circle a1 ¼ 1=3, the radius of the outer

circle a2 ¼ 1, the eccentricity e ¼ 0:3; T1 ¼ 2, and T2 ¼ 1.

Figure 12(b) shows streamlines for the individual motions of

the outer cylinder rotating and inner cylinder rotating.

Streamline crossing indicates that chaos is likely, and the

Poincar�e section in Figure 12(c) confirms that the velocity

field is chaotic throughout most of the domain. The FTLE

field for s ¼ T is shown in Figure 12(d). In contrast to TPSF

which occurs in a periodic domain, journal bearing flow is

closed. Additionally, journal bearing flow is not completely

chaotic, having regular regions near the edge of both the

inner and outer cylinders, as seen in the Poincar�e section in

FIG. 12. (a) Schematic of journal bearing flow. During each period, the

inner cylinder rotates clockwise at angular speed 2p for time T1, then the

outer cylinder rotates counterclockwise at angular speed 2p for time T2.

Here, we use a1 ¼ 1=3; a2 ¼ 1, and e ¼ 0:3. (b) Streamlines for inner cylin-

der rotating (light grey, green online) and outer cylinder rotating (black,

blue online). (c) Poincar�e section for T1 ¼ 2 and T2 ¼ 1 for 13 different

initial conditions over 300 periods. (d) FTLE field for s ¼ T, with same col-

ormap as Figure 2 with maxðkÞ ¼ 3361. Starting locations of B and C from

Figure 13 are indicated by symbols.

FIG. 13. Concentration distributions of ARD for a competitive autocatalytic

reaction without recycling (R2) under journal bearing flow. A (white), B (black,

blue online), and C (grey, red online). Initial placements of B and C are shown

in Figure 12(d) for S1 (�) and S2 (�). (a) LðTÞ ¼ 40:63=1269 ¼ 0:0320;
c1 ¼ 0:335=0:665 ¼ 0:504. (b) LðTÞ ¼ 40:17=1330 ¼ 0:0302; c1 ¼ 0:167=
0:833 ¼ 0:201:Da ¼ 2; Pe ¼ 3� 104.
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Figure 12(c), while TPSF with T ¼ 1:6 is completely

chaotic.67

Concentration distributions of ARD for a competitive

autocatalytic reaction without recycling (R2) under jour-

nal bearing flow are shown in Figure 13 for the initial

placements shown in Figure 12(d). In simulation S1,

LðTÞ ¼ 0:032 and c1 ¼ 0:504, so C occupies about twice

as much area as B when the reaction completes. However,

in simulation S2, LðTÞ ¼ 0:030, which is similar to LðTÞ in

S1, but now c1 ¼ 0:201, which is much lower than c1 in

S1. Based on a similar approach to that used for TPSF,

we would expect that similar values for LðTÞ should give

similar values for c1 (see Eq. (12)), which is not the case

here. In both S1 and S2, C is initially stretched much

more than B, leading to an initial bias for C. However, in

S2, B gets trapped near the wall, as evident at t ¼ 2T, so

B is impeded from spreading further.

“Trapping” of one of the species is a consequence of the

closed domain in which journal bearing flow takes place, in

contrast to TPSF which takes place in a periodic domain. As

a result, a relation like Eq. (12) cannot be expected to

describe the dynamics of competitive autocatalytic reactions

in closed ARD systems as well as it did for TPSF, as is evi-

dent from simulations S1 and S2 in Figure 13. However, the

initial stretching of the fluid elements at the starting loca-

tions for B and C still plays a significant role, as shown in

Figure 14(a), which is a scatter plot of c1 as a function of

LðTÞ. There is still a correlation between c1 and LðTÞ, albeit

weaker than that for TPSF (R2 ¼ 0:84 in Figure 8(b), and

R2 ¼ 0:45 in Figure 14(a)). Additionally, the species that

starts at the location with the higher FTLE ends with a

higher average concentration in about 77% of the simula-

tions, showing that, despite the somewhat weak correlation

in Figure 14(a), FTLEs can potentially play an effective role

in predicting the results of the reaction for ARD systems in

closed domains.

Another consequence of “trapping” is that it allows a

wider range of values for c1B , as can be seen from the histo-

gram in Figure 14(b). This histogram shows that randomly

chosen initial placements of B and C result in a distribution

of c1B values that is roughly uniform. In TPSF, states with

c1B close to 0 or 1 were unlikely to occur without the addi-

tion of recycling. In simulations by Metcalfe and Ottino21

that also considered journal bearing flow, but from a

Lagrangian viewpoint, both states with similar numbers of B
and C particles and states with a large disparity in B and C
particles were observed, consistent with our results.

V. CONCLUSION

The dynamics of advection-reaction-diffusion systems

are important in many applications, and solving these sys-

tems accurately and efficiently is an area of ongoing

research. In this paper, we presented a numerical method

that uses operator splitting and a matrix mapping method to

solve the advection-reaction-diffusion equation. This method

is computationally efficient and allows for a large number of

simulations to be performed in a relatively short time.

Hence, statistical approaches can be readily used to study the

system under investigation.

Using the operator splitting and matrix mapping method

presented in Sec. II B, we simulated the effects of chaotic

advection on advection-reaction-diffusion systems for a wide

range of the two relevant physical parameters: the P�eclet

number and the Damk€ohler number. Small scale stretching

that occurs quickly (for times less than one period) often

determines the final average concentrations in competitive

autocatalytic reactions in ARD systems. A small difference

in the FTLE at the starting location of two competing species

typically results in approximately equal final concentrations;

a large difference yields a state dominated by the species

that began at the location with the larger FTLE. Adding a

recycling term to the reaction drives the system to a state

where only one of the competing species remains, with the

FTLE playing a pivotal role in predicting which of the two

species fills the entire domain and which is eliminated. The

FTLE approach effectively predicts final average concentra-

tions in TPSF, and we expect it to also work well in other

chaotic flows that take place in periodic domains. In closed

systems such as journal bearing flow, one reactant can

become trapped between the other reactant and the system

boundary. As a result, the FTLE approach is less reliable in

predicting final average concentrations in this instance (com-

pare Figure 8 to Figure 14(a)) but still has significant predic-

tive potential, as we have shown.

FIG. 14. Results of 1000 simulations of an ARD system undergoing a com-

petitive autocatalytic reaction (R2) for journal bearing flow with Da¼ 2,

Pe¼ 3� 104. (a) c1 vs. LðTÞ. (b) Histogram of c1B .
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A great deal of work remains to be done on this topic.

For one, it is not certain that these results, particularly those

for the competitive autocatalytic reaction with recycling

(R3), will carry over to other flows, including three dimen-

sional flows and other two dimensional flows in both peri-

odic and closed domains. Additionally, we have not yet been

able to develop an approach to determine a priori s and c
from Eq. (12). Nevertheless, the use of FTLEs to predict the

final average final concentrations in ARD systems appears to

have significant potential.
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