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We computationally study the behavior of the diffusion coefficient D in granular flows of monodisperse
and bidisperse particles spanning regions of relatively high and low shear rate in open and closed laterally
confined heaps. Measurements ofD at various flow rates, streamwise positions, and depths collapse onto a
single curve when plotted as a function of _γd̄2, where d̄ is the local mean particle diameter and _γ is the local
shear rate. When _γ is large, D is proportional to _γd̄2, as in previous studies. However, for _γd̄2 below a
critical value, D is independent of _γd̄2. The acceleration due to gravity g and particle stiffness (or,
equivalently, the binary collision time tc) together determine the transition in D between regimes. This
suggests that while shear rate and particle size determine diffusion at relatively high shear rates in surface-
driven flows, diffusion at low shear rates is an elastic phenomenon with time and length scales dependent
on gravity (

ffiffiffiffiffiffiffiffi
d̄=g

p
) and particle stiffness (tc

ffiffiffiffiffi
d̄g

p
), respectively.
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Collisional diffusion in granular flow results from the
random motion and interaction of flowing particles.
Diffusion of effectively athermal particles has important
implications in nonequilibrium systems such as granular
materials (e.g., mixing [1,2], segregation [3–5], rheology
[6]) and colloidal suspensions [7]. For granular materials,
particle diffusion varies with the nature of the flow. In
gaslike dilute flow where binary particle collisions domi-
nate, kinetic theory predicts [8,9] and computational
studies [8] confirm that the diffusion coefficient varies
as D ∼ dT1=2, where d is the particle diameter and T is the
granular temperature (velocity variance). In liquidlike
rapid, dense flow, experimental [10–13] and computational
[3,4] studies indicate D ∼ _γd2, where _γ is the local shear
rate. However, in more solidlike quasistatic, or “creep,”
flow regimes [14,15], where multiple particle contacts
exist, particles move collectively, the shear rate is low,
and inertia is unimportant, the dependence ofD on external
excitations (e.g., T or _γ) has been less explored.
In this Letter, we computationally study the changes in

particle diffusion that occur in granular heap flows between
high shear regions found in rapid, dense flow and low shear
regions like those in quasistatic creep flow. We find a
consistent transitional behavior for diffusion in two distinct
flow geometries and over a wide range of velocities,
particle size distributions, and mass flow rates. At larger
_γ, D ∼ _γd2 as in previous studies focusing on the rapid
dense flow regime [3,4,11–13]. However, we observe that
D is independent of _γ deeper in the bed where shear rates
are small. Similar transitions in the shear-rate dependence
at similar _γ also occur for the solids fraction and velocity
fluctuations. Thus, the transition in D identified here may

define the boundary between particle transport driven by
shear induced rearrangements and relative motion driven by
vibrational fluctuations in elastic contacts.
We used the discrete element method (DEM) to simulate

quasi-two-dimensional (quasi-2D) heap flow in two different
geometries, a closed heap with a bounding end wall
[Fig. 1(a)] and an open heap without a bounding end wall
[Fig. 1(b)]. In our quasi-2D heap flow simulations, particles
fall onto the heap between two parallel walls with a gap of
B ¼ 1.27 cm between them and then flow downward via a
thin flowing layer at the free surface. To compute the
interactions between grains, we used a linear spring-dashpot
force model for normal forces and a linear spring model with
Coulomb friction for tangential forces when two particles are
in contact or overlap with each other. Details and exper-
imental validation of the DEM model appear in Ref. [16].
For these simulations, particles were mm-sized with material
density ρp ¼ 2500 kg=m3 and a restitution coefficient of
0.8. Particle-particle and particle-wall friction coefficients
were 0.4. The binary collision time tc ¼ 1 × 10−3 s for the
majority of our results is consistent with previous simula-
tions [4,16,17] and sufficient for modeling hard spheres in
the dense flow regime [18]. Here, tc is related to particle
stiffness, i.e., tc ∼

ffiffiffiffiffiffiffiffiffi
m=k

p
, where m and k denote particle

mass and stiffness, respectively [19]. We separately varied tc
from 1 × 10−4 s to 2 × 10−3 s to investigate the effects of
particle stiffness. An integration time step of Δt ¼ tc=40
assured numerical stability independent of tc. We inves-
tigated both monodisperse and bidisperse particle size
distributions. To reduce particle ordering, particles diameters
were uniformly distributed between 0.9di and 1.1di, where
di is the mean particle diameter of species i.
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In the closed system [Fig. 1(a)], the heap surface rises at
a constant velocity vr ¼ Q=BW, after the heap reaches the
downstream bounding end wall. Here, W ¼ 45.7 cm is the
heap width, and Q is the volumetric feed rate. Due to
deposition of particles into the heap, the velocity of
particles in the flowing layer varies in both the streamwise
(x) and normal (z) directions, and the flowing layer thick-
ness δ decreases slightly in the x direction [16]. We define δ
as the depth where the streamwise velocity is equal to 5% of
the surface velocity us. In the open system [Fig. 1(b)],
particles exit the heap at the downstream end. For a
sufficiently long heap, the flow is fully developed so that
the streamwise velocity u and δ remain constant in the x
direction [20]. In steady flow, the two systems share a
universal streamwise profile in the z direction in the
flowing layer [Fig. 1(c)]. The streamwise velocity
decreases rapidly and monotonically from the maximum
at the free surface. The shear rate _γ ¼ jdu=dzj [inset of
Fig. 1(c)] also decreases with increasing depth, but changes
most rapidly for −2 ≤ z=δ ≤ −1.
We consider diffusion in the z direction only, since

particles in heap flow exhibit superdiffusive motion in the
streamwise direction due to Taylor dispersion [12,21,22].

The time evolution of the nonaffine component of the z
trajectory was calculated using the mean squared displace-
ment (MSD) in the presence of mean flow hΔZðτÞ2i,
whereΔZðτÞ ¼ zðt0 þ τÞ − zðt0Þ − ΔLðτÞ for each particle
[21,23]. Here, ΔLðτÞ is the mean cumulative displacement
of particles in each averaging region (bin) due to mean flow
in the z direction at t0 þ τ for the closed heap, where t0 is the
initial time and τ is the time interval over which the MSD is
calculated. The quasi-2D heap was virtually divided into
nonoverlapping bins of size Δx ¼ 1 cm and Δz ¼ 0.2 cm
for the analysis. The angled brackets denote the average for
all particles in a bin for 100 values of t0 with increments of
0.25 s in t0 after the flow reaches the steady state.
Figure 1(d) shows the MSD vs τ at different depths for an

open heap of d ¼ 2 mm particles. Similar trends occur for
the closed and bidisperse systems. Near the surface
(z=δ ≥ −1.2), particle motion is ballistic (slope of 2) at
smaller time intervals and diffusive (slope of 1) at larger
time intervals, similar to slowly sheared, fluidized, dense
flow [24]. Further below the flowing layer (more negative
values of z), only diffusive motion occurs for the time
resolution used here [lower bound of τ in Fig. 1(d)]. D at
each depth is based on hΔZ2i ¼ 2Dτ [12] and determined
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FIG. 1 (color online). (a),(b) Sketch of quasi-2D heaps with (a) closed end wall and (b) open end wall. (c) Normalized streamwise
velocity profiles in the depth direction at x ¼ W=2 and averaged over the y direction for three simulations: 1.5 mm monodisperse
particles at Q ¼ 60 cm3=s (filled squares), 1 and 2 mm bidisperse particles at Q ¼ 20 cm3=s (filled diamonds) in the closed heap, and
2 mm monodisperse particles at Q ¼ 73 cm3=s in the open heap (open circles). Inset: Depth profiles of normalized shear rate _γ=_γs,
where _γs is shear rate at the free surface. (d) MSD=d2 (see text) vs τ at different depths at x ¼ W=2 for 2 mm particles atQ ¼ 73 cm3=s
in the open heap. Dashed lines indicate a linear fit to the region of each data set where particle motion is diffusive. (e) Diffusion
coefficientD vs z at x ¼ W=2 for the same conditions as in (c). Data points corresponding to the lower boundary of the flowing layer are
labeled as z=δ ¼ −1; tc ¼ 1 × 10−3 s.
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by fitting the linear portion (slope of 1) of the MSD profiles
in Fig. 1(d). Figure 1(e) shows the depth dependence ofD at
x ¼ W=2 for three simulations: bidisperse particles in the
open system and monodisperse particles in the open and
closed systems. In all cases, D decreases rapidly from the
maximum value at the free surface to a noisy but nearly
constant mean value below a certain depth. Even though
particle sizes, feed rates, and geometry are different in the
simulations, D eventually reaches approximately the same
constant value. However, the depth at which the transition to
the constant value occurs differs between simulations with
varying parameters, and the transitional depth does not
always coincide with the arbitrary lower boundary of the
flowing layer (data points indicated as z=δ ¼ −1) based on
the streamwise velocity profile, most notably for mono-
disperse grains in the open heap.
Dimensional analysis for dense rapid flow indicates that

the time and length scales determining D are 1=_γ and the
particle size, respectively [11]. Therefore, we plot D vs _γd̄2

in Fig. 2 for 11 different DEM simulations (Table I), where
d̄ is the local mean particle diameter for the bidisperse
mixture [4]. This scaling collapses all data for a wide range
of size distributions, feed rates, and both flow geometries
onto the same curve. At larger _γd̄2,D is proportional to _γd̄2,
consistent with previous studies for rapid, dense flows
[3,4,11,12]. However, below a critical _γd̄2, D is nearly
constant. Longer duration simulations in the open heap (not
shown) indicate that the observed diffusive scaling in the
shear-rate-independent regime persists for MSD values
exceeding d̄2. Consequently, these fluctuations in position
result in macroscopic particle rearrangement.
To better understand the transition between these two

regimes of diffusion, we plot the solids volume fraction f
and the local mean squared velocity fluctuation correla-
tions in the x and z directions u0u0 and w0w0, respectively,

vs _γd̄2 in Fig. 3 for 2 mm diameter particles in the open

heap. Here u0u0 ¼ hðu − ūÞ2i and w0w0 ¼ hðw − w̄Þ2i,
where �̄ denotes a bin average at each time and the
angled brackets denote a time average. Both quantities
exhibit trends similar to D. f increases rapidly with
decreasing _γ and then increases more slowly until satu-
rating at a value near the random close packed limit for
monodisperse spherical particles fc ≈ 0.634 [25,26]
[Fig. 3(b)]. The velocity fluctuations decrease as _γ
decreases, similar to other dense flow geometries [27],
but at small enough _γ, both velocity fluctuation compo-
nents are independent of _γ [Fig. 3(c)]. u0u0 and w0w0 have
different values in the flowing layer due to the anisotropic
nature of dense granular flow [11,28], but are nearly
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FIG. 2 (color online). Diffusion coefficient D vs _γd̄2 for the 11
DEM simulations described in Table I. Data for each simulation
span the entire length (0 < x < W) and depth (−5δ < z < 0) of
the heap flow. The dashed line marks the approximate transition
(_γd̄2 ¼ 6 × 10−7 m2=s) between shear-rate-dependent and shear-
rate-independent diffusion; tc ¼ 1 × 10−3 s.
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FIG. 3 (color online). Three kinematic properties vs _γd̄2 for
2 mm particles at Q ¼ 73 cm3=s in the open heap: (a) D, (b) f,
and (c) u0u0 and w0w0. The vertical dashed line indicates the
transition shear rate as in Fig. 2. The horizontal dashed line in
(b) indicates the random close packed solids fraction for mono-
disperse spherical particles fc ¼ 0.634 [25,26]; tc ¼ 1 × 10−3=s.

TABLE I. Simulation conditions for data shown in Fig. 2.

ds (mm) dl (mm) End wall Q (cm3=s) Symbol

2 Open 73 ○

1.5 Closed 6.7 ▾

1.5 Closed 60 ▪
1.5 Closed 70 •
1 2 Closed 6.7 ⧫
1 2 Closed 20 ▴

1 2 Closed 70 ◂

1 3 Closed 20 ▸

1 3 Closed 70 ⋆
1.5 2.25 Closed 20 ✶
1 1.5 Closed 20 ·
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identical at small _γ. The qualitative trends in Fig. 3 are
independent of flow parameters and simulation parame-
ters, but the transition between regimes varies with tc and
the acceleration due to gravity g, as we discuss next.
In addition to 1=_γ, dimensional considerations suggest

two other relevant time scales:
ffiffiffiffiffiffiffiffi
d̄=g

p
and the binary

collision time tc. Figure 4(a) displays the results of simu-
lations for varying g and tc for a wide range of _γ. At larger
shear rates, D for different conditions collapse onto a single
curve, indicating that the diffusive motion is not affected byffiffiffiffiffiffiffiffi
d̄=g

p
and tc at larger _γ. However, both g and tc affect the

transitional shear rate and the magnitude of D in the shear-
rate-independent regime. In this regime, data in Fig. 4(a)
collapse when D and _γd̄2 are scaled by d̄1=2g3=2t2c, and the
transition occurs for _γd̄2=ðd̄1=2g3=2t2cÞ ¼ Oð1Þ as shown in

Fig. 4(b). The same collapse is observed for different particle
sizes, feed rates, flow geometries, gravitational accelerations,
and particle collisional times as shown in Fig. 4(c), which
combines the data in Fig. 2 with that in Fig. 4(b).
Shear-rate-independent diffusion becomes significant

with respect to mixing when particle displacements are
on the order of a diameter, i.e.,

ffiffiffiffiffiffiffiffi
2Dt

p
=d > 1, which

corresponds to a “mixing” time tm > d2=ð2DÞ. From
Fig. 4(b), D ≈ 10−2d̄1=2g3=2t2c so tm > 50d3=2g−3=2t−2c .
For a commonly used granular material such as d ¼
1 mm glass particles with tc ¼ 10−5 s, tm ≈ 5 × 105 s or
about six days. However, shear-rate-independent diffusive
motion in free surface flows could possibly be observed
more readily in softer materials such as rubber
(kglass=krubber ∼ 1000Þ, where tm would be 500 s or about
10 minutes when the other material parameters remain
roughly the same.
The observed scaling is reproduced by considering shear-

rate-independent diffusion to be a random walk like elastic
contact rearrangement phenomenon driven by oscillations
induced by particle collisions in the flowing layer. For a
random walk, D ∼ Δs2=Δt, where Δs ¼ F=k is the average
step size obtained by considering the typical elastic com-
pression of a particle due to the impact of a falling particle
and Δt ¼

ffiffiffiffiffiffiffiffi
d̄=g

p
relates the time between steps to the time it

takes a particle to fall a distance equal to its diameter. The
characteristic collisional force is F ¼ dp=dt ¼ m

ffiffiffiffiffi
d̄g

p
=tc,

so Δs ∼ tc
ffiffiffiffiffi
d̄g

p
. Ignoring constants of Oð1Þ gives

D ¼ Δs2=Δt ∼
t2cd̄gffiffiffiffiffiffiffiffi
d̄=g

p ¼ d̄1=2g3=2t2c;

which matches the scaling found in our simulations. The
form of the nondimensionalization is consistent with a
scaling in simple shear flow wherein the mean pressure is
assumed linearly proportional to particle stiffness [29].
The observed scaling in the shear-rate-independent

regime is different from the μ − I rheology [30–32] for
inertial flow in which μ is a friction coefficient and

I ¼ _γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ρp=P

q
(where P is the pressure) is the inertia

numberwhich characterizes the ratio of the inertia time scale
to the macroscopic deformation time scale. Recent studies
[33,34] emphasize that the μ − I model is inappropriate to
apply in quasistatic creep flowwhere I is small. In the shear-
rate-independent regime, we found that gravity and particle
stiffness play important roles in diffusion—different
characteristic time scales than used in the μ − I model
[30–32]. Our results provide a different understanding of the
quasistatic creep regime which falls outside the scope of the
μ − I rheology and also reveals insights into the mechanics
of nonlocal flows proposed in recent models [35,36].
Our simulation results imply the existence of a relatively

homogeneous regime in which the solids fraction is
constant and diffusion is driven by particles mobilized
by force fluctuations in the contact network. These
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FIG. 4 (color online). (a) D vs _γd̄2 for three gravitational
accelerations and four binary collisional times for 2 mm particles
at Q ¼ 73 cm3=s in the open heap. (b) D and _γd̄2 normalized by
d̄1=2g3=2t2c. (c) D and _γd̄2 from both Fig. 2 and Fig. 4(a)
normalized by d̄1=2g3=2t2c.
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fluctuations are apparently nonlocal and are presumably
driven by collisions of particles in the feed zone and in the
flowing layer. This picture is not incompatible with shear-
rate-independent particle motion observed in other granular
flow experiments, such as particle motion in slowly drained
vertical structures [1,37–39]. In these studies, shear is
largely absent and fluctuations are driven by the decrease
in the gravitational potential energy of any given particle as
it descends. In draining experiments, diffusive particle
motion was observed in the MSD at times long compared
to the ballistic time scale [37] and for fall distances on the
order of a particle diameter [1]. Choi et al. suggest that in
the absence of shear, diffusive motion is the result of
random rearrangements of local particle clusters driven by
fluctuations in the contact network [1]. Particle motion
driven purely by the rearrangement of the contact network
in the absence of any flow has also been reported when
using thermal cycling to compact particle beds [40].
Although we considered a range of flows and particle

sizes and stiffnesses, other flow conditions, such as non-
gravity-driven flow (e.g., annular shear flow), should also
be examined to clarify the generality of our results. In
addition, study of the microstructure using statistical
characteristics of the force networks and correlations
between particle packing and motion may provide further
insights into the motion in the shear-rate-independent
transport regime. Last, experimental verification, presum-
ably using soft particles, would be useful in further
exploring shear-rate-independent diffusion. Nevertheless,
it is clear that shear drives granular diffusion under the high
shear-rate conditions typical of rapid, dense flow, while an
elastic phenomenon, likely related to excitations translated
through force chains, drives diffusion in the underlying bed
of particles, which can shed light on the understanding of
creep dynamics in both dry granular flow and fluid-
granular flow [41,42].
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